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Abstract: Iron deficiency chlorosis (IDC) is an abiotic stress that negatively affects soybean (Glycine
max [L.] Merr.) production. Much of our knowledge of IDC stress responses is derived from model
plant species. Gene expression, quantitative trait loci (QTL) mapping, and genome-wide association
studies (GWAS) performed in soybean suggest that stress response differences exist between model
and crop species. Our current understanding of the molecular response to IDC in soybeans is largely
derived from gene expression studies using near-isogenic lines differing in iron efficiency. To improve
iron efficiency in soybeans and other crops, we need to expand gene expression studies to include
the diversity present in germplasm collections. Therefore, we collected 216 purified RNA samples
(18 genotypes, two tissue types [leaves and roots], two iron treatments [sufficient and deficient],
three replicates) and used RNA sequencing to examine the expression differences of 18 diverse
soybean genotypes in response to iron deficiency. We found a rapid response to iron deficiency across
genotypes, most responding within 60 min of stress. There was little evidence of an overlap of specific
differentially expressed genes, and comparisons of gene ontology terms and transcription factor
families suggest the utilization of different pathways in the stress response. These initial findings
suggest an untapped genetic potential within the soybean germplasm collection that could be used
for the continued improvement of iron efficiency in soybean.

Keywords: Glycine max; soybean; iron deficiency chlorosis; abiotic stress; RNA-seq; comparative tran-
scriptomics

1. Introduction

Iron deficiency chlorosis (IDC) in soybean (Glycine max [L.] Merr.) is characterized by
interveinal chlorosis, stunted growth, and yield loss. IDC is typically found in soybeans
grown throughout the North Central U.S., where a high pH (>7.2) and calcareous soils limit
iron availability, resulting in IDC development [1]. Soil properties and genetic differences
between lines create a variability in iron stress tolerance [2–5]. Froehlich and Fehr (1981)
demonstrated the genotypic variability of the IDC response among 15 soybean varieties,
finding that each one point change on the IDC visual rating scale (1–5) correlated to an
approximately 20% yield loss at the end of the season [3]. Using the 2020 median price
of soybean, the estimated economic loss due to IDC in the North Central U.S. would be
approximately 117 million USD [1]. Due to the high potential for yield loss associated
with IDC, we must improve our understanding of iron stress responses in order to keep
economic losses to a minimum.

A collective effort to improve our ability to breed for iron efficiency has resulted in
a strong research foundation addressing the genetics of iron utilization and crop stress
adaptations. Weiss (1943) was the first to suggest a single dominant gene underlying the

Int. J. Mol. Sci. 2021, 22, 11643. https://doi.org/10.3390/ijms222111643 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2403-8946
https://orcid.org/0000-0002-9842-7701
https://doi.org/10.3390/ijms222111643
https://doi.org/10.3390/ijms222111643
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222111643
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222111643?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 11643 2 of 25

efficiency of iron utilization in soybean [6]. Cianzio and Fehr (1980) justified the variation
in iron stress responses by suggesting that modifying genes accompany major quantitative
trait loci (QTL) [7]. Since then, multiple genetic studies have provided more evidence
supporting the idea of multiple genes controlling iron efficiency [8–12]. Diers et al. [13] first
mapped an iron efficiency QTL using an early soybean genetic map. Later, Lin et al. [9]
mapped an iron efficiency QTL using two different mapping populations: in one popula-
tion, a number of minor effect QTL were associated with iron efficiency, whereas, in the
other population, 68–73% of variance associated with iron efficiency was mapped to a
single QTL. Following the publication of the soybean genome, Severin et al. [14] narrowed
the location of this major QTL on soybean chromosome Gm03 using an introgression
mapping of near-isogenic lines (NILs) Clark (iron stress tolerant) and IsoClark (iron stress
susceptible), and the iron inefficiency donor T203 (iron stress susceptible). Peiffer et al. [15]
used introgression and QTL mapping to narrow the QTL within the introgressed region
even further. Recently, Assefa et al. [12] performed a genome-wide association study, char-
acterizing IDC tolerance in 460+ soybean lines using multiple phenotyping methods and
timepoints to evaluate IDC symptoms in the field and in hydroponics. This analysis split
this historical QTL into four discrete linkage blocks, each containing candidate iron stress
responsive genes. It is still unknown if different combinations of theses linkage blocks
can be associated with differences in the stress response and gene expression patterns of
soybeans responding to iron stress.

Continued improvements of sequencing technologies allow for scientists to examine
genome-wide expression differences in response to stress within any soybean genotypes
of interest. Initial soybean gene expression studies using Clark and IsoClark identified
responses after 14 days of iron stress, including genes involved in general stress responses,
iron uptake/homeostasis, and DNA repair/replication [16–18]. Moran Lauter et al. [19]
utilized RNA-seq to study the early transcriptional response (1 h and 6 h after iron stress)
in the leaf and root tissue of Clark. Similar to the previous gene expression studies,
Moran Lauter et al. found genes involved in what are now considered the hallmarks of
the Clark iron stress response: a defense response, iron homeostasis, and DNA replica-
tion/methylation. Recently, Moran Lauter et al. [20] found Clark responds to iron stress
as early as 30 min after stress. In addition, a shift in gene expression from root to shoot
was observed 30–120 min after stress onset. This shift was attributed to the movement of
a novel stress signal. Atencio et al. [21] examined Clark and IsoClark responses two and
ten days after iron stress, observing an ebb and flow in the gene expression across these
same pathways. Remarkably, significant differences in the leaf chlorophyll content could
be detected at two days of iron stress.

Thus far, the majority of iron stress studies in both model and crop species have
been restricted to a few genotypes of interest. Soybean, however, has evolved around the
world in different environments and soil conditions. In order to identify and characterize
the full breadth of the soybean iron stress response, including novel iron stress tolerance
mechanisms, we need to characterize iron stress responses in multiple genotypes. In this
study, the objective was to compare early differential gene expression patterns of soybeans
with varying iron efficiencies. We selected 18 lines from the Assefa et al. [12] GWAS panel
for iron stress response gene expression analyses. We used RNA sequencing on leaf and
root tissue collected 60 min after growing plants in either iron-deficient or iron-sufficient
hydroponic solutions. After testing for differential expression, we found a rapid and varied
response to iron stress across genotypes. While genome-wide association studies and
transcriptomic studies have separately proven to be very useful tools in identifying stress
or developmental genes and regions of interest, we must leverage both research tools
simultaneously to increase our understanding of IDC responses in soybean. Leveraging
diversity found in the soybean germplasm collection can be used to enhance breeding
efforts and develop a greater tolerance to nutrient stresses, such as IDC.
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2. Results
2.1. Clustering Genotypes into Efficient and Inefficient Classes Based on Phenotypic Data

Phenotypic data provided by Assefa et al. [12] were first clustered using all years,
growth stages, and environments (Figure 1, Supplementary File S1). The dendrogram
from hierarchical clustering shows a distinct break between two clusters, each containing
nine genotypes (Figure 1a). To visualize SPAD readings and IDC ratings in the same
heatmap, we standardized the phenotypic values in a given growth stage and environment
by using z-scores, converting raw values to standard deviations from the mean. Using
z-scores, opposite phenotypic ratings for each trait were easily distinguished into two
clusters. The cluster with genotypes G1, G2, G8, G10, G12, G14, G15, G16, and G17 (Clark)
generally received low IDC ratings and high SPAD readings and will be denoted as the
iron-efficient (EF) group. The cluster with genotypes G3, G4, G5, G6, G7, G9, G11, G13, and
G18 (IsoClark) generally received high IDC ratings and low SPAD readings and will be
denoted as the iron-inefficient (INF) group. Within each cluster, two subgroups could be
identified. In the EF group, G2, G8, G12, and G16 were the best performing lines, whereas,
in the INF group, G11 and G18 were the worst performing lines. Interestingly, a greater
variation of phenotypic scores between years and environments was seen among the INF
group, specifically, G5, G7, and G9. The only two genotypes that consistently showed
similar phenotypic scores were G11 and G18 of the INF group. Principal component
analysis (PCA) was also used to cluster the genotypes (Figure 1b). The first two principal
components explained 90.6% of the variance, (83.3% and 7.3%, respectively). In the PCA
plot, the genotypes clustered into the same two groups defined using the hierarchical
clustering. Again, we saw that the INF group contained more variation than the EF group
based on the distribution of the genotypes on the PCA plot.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 25 
 

 

2. Results 
2.1. Clustering Genotypes into Efficient and Inefficient Classes Based on Phenotypic Data 

Phenotypic data provided by Assefa et al. [12] were first clustered using all years, 
growth stages, and environments (Figure 1, Supplementary File S1). The dendrogram 
from hierarchical clustering shows a distinct break between two clusters, each containing 
nine genotypes (Figure 1a). To visualize SPAD readings and IDC ratings in the same 
heatmap, we standardized the phenotypic values in a given growth stage and environ-
ment by using z-scores, converting raw values to standard deviations from the mean. Us-
ing z-scores, opposite phenotypic ratings for each trait were easily distinguished into two 
clusters. The cluster with genotypes G1, G2, G8, G10, G12, G14, G15, G16, and G17 (Clark) 
generally received low IDC ratings and high SPAD readings and will be denoted as the 
iron-efficient (EF) group. The cluster with genotypes G3, G4, G5, G6, G7, G9, G11, G13, 
and G18 (IsoClark) generally received high IDC ratings and low SPAD readings and will 
be denoted as the iron-inefficient (INF) group. Within each cluster, two subgroups could 
be identified. In the EF group, G2, G8, G12, and G16 were the best performing lines, 
whereas, in the INF group, G11 and G18 were the worst performing lines. Interestingly, a 
greater variation of phenotypic scores between years and environments was seen among 
the INF group, specifically, G5, G7, and G9. The only two genotypes that consistently 
showed similar phenotypic scores were G11 and G18 of the INF group. Principal compo-
nent analysis (PCA) was also used to cluster the genotypes (Figure 1b). The first two prin-
cipal components explained 90.6% of the variance, (83.3% and 7.3%, respectively). In the 
PCA plot, the genotypes clustered into the same two groups defined using the hierarchical 
clustering. Again, we saw that the INF group contained more variation than the EF group 
based on the distribution of the genotypes on the PCA plot. 

 
 

(a) (b) 

Figure 1. Clustering of 18 soybean genotypes based on phenotypic response to iron stress. (a) Iron deficiency chlorosis 
(IDC) ratings and soil plant analysis development (SPAD) readings from Assefa et al. (2020) were used to generate a 
heatmap using row z-scores (standard deviation from the mean within a row). IDC ratings were collected at three growth 
stages (T1, T2, T3) and SPAD readings were collected at two growth stages (S1, S2) across two field seasons (2014, 2015) 
and in greenhouse hydroponics (HD). Genotypes ordered based on hierarchical clustering revealed two major groups of 
soybean genotypes, iron–efficient (EF) and iron–inefficient (INF). Haplotypes were identified from sequences within the 
historic iron deficiency chlorosis (IDC) quantitative trait loci (QTL) on chromosome Gm03. Matching haplotypes are indi-
cated in the color bar above the heatmap. (b) Principal component analysis (PCA) was performed on the same data used 
to generate the heatmap. The two major groups of soybean genotypes revealed by hierarchical clustering, EF and INF, 
were also seen in the PCA and are shown in red and blue, respectively. 

When selecting the genotypes used in this study, we intentionally selected genotypes 
with eight haplotype combinations for the three IDC QTL linkage blocks identified by 
Assefa et al. [12] that corresponded to the narrowed introgressed region identified by 

Figure 1. Clustering of 18 soybean genotypes based on phenotypic response to iron stress. (a) Iron deficiency chlorosis (IDC)
ratings and soil plant analysis development (SPAD) readings from Assefa et al. (2020) were used to generate a heatmap
using row z-scores (standard deviation from the mean within a row). IDC ratings were collected at three growth stages
(T1, T2, T3) and SPAD readings were collected at two growth stages (S1, S2) across two field seasons (2014, 2015) and in
greenhouse hydroponics (HD). Genotypes ordered based on hierarchical clustering revealed two major groups of soybean
genotypes, iron–efficient (EF) and iron–inefficient (INF). Haplotypes were identified from sequences within the historic iron
deficiency chlorosis (IDC) quantitative trait loci (QTL) on chromosome Gm03. Matching haplotypes are indicated in the
color bar above the heatmap. (b) Principal component analysis (PCA) was performed on the same data used to generate the
heatmap. The two major groups of soybean genotypes revealed by hierarchical clustering, EF and INF, were also seen in the
PCA and are shown in red and blue, respectively.

When selecting the genotypes used in this study, we intentionally selected genotypes
with eight haplotype combinations for the three IDC QTL linkage blocks identified by
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Assefa et al. [12] that corresponded to the narrowed introgressed region identified by
Peiffer et al. [15]. For seven of the eight combinations, we selected the two genotypes with
the highest and lowest iron stress tolerance, based on three timepoints for visual ratings
and two timepoints for SPAD readings [12]. For the eighth combination, only seeds from
a single EF genotype was available. Clark (G17, EF) and IsoClark (G18, INF) were then
added to the correct haplotype combinations as internal controls. Finally, for one haplotype
group, a third genotype was added, representing the average IDC ratings for the group.
We found that genotypes clustered by IDC phenotype, not by haplotype, suggesting other
genomic regions must impact the IDC tolerance.

2.2. Identification of Differentially Expressed Genes in Early Response to IDC Stress

From the 216 purified RNA samples (eighteen genotypes, two tissue types, two iron
treatments, three replicates) that were sent to the Iowa State DNA sequencing facility,
approximately 6.2 billion raw reads were produced. The sequences were filtered and
mapped to the soybean reference genome, as outlined in the materials and methods. The
number of mapped reads varied from 5644 to 186,296,039, with nine samples (eight in
leaves and one in roots) containing fewer than five million mapped reads (Supplementary
File S2). Using FastQ Screen [22] to examine the quality of the reads, along with the
unusually low numbers of mapped reads for some samples, raised concerns about the
global coverage and depth of sequencing for nine samples. Two genotypes (G3, G15) each
had two replicates with fewer than five million mapped reads in leaf tissue samples under
sufficient iron conditions. Similarly, genotype (G9) had three replicates with fewer than five
million mapped reads in leaf tissue samples under sufficient iron conditions. Due to the
lack of replication and the inability to make treatment comparisons, the three genotypes
were completely removed from further analyses in the leaf tissue. The other two samples
(corresponding to genotype G8 leaves and genotype G16 roots) identified with fewer than
five million mapped reads were in different genotypes and tissue types, leaving at least
two replicates after removal. Sample removal resulted in 15 and 18 genotypes used in
downstream leaf and root tissue analyses, respectively.

Following the edgeR workflow, we tested the treatment effect of iron deficiency by
comparing the expression of genes in deficient conditions against sufficient conditions
within each genotype. The number of differentially expressed genes (DEGs, FDR < 0.05)
varied considerably across genotypes in both tissue types (Supplementary Table S1, Sup-
plementary Files S3 and S4). The total number of DEGs ranged from 1 to 6747 in leaves
and from 16 to 1611 in roots. Plotting the number of DEGs by tissue type across genotypes
clearly demonstrated the variability in numbers of DEGs (Figure 2). Within both the EF and
INF groups, we identified distinct patterns of DEG numbers. In the EF group, genotypes
G1, G2, and G8 had higher DEG counts in both leaves and roots relative to other genotypes
in the group. In genotypes G10, G12, G16, and G17, we identified few DEGs from leaves,
but many from roots (<100 in leaves and >200 in roots), and genotype G14 had DEG counts
<50 in both leaves and roots. This suggests differences in iron stress responses among the
EF group. In the INF group, all genotypes aside from G4 had DEG counts <100 in leaves
and a range of DEG counts in the roots.

2.3. Comparison of Differentially Expressed Genes between Genotypes

Searching for similar DEGs between individual pairs of genotypes, we compared
overlapping DEGs in all pairwise combinations of genotypes (Supplementary Figure S1).
The number of overlapping DEGs in a pair of genotypes ranged from 0 to 2837 in leaves
and 0 to 135 in the roots. Most comparisons made in the leaf tissue resulted in very few
to no overlapping genes. This was not surprising considering fewer than 15 DEGs were
found in at least half of the genotypes. However, comparing the three EF genotypes with
DEG counts >500, G1 and G8 had 2837 DEGs in common and G1 and G2 had 305 genes in
common, whereas G2 and G8 only had 215 DEGs in common. Comparisons in the root
tissue resulted in over half of the pairs containing at least 15 overlapping DEGs. Within
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the EF group, G1 and G2 had the most DEGs in common (57). These results again suggest
differences in iron stress responses across genotypes.
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Figure 2. Numbers of differentially expressed genes (DEGs) responding to iron stress across 18
soybean genotypes. Significant DEGs (deficient vs. sufficient; FDR < 0.05) were identified 60 min
after iron stress in leaf and root tissue. Genes up-regulated and down-regulated in response to iron
stress are shown in red and blue, respectively. Previous hierarchical cluster analysis based on iron
stress phenotypic measurements revealed two major clusters of soybean genotypes, iron–efficient
and iron–inefficient, shown in green and black, respectively. Three genotypes that were omitted from
leaf tissue due to sample removal during sequence processing are indicated with an asterisk.

2.4. Comparisons across Genotypes
2.4.1. Differentially Expressed Genes

In order to identify conserved stress response genes in soybean, we identified DEGs
that were most common to all genotypes (Supplementary Table S2, Supplementary File S5).
Comparing all genotypes in the leaves, the highest overlap was two DEGs shared by five
genotypes, followed by 24 DEGs shared by four genotypes, 192 DEGs shared by three
genotypes, and 2992 DEGs shared by two genotypes. Genes that were identified in two or
more genotypes were typically found in various combinations between G1, G2, G4, and
G8. Three of these genotypes are EF (G1, G2, G8) and one genotype is INF (G4). Most of
the overlap between two genotypes occurred between G1 and G8. For the overlap of three
genotypes, 97% (187/192) of the genes overlapped with some combination of those four
genotypes, and for the overlap of four genotypes, 83% (20/24) of the genes overlapped
with those four genotypes. These groupings suggest that some core stress mechanisms
may be conserved between these four genotypes.

The two genes, Glyma.11G190200 and Glyma.18G104400, shared across five genotypes,
encode a UDP-D-apiose/UPD-D-xylose synthetase and a citrate synthase, respectively.
Ahn et al. [23] found silencing UDP-D-apiose/UPD-D-xylose synthetase expression caused
changes in plant growth, cell death, and leaf yellowing, similar to IDC. This suggests an
increased expression of Glyma.11G190200 could help to alleviate IDC symptoms. López-
Millán et al. [24] demonstrated that iron deficiency caused an increase in the activity
of multiple citric acid cycle enzymes, including citrate synthase. An overexpression of
the Malus xiaojinensis Citrate Synthase 1 (MxCS1) increases the iron stress tolerance in
tobacco [25]. The 24 genes found across four genotypes were involved in growth and
various hormone responses. For example, Glyma.06G102100 is homologous to the AtEXO
gene, which responds to a brassinosteroid stimulus and is required for cell expansion in
leaves [26]. Lisso et al. [27] found that AtEXO modifies the sugar responsiveness during



Int. J. Mol. Sci. 2021, 22, 11643 6 of 25

seedling growth. Moran Lauter et al. [19] identified eight EXO homologs, including
Glyma.06G102100, that were repressed in response to 60 min of iron stress in Clark leaves.
Glyma.18G030200 is homologous to the COI1 gene, which is involved in jasmonate signaling
and can inhibit growth and induce defense-related processes [28]. Both Glyma.06G102100
and Glyma.18G030200 were down-regulated in response to iron stress in the four genotypes.

In roots, we identified 24 genes found in six or more genotypes, including Glyma.19G016400,
shared by 17 genotypes. Glyma.19G016400 is a member of the ATP-binding cassette (ABC)
transporter superfamily. This gene family has been associated with many functions of plant
development and response, such as the transportation of auxin and secondary metabo-
lites [29]. Glyma.03G160100, shared across 14 genotypes, is most homologous to AtCYP94B1,
which is involved in apoplastic barrier formation in the roots and confers salt tolerance [30].
Remarkably, the 24 genes shared across six or more genotypes were significantly overrepre-
sented with the GO terms’ cellular response to potassium ion (GO:0035865) and response to
hypoxia (GO:0001666). These genes include two homologs of AtRAP2.1 (Glyma.19G026000
and Glyma.13G060600, shared in 14 and seven genotypes, respectively) and two homologs
of AtADH1 (Glyma04G,240800 and Glyma.06G122600, shared in ten and eight genotypes,
respectively). AtRAP2.1 is a negative regulator of abiotic stress responses [31], whereas
AtADH1 confers resistance to biotic and abiotic stress [32]. More overlapping genotypes
were observed in the roots than in the leaves, suggesting a more uniform recognition and
response of the stress in root tissue.

To help examine the response of significant DEGs across all genotypes, we generated
heatmaps for the 218 and 349 significant DEGs shared by three or more genotypes in
leaves and roots, respectively (Figure 3). The hierarchical clustering of the log2 fold-change
(logFC) allowed us to organize groups of genes and genotypes by similar response profiles.
In the leaves, the genotypes clustered into two major clades, but in the roots, the genotypes
clustered into three major clades. Interestingly, Clark (G17) was clustered with IsoClark
(G18) in roots but not in the leaf tissue. Regardless of the tissue type, there was a combina-
tion of EF and INF genotypes within each clade. We found an overlap of genotype groups
between tissue types (G13, G16, G18), but were limited in this comparison because of the
three genotypes that were removed from the leaf analysis. The clusters found in both tissue
types suggest that there are at least two iron stress response mechanisms represented in our
mini panel. The hierarchical clustering of the DEGs resulted in two and four major clades in
leaves and roots, respectively. Using GO enrichment analysis, we examined the biological
processes associated with each DEG clade. In leaves, no GO terms were significantly
overrepresented. However, in one nested genotypic clade in leaves (G7, G8, G10, G12, G4,
G6, G1, G2), the DEGs were easily grouped by the direction of expression. In the roots, two
of the four DEG clades (clade 2 [green] and clade 3 [blue]) contained significantly overrep-
resented GO terms. Clade 2 was overrepresented with DEGs associated with a response
to hypoxia (GO:0001666) and the negative regulation of the ethylene-mediated signaling
pathway (GO:0010105). Ethylene is involved in multiple stress signaling, including iron
stress [33] and hypoxia [34]. Clade 3 was overrepresented with DEGS associated with a
response to hypoxia (GO:0001666) and the sulfolipid biosynthetic process (GO:0046506).
The membrane lipid composition can change under stresses, including hypoxia and phos-
phate starvation [35,36]. Interestingly, Thimm et al. [37] also found expression changes in
anaerobic-related genes while using hydroponics but attributed this response to attempted
energy production rather than a hypoxia response.
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expressed genes (DEGs) in response to 60 min of iron stress response were identified in 18 soybean
genotypes. Genes significant in at least three genotypes were identified and then log2 fold–change
values were plotted across (a) 15 genotypes in leaves and (b) 18 genotypes in roots. Three genotypes
were omitted from leaf tissue due to sample removal during sequence processing. Haplotypes were
identified from sequences within the historic iron deficiency chlorosis (IDC) quantitative trait loci
(QTL) on chromosome Gm03. Matching haplotypes are indicated in the color bar above the heatmap.
Previous hierarchical cluster analysis based on iron stress phenotypic measurements revealed two
major clusters of soybean genotypes, iron efficient and iron inefficient, shown in green and black
font, respectively.

2.4.2. Enriched Biological Process Terms

Our analyses thus far suggest that the genotypes used in this study had largely unique
responses to iron stress. Of the 9718 DEGs identified in leaves, 97.7% were only found
in one or two genotypes. Similarly, in the roots, 93.8% of DEGs were found in one or
two genotypes. However, soybean is a paleopolyploid with multiple genome duplication
events in its history [38]. Therefore, it is possible that the gene-specific differences we
observed could be due to homeologous genes performing similar functions. To address
this issue, we took advantage of GO term enrichment. Homeologous genes should have
the same best Arabidopsis hit and would be assigned the same GO terms, allowing us
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to compare biological processes involved in the response to iron stress across genotypes
(Supplementary Tables S3 and S4, Supplementary File S6).

In leaves, we found 106 non-repetitive overrepresented GO terms across genotypes.
Only two genotypes (G1, G8) had overlapping significant GO terms (corrected p-value < 0.05).
The lack of DEGs found across genotypes likely contributed to the lack of shared over-
represented GO terms. However, within these two genotypes, were GO terms directly
associated with iron (iron–sulfur cluster assembly [GO:0016226] and iron ion homeosta-
sis [GO:0055072]). Additionally, other GO terms related to the defense response and
photosynthesis were shared by these two genotypes.

In the root tissue, we found 54 non-repetitive overrepresented GO terms across all
genotypes, with up to seven genotypes that were significant for the same overrepresented
GO term. Although no GO terms were found with the iron specifically mentioned in
the description, multiple GO terms were associated with the signaling or response to
stress. The GO term with the highest number of overlapping genotypes (five) was the
response to hypoxia (GO:0001666). GO terms that were significant in four genotypes
were the hydrogen peroxide metabolic process (GO:0010310), systemic acquired resistance,
and the salicylic-acid-mediated signaling pathway (GO:0009862). Hydrogen peroxide
(H2O2) is produced by plants under waterlogged conditions and is associated with stress
signaling [39]. Moran Lauter et al. [20] identified GO:0009862 (systemic acquired resistance,
salicylic-acid-mediated signaling pathway) as one of the top ten overrepresented GO terms
in one cluster of DEGs responding to iron stress in the root.

2.5. Comparing Differentially Expressed Genes between Iron Efficiency Groups

In order to understand the relationships between EF and INF genotypes, we compiled
a list of total unique DEGs for each tissue type (9720 unique DEGs in leaves and 5633
unique DEGs in roots). We then identified DEGs unique to either EF or INF genotypes
and quantified the number of genotypes the DEG considered significantly differentially
expressed (Supplementary Table S2, Supplementary Files S7 and S8). Identifying EF- and
INF-specific DEGs would help to separate specific iron stress responses from general
stress responses.

We identified 9141 and 2848 DEGs unique to EF leaves and roots, respectively (Sup-
plementary File S7). In EF leaves, 6160 were unique to a given genotype, 2859 were
shared by two genotypes, 123 were shared by three genotypes, and one was shared by
four genotypes. While looking at Arabidopsis homologs of DEGs shared by three or more
EF genotypes, we found many genes related to stress signaling and tolerance. The only
gene unique to four EF genotypes was Glyma.13G155200, with the greatest homology to
AtTIL, a temperature-induced lipocalin. Charron et al. [40] found that an overexpression
of AtTIL enhanced stress tolerance, delayed flowering, and maintained leaf greenness.
Interestingly, this gene was down-regulated in all four EF genotypes under iron-deficient
conditions. GO term enrichment analyses of the 9141 DEGs unique to EF leaves identified
93 significant terms, including numerous terms associated with photosynthesis, defense,
cell division, iron homeostasis, and the response to iron. In EF roots, 2677 DEGs were
unique to a given genotype, 159 DEGs were common to two genotypes, and 12 DEGs
were common to three EF genotypes. Among the genes shared by the three EF genotypes
in roots were genes responding to stress-related hormones, including: Glyma.05G222400,
with the greatest homology to AtACO1, involved with ethylene biosynthesis and the in-
duction of iron acquisition genes [41]; Glyma.15G062400, with the greatest homology to
AtPRB1, a basic pathogenesis-related protein induced by the defense signaling molecules
methyl jasmonate and ethylene [42]; and Glyma.20G248100, a bHLH transcription factor
(AtAKS2) negatively regulated by the stress-related hormone abscisic acid [43]. GO term
enrichment analyses of the 2848 DEGs unique to EF roots identified only five significant
GO terms: RNA methylation (GO:0001510), nucleosome assembly (GO:0006334), chal-
cone biosynthesis (GO:0009715), ribosome biogenesis (GO:0042254), and the response to
gravity (GO:0009629).
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We identified 354 and 2026 DEGs unique to INF leaves and roots, respectively (Sup-
plementary File S8). For INF leaves, 350 DEGs were unique to a given genotype and four
DEGs were shared by two genotypes. These encoded a PHD transcription factor, a fatty
acid desaturase, and two Kunitz trypsin inhibitors. AtKT11, with the greatest homology
to Glyma.08G342100, regulates plant cell death in plant pathogen interactions [44]. GO
enrichment identified 12 significantly overrepresented GO terms, largely associated with
hormones (jasmonic acid biosynthesis [GO:0009695], signaling [GO:0009867], response
[GO:009753] and metabolism [GO:0009694], ethylene biosynthesis [GO:0009693], and ab-
scisic acid signaling [GO:0009738]) and defense and wounding responses (response to
fungus [GO:0009620], regulation of insect defense response [GO:2000068], and response
to wounding [GO:0009611]). In INF roots, 1939 DEGs were unique to a given genotype,
77 DEGs were shared by two genotypes, nine DEGs were shared by three genotypes, and
one DEG was shared by four and five genotypes. Among the ten genes shared by three or
more genotypes, were three genes involved in abiotic stress responses. Glyma.18g064900,
shared by three genotypes, is most homologous to AtPTR1 which transports dipeptides
as a nitrogen source in the roots [45]. Glyma.17g162000, shared by five genotypes, is most
homologous to AtLBD38, which negatively regulates genes involved in nitrate uptake and
assimilation, including members of the peptide transporter family [46]. Glyma.14g171700,
shared by three genotypes, shares the greatest homology with AtTPPI, which regulates
stomatal apertures to enhance drought tolerance and water use efficiency [47]. GO term
enrichment analyses of the DEGs unique to INF roots identified 16 significant terms associ-
ated with defense and wounding responses, including numerous cell wall modifications
(secondary cell wall [GO:0009834] and cell wall biogenesis [GO:0009832], cell wall macro-
molecule metabolism [GO:0044036], lignin [GO:0009809], coumarin [GO:0009805], cellulose
[GO:0030244] and glucuronoxylan [GO:0010417] biosynthesis, glucuronoxylan metabolism
[GO:0010413], and lignin catabolism [GO:0046274]).

2.6. Characterization of DEG Expression Trends within Biological Processes Terms

Identifying biological relevance in GO terms in the leaves and roots was challenging
due to the lack of statistically significant overrepresentation across genotypes. When
reviewing the compiled list of GO terms, many GO terms that were not significantly
overrepresented still contained significant DEGs across genotypes. For example, in the
GO analysis above, in leaves, 15 GO terms associated with hormone signaling and the
defense response were only significant in G4. We found comparable numbers of DEGs
associated with these GO terms, but not significant, in G1 and G8. In roots, GO:0009862
(systemic acquired resistance, salicylic-acid-mediated signaling pathway) and GO:0010310
(the regulation of hydrogen peroxide metabolic process) were significantly overrepresented
in four genotypes (G2, G3, G4, G5) but have DEGs associated with these GO terms in
17 genotypes. This raised the possibility that our results were impacted by the timing
differences between genotypes, and not mechanistic differences. To address this, we
needed to visualize how GO terms responded to iron stress across genotypes. We separated
DEGs within genotypes based on the direction of expression (induced by iron stress
vs. repressed by iron stress). We used GO term enrichment on each DEG list and then
compiled a nonredundant list of significant biological process terms. We then used this
list to determine how many DEGs were identified in each genotype for each GO term.
We identified 168 and 90 significant GO terms in leaves and roots, respectively. We then
plotted this data to visualize the expression patterns of different biological process across
genotypes in leaves and roots; plots were colored by the genotype and by the iron stress
phenotype (Supplementary Figure S2, Supplementary File S9). To adjust for GO terms
with small genome counts that would not be easily identified in the plot, we calculated the
percentage of genes in the GO term that were significantly differentially expressed relative
to the GO term genome count for all GO terms and genotypes (Figure 4, Supplementary
File S9). If differences between genotypes were simply timing, all genotypes would have
varying peaks under the same GO term. We would expect this pattern for genotypes
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G1 and G8, which had a number of overlapping DEGs and GO terms in the leaves. If
differences between the genotypes were mechanistic, we would see differences in the GO
terms associated with different genotypes. For ease of interpretation, we focused on GO
terms and genotypes where the number of DEGs was greater than 2% of all genes assigned
to the GO term.
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Figure 4. Percentage of differentially expressed genes (DEGs) associated with select gene ontology (GO) terms in leaf tissue
of 18 soybean genotypes. GO term enrichment analysis was used on DEGs that were up-regulated or down-regulated in
response to 60 min of iron stress in (a,b) leaf and (c,d) root tissue of each genotype. DEG numbers for GO terms that were
significant in at least one genotype were compiled across genotypes. The percentage of DEGs expressed relative to the total
count of that GO term across the genome was calculated for each genotype and plotted with up-regulated genes shown
as positive values and down-regulated genes shown as negative values. Genotypes G3, G9, and G15 have values of zero
in the leaves due to sample removal during sequence processing. (a,c) Each genotype is represented by a unique color.
(b,d) Previous hierarchical cluster analysis based on iron stress phenotypic measurements revealed two major clusters of
soybean genotypes, iron–efficient and iron–inefficient, shown in red and blue, respectively. Additional data available in
Supplementary File S9.

For the vast majority of GO terms plotted, the response was largely genotype-specific.
One or two genotypes had similar GO term expression patterns, whereas the remaining
genotypes had background DEG expression levels that were less than 2%. In the roots, G13
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(INF) and G16 (EF) had similar expression trends among 27 GO terms repressed in both
genotypes. Interestingly, 17 additional GO terms were induced in G16, but repressed in
G13, suggesting differences in timing between the two genotypes, and not different iron
stress mechanisms. G2 (EF) also shared six repressed GO terms with G13 (INF), which
were induced in G16 (EF). These GO terms included four signaling hormones involved in
the stress response: ethylene (GO:0009873), salicylic (GO:0009862 and GO:0009863), and
jasmonic acid (GO:0009753) [48,49]. In the leaves, genotypes G1 (EF) and G8 (EF) shared
similar expression trends for 135 GO terms among repressed DEGs and 54 GO terms among
induced DEGs. Genotypes G2 (EF) also shared 28 GO terms with genotypes G1 and G8,
but only among induced DEGs (expression > 2%). This suggests that genotypes are using
different strategies to cope with iron stress.

Comparing phenotypic groups in leaves, we found three EF genotypes (G1, G2, G8)
with induced gene expression and two EF genotypes with repressed gene expression (G1,
G8). However, in leaves, only one INF genotype responded (G4). Remarkably, G4 only
induced gene expression (>2%). If we examine the 168 GO terms identified in leaves, 141 are
specific to EF groups (INF expression < 2%), 3 are specific to INF genotypes (EF expression
< 2%), and 24 are common to the EF and INF genotype. The three GO terms unique to
INF (G4) included the regulation of sequence-specific DNA binding transcription factor
activity (GO:0051090), regulation of transcription from RNA polymerase II promoter in
response to oxidative stress (GO:0043619), and regulation of the defense response to insects
(GO:2000068). Eight GO terms involved in jasmonic acid processes and defense response
were expressed in G1 (EF), G4 (INF), and G8 (EF). EF-specific terms were associated with a
range of processes, including photosynthesis, methylation, defense, iron homeostasis, the
regulation of transcription and translation, and growth. A lack of expression of other INF
genotypes in the leaves suggests that either INF genotypes are not able to respond to iron
stress in the leaves, or that INF roots are unable to signal iron stress to the leaves, which
could be an important distinction between EF and INF genotypes. Additionally, the range
of responses found in EF leaves suggests a cascade of iron stress responses, whereas the
response of INF leaves seems to be a more general defense response.

We saw induced and repressed GO terms in the root for EF and INF genotypes. If
we examine each GO term in the root, 23 were specific to EF groups (expression < 2%
across INF genotypes), 3 are specific to INF groups (expression < 2% across EF genotypes),
and 64 could be found in EF and INF genotypes. INF-specific GO terms were associated
with nucleotide–sugar metabolism (GO:0009225), the response to fructose (GO:0009750),
and chaperone-mediated protein folding (GO:0061077). EF-specific terms were associated
with stress, defense, DNA replication, cell division, and methylation. Interestingly, two
genotypes (G14, G15) had little to no overlap of GO terms in roots, suggesting distinct iron
stress responses.

2.7. Characterization of Differentially Expressed Transcription Factors

In order to identify regulators of potential pathways of interest, we identified DEGs
annotated as transcription factors (Supplementary Table S5, Supplementary File S5). Log2
fold-change values of differentially expressed transcription factors (TFs) grouped by the
transcription factor family (TFF) were plotted for each genotype × tissue type (Figure 5).
In leaves, we identified 897 TFs belonging to 56 TFFs. Most (92%) of the TFs were unique
to EF genotypes, 43 TFs (5%) were unique to INF genotypes, and only 25 (3%) of TFs were
found in at least one genotype of each phenotypic group. Of the 56 TFFs identified in
leaves, 16 TFFs were found in both phenotypic groups, 40 TFFs were unique to EF in leaves,
and no TFFs were unique to INF in leaves. In roots, we identified 569 TFs belonging to 49
TFFs. Almost half of the TFs (47%) were unique to EF, fewer TFs were unique to INF (36%),
and only 17% of TFs were found in at least one of each phenotypic group. Similar to leaves,
all TFFs identified in INF genotypes were identified in EF genotypes, whereas 12 TFFs
were unique to EF in roots. Interestingly, 71% and 78% of the TFs were unique to a single
genotype in the leaves and roots, respectively. An overlap of TFF between phenotypic
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groups could suggest similar target pathways for a general stress response, with additional
target pathways that distinguish the EF genotypes.

The expression patterns in TFs were similar to the expression patterns of total DEGs.
We found that EF genotypes (G1, G2, G8) had relatively strong numbers in the leaves and
roots. Most of the other EF genotypes (G10, G12, G16, G17) had consistent numbers of TFs
in the roots, but little to no TFs in the leaves. The remaining EF genotypes (G14, G15) had
few TFs in either the leaves or roots. Most TFs for INF genotypes were identified in the
roots. Only one INF genotype (G4) had a noticeable number of TFs in the leaves. Two INF
genotypes (G6 and G13) had only one and two TFs identified in the leaves, respectively.
Higher numbers of TFs observed in the leaves of EF genotypes suggests a more active
response to the iron stress.
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Figure 5. Expression values of differentially expressed transcription factors of 18 soybean genotypes. Differentially
expressed genes were identified in leaf and root tissue in response to 60 min of iron stress. Transcription factors were
identified in each DEG list and then plotted by transcription factor family using the log2 fold–change of the stress response.
Genes considered up- or down-regulated are shown in red or blue, respectively. Genotypes are divided by iron efficiency
((a) iron–efficient, (b) iron–inefficient) based on hierarchical clustering of phenotypic data. Genotypes G3, G9, and G15
contain blank cells in leaf tissue due to sample removal during sequence processing.

We performed TF enrichment analyses to identify overrepresented transcription factor
families (TFF; Supplementary Figures S3 and S4, Supplementary File S10). Surprisingly,
we did not find many significantly overrepresented TFFs, suggesting a range of processes
that are targeted during the stress response. In leaves, we identified four overrepresented
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TFFs: C2C2 [Zn] CO-like (G1 and G8), MYB/HD-like (G1), SBP (G8), and ZIM (G2 and
G4). In roots, we identified three overrepresented TFFs: AS2 (G6 and G11), WRKY (G3),
and ZIM (G10). Most overrepresented TFFs in leaves overrepresented TFs belonged to EF
genotypes, and, in roots, overrepresented TFs belonged mostly to INF genotypes.

2.8. Characterization of Differentially Expressed Genes across IDC QTL

The increasing body of IDC literature has identified numerous regions across the soy-
bean genome that are associated with the iron stress response. Assefa et al. [12] identified
69 regions of interest as a result of a GWAS using 460 diverse lines, including the lines
in our mini-panel. The 69 regions correspond to 278 candidate genes, some supported
with previous RNA-seq data from our group, which were restricted to genotypes Clark
(G17, [19,20]) and IsoClark (G18, [50]). Cross referencing our lists of overlapping DEGs in
both tissue types (Supplementary File S5), we identified 67 candidate DEGs corresponding
to 43 of these 69 regions. A total of 49 genes were unique to leaves, 12 genes were unique
to roots, and 6 genes were common to both tissue types. Some DEGs are specific for
iron-stress responses, whereas others are for more general stress responses. For example,
Glyma.02G075100 is homologous to AtSUC2, a sucrose transporter gene that increases iron
deficiency tolerance when overexpressed in Arabidopsis [51]. Moran Lauter et al. [19] found
that Glyma.16g157100, which is homeologous to Glyma.02G075100, is induced in Clark (G17)
leaves six hours after iron stress. Glyma.05G000300 encodes an iron–sulfur cluster con-
taining ferredoxin–thioredoxin reductase enzymes and was identified as a candidate gene
for IDC tolerance by Butenhoff [52] using the Fiskeby III x Mandarin (Ottawa) mapping
population. Glyma.06G056400, homologous to AT2G26330, encodes a leucine-rich repeat
receptor-like kinase. Shanmugam et al. [53] overexpressed a truncated dominant-negative
Arabidopsis ERECTA gene in soybean and observed a decrease in plant development and
an increase in stress response. Glyma.14G031700 is homologous to AtWDR26, a WD-40
repeat containing protein. An overexpression of AtWDR26 induced gene expression across
a range of processes, including hormone, light, and abiotic stress [54]. Among the six genes
common to both tissue types was Glyma.03G144500, which is homologous to the FAD2
gene. Yuan et al. [55] found that FAD2 is involved in the plant response to phytohormones
and abiotic stress.

Based on the location of the Gm03 QTL defined by Assefa et al. [12], we further
explored DEGs within this region. We identified 10 DEGs unique to leaves, four unique
to roots, and one gene significant in both tissue types. Surprisingly, DEGs that were lo-
cated within the Gm03 QTL were only identified in five genotypes, not including Clark
or IsoClark, between both tissue types. In leaves, only G1 and G8 had DEGs identified
in the Gm03 QTL, two of which were significant in both genotypes (Glyma.03G128900
and Glyma.03G130300). Assefa el al. [12] identified Glyma.03G128900, homologous to
AtLCY, as a high priority candidate gene in region one of the Gm03 QTL. The trans-
formation of β-lycopene cyclase genes from Salicornia europaea L. into both Arabidopsis
and tobacco increased carotenoid retention and improved oxidative and salt stress toler-
ance [56]. O’Rourke et al. [57] also identified Glyma.03G130300 as differentially expressed
in leaves 24 h after iron stress and in roots after multiple exposures to iron and phosphate
stress. Another gene of interest was Glyma.03G128300, which is homologous to the gluta-
mate synthase, AtGLU1. Knock-down Arabidopsis mutants showed large transcriptional
changes to various pathways, including photosynthesis and stress response [58], while
Cui et al. [59] found AtGLU1 to be involved in iron homeostasis. In roots, three genotypes
(G2, G13, G16) had DEGs in the Gm03 QTL. Remarkably, two genes (Glyma.03G131200 and
Glyma.03G131400) were annotated as the same protein, but were differentially expressed
in different genotypes (G13 and G2, respectively). Both genes were homologous with
members of the 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily. These
non-heme enzymes utilize ferrous iron as a co-factor, catalyze a wide range of reactions,
and are potentially involved in sensing the iron status [60,61]. Moran Lauter et al. [19] iden-
tified Glyma.07g150900, also a member of the 2OG-Fe(II)-dependent oxygenase superfamily,
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as differentially expressed in Clark (G17) roots one hour after iron stress. Glyma.03G130200
was identified in leaves (G1) and roots (G16) and is homologous with a strictosidine
synthase-like (SSL) protein. Sohani et al. [62] demonstrated that members of the SSL gene
family are involved in plant defense mechanisms.

Zhang et al. [63] used image analysis and machine learning to rate iron deficiency
chlorosis. In a GWAS using the image analysis output, they identified seven QTL associated
with iron deficiency across the genome. Within an 847 kb region on Gm03 (overlapping
the historic IDC QTL on Gm03), they identified seven candidate genes. One of the seven
candidate genes located on Gm03 (Glyma.03G128300) was identified in the leaves (G8)
and two (Glyma.03G131200 and Glyma.03G131400) were identified in the roots (G13, G2).
All three genes on Gm03 were highlighted in the previous paragraph. An additional
2OG-Fe(II)-dependent oxygenase (Glyma.18G111000) 41.4 kb downstream from another
variant found on Gm18 was also identified in the leaves (G8). These findings highlight
the utility of leveraging early gene expression studies with GWAS field studies to identify
candidate genes controlling agronomically important traits.

2.9. Single Linkage Clustering

We used single linkage clustering to group iron-stress-responsive DEGs (13,980) by
shared sequence homology (TBLASTX, E < 10–20) or individual genes shared across
multiple genotypes, tissues, or expression patterns. Of the 13,980 unique DEGs identified
in our experiment, 12,138 DEGs clustered into 2922 clusters. Clusters ranged in size from
one DEG to 2136 DEGs, and represented up to 18 genotypes (Supplementary Figure S5).
Of the 2922 clusters, 1763 and 50 were specific to EF and INF genotypes, respectively. On
average, EF clusters contained 2.28 DEGs (STD = 1.9), whereas INF clusters contained
2.02 DEGS (STD = 1.37). Similarly, EF clusters represented 2.28 genotypes (STD = 0.65),
whereas INF clusters represented 1.48 genotypes (STD = 0.58). The limited number of
genotypes found on average in each cluster again suggests that most genotypes respond
very differently to iron stress.

3. Discussion

Soybean is a major cash crop grown in the Midwest; due to various soil properties,
soybeans grown in this geographic region of the United States have a higher chance of
developing the nutrient stress, iron deficiency chlorosis. Although many studies have
contributed to the current knowledge of the molecular response of soybean to IDC, no
study has investigated the variation of the molecular response across a wide breadth of the
germplasm collection. Similarly, studies in model species have largely focused on one or
two main genotypes. Therefore, we sought to compare the early responses to IDC across
a diverse panel of soybean genotypes to identify both differences in the stress response
across genotypes and novel IDC tolerance mechanisms to exploit in the future.

3.1. Soybean Responds Rapidly to Iron Stress

Plants have the ability to rapidly respond to changes in environmental conditions
in scales of seconds and minutes [64]. Buckhout et al. [65] examined the early iron stress
response of Arabidopsis in a time-course analysis by examining differential expression at
0, 0.5, 1, 6, and 24 h after iron stress. While their analysis shows differential expression
at all timepoints, they concluded the initiation of the iron deficiency stress response to
be sometime between 1 and 6 h after stress. They interpreted that DEGs identified at the
first three timepoints were not iron-specific because they were only identified at a single
timepoint. In soybean, Atencio et al. [21] compared Clark (G17) iron stress responses
observed by Moran Lauter et al. (30, 60, 120 min after iron stress) [20] and O’Rourke et al.
(24 h after iron stress) [57] to their own study (two and ten days after iron stress). Of the
9102 and 15,881 DEGs unique to leaves and roots, respectively, approximately 60% were
unique to a single time point. While the majority of genes were specific to a given timepoint,
they included the hallmarks of the Clark (G17) iron stress response: genes involved iron
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homeostasis, defense response, and DNA replication/methylation [18–20,57]. In this study,
67% and 82% of DEGs identified in leaves and roots, respectively, were unique to a single
genotype. This suggests that the majority of soybean genotypes in our panel, and not just
Clark (G17), are able to recognize and respond to iron stress within 60 min.

Khan et al. [66] examined expression levels of the canonical Arabidopsis genes OPT3,
FIT, and IRT1 and detected expression at 4, 8, and 12 h after iron stress, respectively. Since
OPT3 was detected earliest in the leaves, and FIT and IRT1 were detected later in the roots,
they suggested that leaves sense changes in iron availability more quickly than roots. In
contrast, Moran Lauter et al. [20] found higher numbers of DEGs in Clark (G17) roots than in
the leaves at the earliest timepoint of 30 min after stress, suggesting that roots respond more
quickly than leaves to iron stress in soybean. Examining GO terms across timepoints and
tissues revealed that the same GO terms were affected, first in the roots, then in the leaves,
suggesting a root-to-shoot signal in soybean. Here, we identified varying numbers of DEGs
in the leaf and root tissue across 18 soybean genotypes. For the majority of genotypes,
more DEGs were identified in the roots than the leaves, supporting early root-to-shoot
signaling in soybean. Only four genotypes had more DEGs identified in the leaves than
the roots. Interestingly, three of the four genotypes with more DEGs in leaves than roots
were EF (G1, G2, G8), suggesting that these lines respond faster than Clark (G17), where
leaf expression was just beginning at 60 min [20]. Future gene expression studies using a
variety of soybean genotypes would benefit by including multiple timepoints to enhance
our understanding of the timing and movement of the stress signal across genotypes.

3.2. Diversity of Iron Stress Responses Found within the Soybean Germplasm Collection

Many studies across plant species have utilized RNA sequencing (RNA-seq) to iden-
tify genes, pathways, and networks that are triggered in response to stress. Due to their
expense, early RNA-seq studies focused on one or two genotypes with contrasting
stress responses. Recently, studies have begun to increase the number and diversity of
genotypes used with RNA-seq to identify novel genes and pathways associated with
a trait or stress response [67–70]. Stein and Waters [71] and Waters et al. [72] compared
the iron stress response from the root and rosette tissues of five Arabidopsis ecotypes. Their
conclusions highlighted a small handful of ‘core’ iron stress response genes overlapping
between ecotypes. The differentially expressed genes not shared between ecotypes were
thought to represent genotype x environment interactions, and not primary Fe-responsive
genes. However, genotype by environment (GxE) interactions are critically important
for crop improvement. A recent review by Cooper and Messina [73] highlighted the im-
portance of leveraging cross disciplinary approaches in order to both understand GxE
interactions and accelerate crop improvement. Within soybean, traditional genetic studies
demonstrate the existence of multiple iron stress tolerance mechanisms. Lin et al. [9] used
two mapping populations to study the IDC response in soybean. One population (Pride
B216 × A15) found a minor effect QTL on six linkage groups, and the other population
(Anoka×A7) found a single major effect QTL, suggesting that there are at least two distinct
mechanisms that control the IDC response in soybean. Butenhoff [52] and Merry et al. [74]
used the same mapping population (Fiskeby III ×Mandarin [Ottawa]) and identified QTL
on three chromosomes. Both studies found a QTL on Gm05, and Merry et al. [74] addition-
ally identified QTL on Gm03 (same as previously identified IDC QTL [9,15]) and Gm06.
Merry et al. [74] suggested that the QTL on Gm05 contains significant variation for future
breeding efforts due to low minor allele frequencies of the iron-inefficient alleles on Gm03
and Gm06 among elite breeding lines. In this study, we identified DEGs in the same regions
on all three chromosomes defined by Merry et al. [74] and for 43 GWAS regions identified
by Assefa et al. [12], suggesting that these regions, identified in different genotypes and
studies, contain important genes for iron stress responses in soybean. In Figure 1, the EF
genotypes clearly cluster by the phenotype. In Figure 4, the EF genotypes have largely
distinct expression patterns and mechanisms from themselves and INF genotypes. We
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believe that these differences represent novel resources to enhance the iron stress tolerance
in soybean.

3.3. Identifying Targets for Future Analyses

We have cross referenced the DEGs identified in this study with Clark gene expression
studies conducted by Moran Lauter et al. [19], Moran Lauter et al. [20], Atencio et al. [21],
and O’Rourke et al. [57]. Of the 9718 and 5632 unique DEGs identified in the leaves and
roots of this study, 5491 (56.5%) and 3493 (62.0%) were identified in at least one tissue
sample of the Clark studies above (Supplementary Tables S6–S8). Remarkably, 4227 and
2140 DEGs from leaves and roots remain unique to this study. Of these, 1247 DEGs
from leaves and 289 DEGs from roots were identified in at least one other genotype. In
Supplementary File S5, we provide the DEGs identified in this study and the corresponding
genotype information (total Genotypes, EF Genotypes and IN Genotypes). We have cross
referenced the DEGs with the previously identified Clark iron-stress-responsive DEGs, we
have identified DEGs falling within GWAS QTL identified by Assefa et al. [12], and we
have provided multiple annotation sources. It is our hope that we and others can use this
information to prioritize candidate genes for future functional characterization in soybean
and other crop species.

To demonstrate novel ways that these data sets could be leveraged, we focused on
the 25 largest EF-specific clusters identified with single linkage clustering (Supplementary
File S11). In order to investigate if the EF clusters might interact, we took the 308 DEGs
corresponding to the 25 EF-specific clusters and identified their best Arabidopsis homolog
(120 total unique proteins). We then used STRING (ver. 11.5, [75]) to visualize interactions
among the clusters (Figure 6).
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Figure 6. Interactions of Arabidopsis homologs of differentially expressed soybean genes. Differentially expressed genes
(DEGs) were identified across 18 soybean genotypes and two tissue types (leaves and roots) 60 min after iron stress.
Single linkage clustering was used to identify DEGs with shared sequence homology. Previous hierarchical cluster analysis
based on iron stress phenotypic measurements revealed two major clusters of soybean genotypes, iron–efficient (EF) and



Int. J. Mol. Sci. 2021, 22, 11643 17 of 25

iron–inefficient (INF). Arabidopsis homologs were identified for the 25 largest EF–specific clusters and used with STRING
(version 11.5) to identify protein interactions of the Arabidopsis homologs. Cytoscape (version 3.7.2) was used to visualize
the interaction network of proteins with at least one interaction. Six soybean clusters, highlighted in blue, were associated
with protein regulation, including quality control (cluster 606), folding (clusters 258, 334, 406, and 842), and modification
(cluster 392). Three soybean clusters, highlighted in red, were associated with endoplasmic reticulum (ER) stress (clusters
218, 556, and 689).

The majority of clusters were associated with a single large network. Within the
network, six clusters could be directly associated with protein regulation, including quality
control (cluster 606), folding (clusters 258, 334, 406, 842) and modification (cluster 392).
CLP proteases (cluster 606) degrade misfolded proteins [76]. Peptidyl-prolyl cis-trans
isomerases (clusters 258 and 406, [77]), protein disulfide isomerases (Cluster 334, [78]),
HSP40s (see review [79]), and other chaperones (cluster 842, [80]) catalyze protein folding
in the endoplasmic reticulum (ER). Ubiquitination targets proteins for degradation [81],
whereas SUMOylation can regulate protein function (cluster 392, [82]). In plants, abiotic
and biotic stress can result in misfolded proteins, which accumulate in the ER and cause
ER stress, toxicity, and programmed cell death (see review [83]). In order to maintain ER
homeostasis, cells activate the unfolded protein response, upregulating genes involved in
preserving the protein quality and quantity [84]. While genes involved in the unfolded
protein response were not statistically overrepresented in our study, they were significantly
overrepresented in Clark roots at 30 min after iron stress [20]. Since this study focused
on 60 min after iron stress, it suggests that we are observing downstream stages of the
unfolded protein response, and not the initiation. The analysis of overrepresented terms
within STRING supports this hypothesis: DEGs associated with protein quality control
(GO:0006515) and protein folding (GO:0006457) are significantly overrepresented.

We also identified other clusters within the STRING network that could be associated
with ER stress. In plants, phospholipase D (cluster 218), is associated with tolerance to os-
motic and temperature stress, plant pathogen defense, phosphate and nitrogen deficiencies,
and heat stress memory (see review [85,86]). However, recent work in mammalian systems
has demonstrated that the inhibition of phospholipase D results in ER stress [87]. Similarly,
ER stress activates glutathione-related enzymes, including glutathione peroxidases (Cluster
556, [88]). NF-Y transcription factors (Cluster 689) form a transcriptional complex with
BZIP60 to bind an ER stress response element located in the promoter of genes involved in
unfolded protein responses (see review [83]).

The unfolded protein response is broadly conserved across eukaryotes [89] and re-
sponds to a variety of abiotic and biotic stresses, including heat, cold, salinity, drought,
flooding, high light, heavy metals, and pathogens [90]. Stress signaling is importance
for striking a balance between survival and continued growth and development. To our
knowledge, the unfolded protein response has not been tied to iron stress responses in any
plant species. Remarkably, while the response is well conserved, in our study, it is largely
limited to iron-efficient genotypes G1 and G8. Of the DEGs associated directly or indirectly
with the unfolded protein response above, 83% came from G1 and G8. This suggests that
these genotypes are able to exploit the unfolded protein response through novel signaling
mechanisms. This is just one example of how the data from this study can be exploited for
improving soybean iron stress responses.

4. Conclusions

Utilizing a variety of genotypes, with a range of phenotypic responses to IDC, can help
to improve our understanding of the diverse iron stress responses found in the soybean
germplasm. We used RNA-seq to analyze patterns and early changes of gene expression
across 18 soybean genotypes in response to iron stress. Changes in gene expression profiles
across the genotypes at 60 min after stress demonstrate that the rapid response to iron stress
is not limited to the Clark genotype. Variation in the differentially expressed genes and
biological processes identified in the early response demonstrated that multiple response
mechanisms and potential differences in the response time to iron stress exist in soybean
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germplasm. While this study highlights differences between genotypes at 60 min after
stress, future work would benefit with the inclusion of additional timepoint(s) to analyze
changes in signaling pathways and to develop an iron stress response curve for multiple
genotypes over time. Ultimately, this study reveals the utility of expanding gene expression
studies to include a variety of genotypes.

5. Materials and Methods
5.1. Phenotypic Clustering

Visual iron deficiency chlorosis (IDC) ratings and soil plant analysis development
(SPAD; Spectrum Technologies, Aurora, IL, USA) measurements were collected at multiple
growth stages from plants grown in the field in 2014, and in the field and hydroponics
in 2015 as described by Assefa et al. [12]. The ‘stats’ package in RStudio [91,92] was
used to calculate a distance matrix using the Euclidean method, and then genotypes were
clustered using Ward’s method. The same package was used for the principal components
analysis (PCA).

5.2. Plant Materials

Eighteen diverse plant introduction (PI) lines were selected from a genome wide
association study (GWAS) panel used by Assefa et al. [12]. The selected lines comprised
eight haplotypes, corresponding to four linkage blocks spread across a historical IDC
quantitative trait loci (QTL) on soybean chromosome Gm03 (Supplementary File S1). Based
on the field and hydroponic phenotypic data reported by Assefa et al. [12] genotypes from
the same haplotype but with contrasting severity ratings in response to IDC were selected.
The goal of including contrasting severity ratings was to assess the impact of other genomic
locations on IDC tolerance. Two near-isogenic lines (NILs) historically used to study IDC
responses, iron-efficient Clark (PI 548533), and iron-inefficient IsoClark (PI 547430), were
included to serve as internal controls. Additional distinguishing characteristics that were
maintained for our records were the country of origin and maturity group.

5.3. Tissue Collection

Seeds of each genotype were germinated on paper in a growth chamber set at 24 ◦C
with a 14 h day length. After seven days in the growth chamber, seedlings were transferred
to eight hydroponic buckets, where each bucket contained one seedling of each genotype.
All buckets were setup using an iron-sufficient (100 µM Fe[NO3]3•9H2O) hydroponic
system in a single growth chamber, as outlined by O’Rourke et al. [17], with nutrient
solutions described by Chaney et al. [93] adjusted for 10 L buckets. Hydroponic systems
using these nutrient solutions have been used to identify and validate soybean iron stress
tolerance QTL found in field conditions [12,94]. After nine days of growth in the hydroponic
solution (16 days after germination), seedlings grown in the same bucket were transferred
to a new 10 L bucket with either iron-sufficient or iron-deficient conditions (100 µM
Fe[NO3]3•9H2O and 50 µM Fe[NO3]3•9H2O, respectively), resulting in four biological
replicates of each genotype in each iron condition. During transfer, the group of seedlings
was carefully rinsed in solution of the same iron condition as the destination bucket. Moran
Lauter et al. [20] observed a shift in root-to-shoot differential gene expression in Clark over
the course of 30–120 min, with an inflection point at 60 min after the onset of iron stress.
Therefore, we decided to collect tissue samples 60 min after iron stress; this would allow
us to capture stress responses in both roots and leaves from genotypes with faster and
slower responses relative to Clark. Sixty minutes after transferring the seedlings to new
iron conditions, leaflet tissue from the first trifoliolate and whole root tissue were harvested,
frozen in liquid nitrogen, and then maintained at −80 ◦C. All tissue was collected and
stored in individual 50 mL Falcon® tubes (Thermo Fisher Scientific, Waltham, MA, USA).
Three biological replicates were collected from each genotype and iron condition. The
remaining biological replicate for each iron condition was grown for two more weeks
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to validate phenotypic responses, especially of Clark and IsoClark under iron-deficient
conditions (data not shown).

5.4. RNA Isolation and Sequencing

Frozen tissue was crushed with an inverted pestle in the 50 mL Falcon® tubes used in
tissue collection. One full microspatula scoop (approximately 100 mg) of crushed tissue was
transferred to a 2 mL Safe-Lock™ microcentrifuge tube (Eppendorf, Hamburg, Germany),
and then ground with a 5 mm stainless steel bead for one minute at 30 Hz using the
Qiagen Tissuelyser II (Qiagen, Germantown, MD, USA). RNA was extracted following the
RNeasy® Plant Mini Kit protocol. Extracted RNA was DNase treated in 50 µL reactions
using the Ambion® TURBO DNA-free™ Kit (Thermo Fisher Scientific, Waltham, MA, USA)
and further purified using an RNeasy® MinElute® Cleanup Kit (Qiagen, Germantown,
MD, USA). Final RNA concentration and quality was measured using a NanoDrop™ 1000
Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

RNA samples were sequenced at the Iowa State University DNA Facility. Prior to
sequencing, the DNA facility validated the quality of each RNA sample using an Agilent®

2100 Bioanalyzer™ (Agilent®, Santa Clara, CA, USA). After quality confirmation, sequences
were generated on the Illumina HiSeq 2500 platform (Illumina Inc., San Diego, CA, USA)
using normal output mode with 150 base pair, single-end sequencing. A total of 216 samples
were run on 19 lanes across three eight-lane flow cells (two full and one partial). Each
lane was assigned one rep of six genotypes from one tissue type from both iron conditions
(sufficient and deficient).

5.5. Identification of Differentially Expressed Genes in Response to Iron Stress

Sequencing adaptors were removed using the program Scythe (version 0.981, [95]),
the first 15 bases were removed using the program fastx_trimmer (version 0.0.14, http:
//hannonlab.cshl.edu/fastx_toolkit, released on 5 January 2014), and bases with quality
scores below 20 were removed using the program Sickle (version 1.2, [96]). Cleaned fastq
files were sorted and mapped to the soybean reference genome (Glycine max Wm82.a2.v1,
Phytozome version 12) using TopHat2 (version 2.1.1, [97]). SAMtools (version 1.6, [98])
was used to filter for and reliably sort mapping reads. The resulting binary alignment/map
(BAM) files were used for downstream differential expression analyses. BAM files and raw
fastq files generated by this study were deposited in the National Center for Biotechnology
Short Read Archive (NCBI SRA BioProject accession PRJNA706999).

RStudio [91,92] was used for statistical analyses. Samples with fewer than five million
mapped reads were removed from further analysis. If two of the three reps within iron
treatment and tissue type contained fewer than five million mapped reads, the genotype
within that tissue type was removed from further analysis. The “edgeR” package [99]
was used to identify differentially expressed genes (DEGs). Genes with counts per million
(cpm) of one or more (cpm ≥ 1) in at least three samples were considered expressed and
used for further analyses. Library sizes were normalized across all samples within tissue
type using the trimmed mean of M-values (TMM) method [100]. We fit a negative binomial
generalized log-linear model to the normalized count data with genotype x iron condition
groups as the factor in our design matrix. Individual contrast statements were made
between iron conditions (deficient versus sufficient) of a given genotype within tissue type.
The likelihood ratio test was used with each contrast to test for differential expression
of the treatment effect by genotype. Genes with a false discovery rate of less than 0.05
(FDR < 0.05) were considered differentially expressed.

5.6. Gene Annotation

All DEGs were annotated using the Glycine max Wm82.a2.v1 ‘Gene Annotation
Lookup’ under the SoyBase Toolbox tab (https://soybase.org/genomeannotation/, re-
leased June 2015) [101]). This annotation tool returns the BLASTP (E < 10−6, [102]) results
of the top hit for the Uniref100 database [103], the most descriptive hit from the Uniref100

http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
https://soybase.org/genomeannotation/
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database, and the top Arabidopsis hit from the TAIR10 database [104]. Additionally, gene on-
tology descriptions and IDs for biological processes, molecular function, and cellular com-
ponents associated with the top Arabidopsis hit are included. To identify transcription factors
within our DEGs, we took advantage of the SoyDB transcription factor database [105]. The
SoyBase ‘Gene Model Correspondence Lookup’ (https://soybase.org/correspondence/,
released June 2015) was used to update transcription factors to Glycine max Wm82.a2.v1
gene calls.

5.7. Identification of Overrepresented Gene Ontology (GO) Terms and Transcription Factors

A Fisher’s exact test [106] with a Bonferroni correction (corrected p-value < 0.05, [107])
was used to test for enriched GO terms associated with a DEG list of interest compared to
all genes in the soybean genome. The same approach was used to identify significantly
overrepresented transcription factor families.

5.8. Single Linkage Clustering

To identify gene families that might play a role in iron stress adaptions and single
genes important across multiple genotypes, we used a single linkage clustering approach,
as described by Graham et al. [108] and O’Rourke et al. [17]. Custom perl scripts were used
to generate a FASTA file of DEGs for each genotype × treatment × expression combination.
To each DEG identifier, we added genotype and tissue information (L01-L18 [leaves] or
R01-R18 [roots]) and direction of expression (+ induced by iron stress,—repressed by iron
stress). For example, Glyma.10G027100 became LG01+_Glyma.10G027100. Note that
a particular DEG could be found in different genotype FASTA files, but with different
genotype, tissue, and expression information added to the name. Genotype FASTA files
were then combined into a single FASTA file, generating a database of iron-stress-responsive
genes. TBLASX [102] was used to compare the database against itself using an E-value
cutoff of E < 10−20. Perl scripts generated by Graham et al. [108] were then used to assign
homologous sequences to a cluster.
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Abbreviations

CPM count per million
DEGs differentially expressed genes
EF iron-efficient
FDR false discovery rate
GO gene ontology
GWAS genome-wide association study
IDC iron deficiency chlorosis
INF iron-inefficient
logFC log2 fold-change
NCBI SRA National Center for Biotechnology Small Reads Archive
PI plant introduction line
QTL quantitative trait loci
ROS reactive oxygen species
RNA-seq RNA sequencing
SNP single nucleotide polymorphism
SPAD soil plant analysis development
TAIR10 The Arabidopsis Information Resource version 10
TF transcription factor
TFF transcription factor family
TMM trimmed mean of M-values
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