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IL-18: The Forgotten Cytokine in Dengue Immunopathogenesis
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Dengue fever is an infection by the dengue virus (DENV) transmitted by vector mosquitoes. It causes many infections in tropical
and subtropical countries every year, thus posing a severe disease threat. Cytokine storms, one condition where many
proinflammatory cytokines are mass-produced, might lead to cellular dysfunction in tissue/organ failures and often facilitate
severe dengue disease in patients. Interleukin- (IL-) 18, similar to IL-1β, is a proinflammatory cytokine produced during
inflammation following inflammasome activation. Inflammatory stimuli, including microbial infections, damage signals, and
cytokines, all induce the production of IL-18. High serum IL-18 is remarkably correlated with severely ill dengue patients;
however, its possible roles have been less explored. Based on the clinical and basic findings, this review discusses the potential
immunopathogenic role of IL-18 when it participates in DENV infection and dengue disease progression based on existing
findings and related past studies.

1. Introduction

Dengue disease is a primary Flaviviridae infection world-
wide caused by the dengue virus (DENV) [1, 2]. DENV
comprises four different serotypes (DENV1 to 4), with a
wide range of genotypes and variants [3]. This myriad of
DENV serotypes and variants are hypothesized to mediate
its survival, together with increasing infectivity [4]. DENV
infects humans as the primary host, transmitted via mosqui-
tos mainly in tropical and subtropical areas [5]. Yearly,
DENV is predicted to infect 100–400 million people world-

wide [1]. Even though in 2021, the DENV infection inci-
dence and mortality rate are reduced compared to 2020,
the infection is still spread in many areas, increasing the
health burden in this COVID-19 pandemic era [6]. Symp-
toms of the dengue diseases are widely varied. It could be
shown as mild flu-like symptoms, mild dengue fever
(MDF), to severe symptoms, the severe dengue diseases
(SDDs,) in those who are infected. In MDF, the common
symptom found is fever accompanied by one of the follow-
ing: nausea, vomiting, rash, aches, and pains. Dengue hem-
orrhagic fever (DHF) and dengue shock syndrome (DSS)
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are two types of severe dengue. In addition, multiple organ
dysfunction and central nervous system (CNS) impairment
are also involved in SDDs. Although rare, severe dengue
can result in a variety of consequences, including excessive
bleeding, organ damage, plasma leakage, and even death
[1, 7–9].

2. Dengue Pathogenesis

Virus factors and host response majorly influence dengue
severity. The variance in dengue serotype provides them
numerous possibilities in causing severe DENV infection.
As one of the oldest strains known, DENV-2 is more preva-
lent in causing severe dengue (DHF/DSS) and epidemics
than other serotypes [4, 10, 11]. However, in several areas,
DENV serotypes inducing severe infection started to shift
to DENV-1, as reported in Singapore [12] and Indonesia
[13]. Regarding the different subtypes of DENV, the Ameri-
can subtype is less likely to cause DHF/DSS than the Asian
subtype. It might be facilitated by the higher replicability of
the Asian subtype in the Aedes aegypti mosquitoes, enhanc-
ing their transmission [14, 15]. The DENV genetic variance
also influences the intensity of the infection. For example,
the difference in E-390 amino acid affects DENV virulence
and survival, as it determines the virus’s ability to infect
and replicate in monocyte-derived macrophages [16]. The
sequence of the 3′ untranslated region (UTR) also influences
DENV virulence [17]. Other reports demonstrated that
higher monocyte infectivity is associated with its ability to
generate severe infections together with higher transmis-
sion [18].

More personalized factors influencing severe DENV
infection, the host factors, are commonly found in secondary
heterologous DENV infection, which causes antibody-
dependent enhancement (ADE). This event is related to
the inability of the previous dengue antibodies to neutralize
the recent heterologous DENV infection, allowing easy
access of the virus to infect the Fc-presenting cells. This will
result in increased viral replication and severe infection
[19–21]. Such cases can be observed in Peru, where homol-
ogous virus and American DENV-2 virus were neutralized
far more efficiently by sera with DENV-1 antibody than
Asian DENV-2 viruses [22]. Another situation found in
Havana shows that the infection sequence also influences
severity. In DENV-1 followed by DENV-3 (DENV-1/
DENV-3), infection was linked to severe disease, but
DENV-2/DENV-3 was linked to mild/asymptomatic infec-
tions. Interestingly, secondary infection also has higher
genetic variability compared to the primary one. In
DENV-1/DENV-3 secondary infection, changes in premem-
brane (PrM) and envelope (E) structural proteins might rep-
resent the DENV evolution to more potent strain overtimes
[23]. This might explain the point regarding the infection
incidence in serotype switch dengue epidemics [24].

3. Cytokine Response in DENV Infection

Cytokine storm, also called cytokine release syndrome
(CRS), is an umbrella term describing several severe symp-

toms caused by systemic inflammatory syndromes encom-
passing an increase in blood cytokine levels and
hyperactivation of immune cells. This condition may be
caused by various pathogens, cancer, autoimmunity, and
treatments that activate false alarms, leading to the hyperac-
tivating immune system. Various factors affected cytokine
storm incidences, such as genetics (improper inflammasome
activation), an inappropriate or inadequate immune
response involving activation of effector cells, an over-
whelming viral burden, uncontrolled infection that causes
prolonged immune stimulation, and the inability to resolve
the immune response and revert to homeostasis. Negative
feedback mechanisms that are supposed to prevent hyperin-
flammation and the overproduction of inflammatory cyto-
kines and soluble mediators fail in each of these situations,
leading to multiorgan damage [25]. Even though only a
few reports regarding cytokine storms in flavivirus infections
have been published, some infections, such as DENV [26],
Zika virus (ZV) [27], West Nile virus (WNV) [28], Yellow
fever virus (YFV) [29], and Japanese encephalitis virus
(JEV) [30], are capable of causing cytokine disturbances that
lead to poor patient outcomes.

In DENV infection, cytokine storms have been proposed
to correlate with inflammasome activation [26, 31, 32].
DENV infected cells in vivo and in vitro are reported to have
higher NLRP3-inflammasome activation via nonstructural
(NS)2A and NS2B proteins induction [33], especially in
mouse bone marrow-derived macrophages (BMDMs),
endothelial cells, keratinocytes, platelets, dendritic cells
(DCs), human peripheral blood mononuclear cells
(PBMCs), and monocyte-differentiated macrophages
(THP-1) [32]. Inflammasome activation also can be induced
from reactive oxygen species (ROS) levels through extracel-
lular signal-regulated protein kinases 1 and 2 (ERK1/2)
and mitogen-activated protein kinases (MAPK) which
found accumulated in DENV infected DCs. The intracellular
ROS build-up has proven essential to influence the innate
immune response in DENV clearance and promote mito-
chondrial apoptosis in infected DCs. Further, inflammasome
activation will activate caspase and initiate pyroptosis, a lytic
programmed cell death, in the cells. Simultaneously, caspase
activation also cleavage the pro-IL-1β and pro-IL-18 to their
active form, causing the inflammatory cascade to be acti-
vated and promoting further advances in dengue pathogen-
esis [34, 35].

A previous study reported an increase in cytokines, such
as tumor necrosis factor- (TNF-) α, monocyte chemoattrac-
tant protein- (MCP-) 1 (CCL-2), regulated upon activation,
normal T cell expressed and presumably secreted (RANTES)
(CCL-5), interferon- (IFN-) γ, IFN-γ-induced protein- (IP-)
10 (CXCL-10), IL-4, IL-6, IL-8 (CXCL-8), IL-10, and granu-
locyte/macrophage colony-stimulating factor (GM-CSF)
(CSF-2), in severe DENV infection [36–38]. Secondary
infections mainly cause a cytokine storm in dengue due to
the ADE effect, which results in overactivation of the
immune system and excessive production of proinflamma-
tory cytokines. However, this spurt of proinflammatory
cytokines is not accompanied by proper degranulation func-
tions, leading to ineffective eradication of infected cells [39].
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Other evidence from the severe case febrile phase of dengue
patients presented a decline in total CD4+ T, T helper (Th) 1,
and Th17 cells in contrast to the convalescent phase [40],
demonstrating why some patients move to recovery after
the critical phase and others developed dysregulated cyto-
kine production that led to fatal DENV infection followed
by CRS progression.

4. The Biological Importance of IL-18

IL-18 is a cytokine previously known as IFN-γ-inducing fac-
tor (IGIF), firstly discovered in mice with endotoxin shock
[41, 42]. Together with IL-1β and IL-33, IL-18 is also part
of IL-1 family cytokines [43]. IL-18 is produced from
immune cells, such as macrophages, Langerhans cells, DCs,
and many nonimmune cells, such as osteoblasts, chondro-
cytes, endothelial cells, keratinocytes, and intestinal epithe-
lial cells (Table 1) [44–51]. IL-18 and IL-1β are produced
as inactive precursors activated via caspase cleavage, gener-
ally in an inflammasome-regulated manner, in the cyto-
plasm before being released into the bloodstream [52].
This activated form of IL-18 enhances adaptive immune
activation by inducing IFN-γ production by T cells [53],
Th1 polarization [54], cytotoxicity of both T cells and natu-
ral killer (NK) cells, and maturation of T, NK, and DCs [55,
56]. In addition, free IL-18 can cause innate immune macro-
phage activation by inducing polarization and inflammatory
and cytokine secretion and can even cause macrophage acti-
vation syndrome (MAS) [57]. IL-1β itself is also known to
induce several types of T cells development that take part
in some inflammatory conditions and neutrophil recruit-
ment to the infection site [58, 59].

IL-18 stimulation is mediated by IL-18 receptors (IL-
18R), comprised of the α and β chains. The binding of IL-
18 to IL-18R will relay the signals from myeloid differentia-
tion primary response 88 (MyD88), a primary adapter pro-
tein for many TLR and IL-1R family members [60], to IL-1
receptor-associated kinase- (IRAK-) 1/4. Furthermore,
IRAK-1/4 catalyzes the ubiquitination of TNF receptor-
associated factor- (TRAF-) 6, leading to the activation of
IκB kinase (IKK). This kinase will degrade IκB-NF-κB com-
plexes in the cytoplasm, facilitating NF-κB nuclear translo-
cation. This translocation will promote increased
expression of various inflammatory cytokines [61], as sum-
marized in Figure 1. Other inflammatory diseases have
already proven the mitogen-activated protein kinase
(MAPK) pathway involvement by IL-18R receptor activa-
tion; however, the role of this mechanism in flavivirus infec-
tion is still unknown.

Furthermore, the presence of other cytokines, such as IL-
12 or IL-2, enhances the effect of IL-18 in immune cell acti-
vation. For example, together with IL-12, IL-18 promotes
IFN-γ production from Th1 and B cells. Meanwhile, in NK
cells, IL-18 alone is enough to cause IFN-γ production
[53]. However, in an in vivo study, IL-12 and IL-18 were
essential for maintaining NK cell activity and the Th1
response in bacterial stimulation [62]. In peripheral blood
mononuclear cells (PBMCs) treated with IL-18 and IL-2,
there was an increase in cytolytic activity, cell proliferation,

and IFN-γ secretion. The isolated culture of NK cells showed
higher proliferation and cytotoxicity activity in the presence
of IL-18 and IL-2 compared to T cells [63]. In Th17 cells, IL-
18 synergizes with IL-23 and amplifies IL-17 production via
T cell receptor (TCR) activation [64]. The exciting part is
that IL-18 not only induces Th1 cytokine production but is
also capable of activating the humoral immune response
via Th2 cytokine production. This phenomenon was first
examined in mast cells and basophils cultured with IL-3, a
factor required for hematopoietic proliferation and survival,
exhibiting high IL-18Rα expression. Furthermore, stimula-
tion with IL-18 and IL-3 induced massive production of
IL-4 and IL-13. However, in the presence of IFN-γ and IL-
12, the production of IL-4 and IL-13 from mast cells and
basophils was highly suppressed [65]. Similar to basophils,
treatment of NK and T cells harvested from IFN-γ knockout
mice with IL-2 and IL-18 showed higher IL-13 mRNA
expression than that of cells harvested from wild-type mice
[66]. Also, IL-18, via MAPKs, including extracellular
signal-regulated kinase (ERK) and p38 MAPK, and NF-κB
activation, increases eosinophil survival and the production
of IL-6, CXCL8, and CCL2 [67]. More discoveries from
Yoshimoto et al. showed that along with IL-4, IL-18 pro-
motes higher IgE production from CD4 T cells, and stimula-
tion of TCR along with IL-18 boosts the differentiation of
naïve CD4 T cells to IL-4-producing cells in vitro [68]. This
complex interplay between cytokines suggests a broad role of
IL-18 in determining the host cellular or humoral immune
response.

5. IL-18 in DENV Infection

The first report about an IL-18 increase in a dengue patient
clinical study was published in 2001, where the results from
serum examination showed high IL-13 and IL-18 in the
severe illness and late dengue disease phase (over 9 days
from disease onset) patients [69]. A similar result was
obtained from children’s cases in Venezuela. It was demon-
strated that the IL-18 level was higher in dengue than in con-
trol. Moreover, the increase in IL-18 was not associated with
NS1 or the infection type (primary or secondary) [70]. Our
current report also showed a step ladder increase of IL-18
in severe DENV infection without and with comorbidity
(hypertension and or diabetes) to the mild one. The correla-
tion study also found a negative association between platelet
and IL-18 level [71]. However, the induction of thrombocy-
topenia caused by aberrant expression of IL-18 and its pos-
sible pathogenic regulation needs further investigation.

The possible mechanism of the IL-18 increase in DENV
infection is related to the presence of inflammatory macro-
phages. This was explained in an in vitro study using GM-
CSF-induced macrophages (GM-Mϕs). In GM-Mϕs
(CD14+) primary culture, DENV infection triggers NLRP3
inflammasome activation to cleavage pro-caspase 1 into cas-
pase 1. Further, caspase-1 induces the maturation of pro-IL-
1β and pro-IL-18, resulting in higher IL-1β and IL-18 pro-
duction from GM-Mϕ [72]. The less mature form of macro-
phage, the monocyte, especially those expressing CD14+ or
CD16+ markers, also secretes IL-18 which causes T-cell
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Table 1: IL-18 producing cells and the effects after production.

Cells Study Origin Treatment/disease Types Potential role Ref.

Monocytes
Macrophages

Ex vivo Mouse liver Lipopolysaccharide mRNA
T cell proliferation
Spleen cell viability
Liver cell injury

[41]

Ex vivo
Human
PBMC

Hydroxyapatite mRNA Not checked [51]

Kupffer cells Ex vivo Mouse liver — mRNA
T cell proliferation
Spleen cell viability
Liver cell injury

[41]

Dendritic cells

Ex vivo
In vitro

Bone
marrow

LC-like XS
52

GM-CSF and IL-4
RNA
protein

Th1 differentiation [49]

Ex vivo
Human
PBMC

IL-4, IL-6, and TNF-
α

Flt3 ligand and GM-
CSF

mRNA Not checked [50]

Peripheral blood progenitor cells
(CD34+)

Ex vivo
Human
PBMC

— mRNA Not checked [50]

Purified blood monocytes (CD14+) Ex vivo
Human
PBMC

— mRNA Not checked [50]

Lymphoid aggregates and lymphoid
follicles

Clinical
sample

Intestinal
tissue

— Protein
Cytokine production in T

cells
[48]

Osteoblasts Ex vivo
Bone

marrow
Spleen

— mRNA Cell differentiation [46]

Keratinocyte
Clinical
sample

Skin biopsy — Protein Not stated [47]

Pancreatic β cells
Clinical
sample

Pancreas Type 1 diabetes Protein Metabolic control [97]

IL18 mechanism of action IL18 effects to immune cells

Dendritic cells
maturation

Eosinophil
Survival and �2 cytokine

production 

Basophil
�2 cytokine
production

Macrophage
Cytokine secretion,

inflammatory polarization 

NK-cells
IFNγ production,
maturation and

cytotoxicity

T-cells
IFNγ production, �1

polarization, maturation and
cytotoxicity

IL-18

Pro -inflammatory molecules
Cytokines (IFN-γ, TNF-α, IL-1, IL-6)
Chemokines (IP-10, MCP-1, MIP-1)

Enzymes (iNOS, COX-2)
Anti-apoptosis (IAPs, FLIP, Bfl-1)

Adhesion molecules (ICAM-1)
NF-κB nuclear
translocation

NF-κB

NF-κB

IKK
P

TRAF6

IRAK1/4

MyD88

IkB

IκB degradation

IκB phosphorylation

IL-18R expressing cells

IL-18Rα IL-18Rβ

IL-18

Figure 1: The mechanism of action of IL-18-facilitated inflammatory responses in various immune cells and its possible effects.
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activation also IFN-γ secretion. However, this IFN-γ pro-
duction is independent of monocyte presence [73].

IFN-γ producing NK cells are also being activated by
DENV-induced IL-18 presence. During this event, the less
mature NK cells will proliferate and prime to the skin to
invade DENV [74]. Apart from those cells, activation of
mucosal-associated invariant T (MAIT) cells was also
reported following DENV infection. This activation was
independent of TCR for cytokine release or Granzyme B
upregulation, but it is dependent on IL-18 or in combination
with IL-12, IL-15, and/or IFN-α/β. However, IL-18 levels
and MAIT cell activation are linked to infection severity
[75]. This peaked increase of IL-18 level might represent
the severe patient condition where the inflammation is high.
Despite the high level of inflammation, it is not always in
line with the ability to eliminate the pathogens, risking it
for producing a more severe cytokine response or CRS. In
summary, according to the current studies related to
DENV-induced IL-18, the possible effects of IL-18 on DENV
infection, including cytokine storm, CRS/MAS, antiviral
defense, and immune clearance, are summarized in Figure 2.

6. Potential Role of IL-18 in Flavivirus Infection
and Other Diseases

Although the significance of IL-18 in aiding dengue illness
progression is unknown, it has been observed that IL-18
production is changed in metabolic syndromes [76, 77],
hypertension [78], diabetic patients [79], cardiovascular dis-

orders [80], atherosclerosis [80, 81], and also several flavivi-
rus infections such as JEV [82], tick-borne encephalitis virus
(TBEV) [83], and ZV infection [84, 85]. This increase
implies that the presence of IL-18 might play a role as either
a protective or pathological cytokine to the host. The CSF of
TBEV patients contains several proinflammatory cytokines,
including IL-18, and it has a higher concentration of IP-10
(CXCL10), a T cell chemoattractant, than serum [86]. Fur-
thermore, IL-18 is known to induce IFN-γ secretion from
NK cells, despite suppressing NK cell function in TBEV
infection [83]. In ZV infection, an increase in IL-18 levels
is also found in pregnant women with fetal development
anomalies and infants with CNS deformities [84]. In an
in vivo model of JEV-infected mice, the expression of IL-
1β and IL-18 was increased in the brain. When these cyto-
kines are used to treat human microglia (CHME3) and
astroglial (SVG) cell lines, increased secretion of proinflam-
matory cytokines is observed [82]. In contrast, in vitroWNV
infection modeling does not show any increase in IL-18 pro-
duction from infected human primary DCs [87] or the
transformed human neuroblastoma cell line SK-N-SH [88].
Although there was no increase in IL-18 in response to
WNV infection, the NOD-, LRR-, and pyrin domain-
containing protein- (NLRP-) 3 inflammasome and IL-1β
play vital roles in WNT-infected mouse survival. An
increased viral load was also found in NLRP3-deficient mice
[89]. In Table 2, we summarized IL-18 production in all fla-
vivirus infections and its possible regulation of immune
responses. However, most studies are clinical association

ANTIVIRAL DEFENSE

Cell activation

Cytokine storm

CRS/MAS

T cells MAIT cells

Macrophages CD56bright NK cells Epithelial cells

Effects

IL18 actions in host immune responses to DENV infection

Infected cells

IFNγ

IFNγ
Granzyme B

INFECTED CELL
DEATH

Proinflammatory
cytokine/chemokine

release

IL-18 secretion

Cells presenting
IL-18R

DENV

Figure 2: The actions of IL-18 in host immune responses to DENV infection.

5Journal of Immunology Research



Table 2: IL-18 production in flavivirus infection and its immune responses.

Infection Source Host Level Immune response Ref.

DENV Blood Human ▲
The increase of IL-18 to detectable levels in the DENV infection febrile phase was significant,
which further diminished in the defervescent phase. TNF-α, IFN-γ, and IL-18 plasma levels

also correlated negatively with CD14high CD16+ monocytes.
[98]

DENV Blood Human ▲
IL-18, TGF-β1, and sICAM-1 were increased in severe dengue relative to the mild,

accompanied by higher activation makers of T lymphocytes. IL-18 correlated positively with
CD8 T cells expressing HLA class-II, CD8 T cells expressing ICAM-1, and plasma ICAM-1.

[99]

DENV Blood Macaque ▲
High IFN-γ, IL-18, and IL-10 levels together with decreased IL-12 were found in the severe
DENV infection of vaccinated macaques. Meanwhile, a slight increase of IL-12 together with

IL-18 and no increase of IFN-γ and IL-10 were found in the protected macaques.
[100]

DENV
Blood
Spleen

Murine ▲ Together with IFN-γ and IL-12, IL-18 prevents DENV infection progression to severe and
preventable death in the infected mice.

[101]

DENV
Serum
Tissue

Murine —

Together, IL-12 and IL-18 induce IFN-γ production and maintain nitric oxide-synthase 2
(NOS2) expression in the spleen, a major regulator in DENV infection control. Diminished IL-
12 and IL-18 cause more severe thrombocytopenia and hemoconcentration. Meanwhile, the
absence of IL-18 increases the risk of hemoconcentration, liver injury, and a higher viral load

leading to higher mortality.

[102]

DENV Blood Human —
The IFN-γ response from MAIT cells to DEN and ZV was partially reduced by blocking
antibodies against IL-12 and IL-18 and was completely blocked when they were used in

combination
[103]

DENV Blood Human ▲ DENV infection in the presence of type I IFN and IL-18 increases IFN-γ secretion also
cytolytic function from primary γɗ T cells in a TCR-independent manner, but not IL-18R.

[73]

DENV Blood Human ▲ DENV infections induce IL-18 and ferritin levels along with the severity, not related to NS1
level and type of infection (primary or secondary).

[70]

DENV Blood Human ▲
IL-18 levels were increased early in the febrile phase (days 2-3) of no hyperferritinemia
patients; meanwhile, they increased later in the critical phase (days 4-5) in patients with

hyperferritinemia compared to other febrile illnesses (OFI).
[104]

DENV Blood Human ▲ IL-18 has positive significant association with SGOT and SGPT levels in dengue-infected
patients.

[105]

DENV Cells Human ▲
Dengue induces inflammasome activation via CLEC5A; Syk-associating receptors in GM-Mɸ
cells, not M-Mɸ, further induces IL-1β and IL-18 secretion. Dengue-infected GM-Mɸ secretes
higher IL-18 compared to M-Mɸ; meanwhile, M-Mɸ secretes higher IL-1β to GM-Mɸ.

[72]

DENV Blood Human ~ No significant difference in IL-18 gene expression of symptomatic patients to asymptomatic
patients.

[106]

DENV Blood Human ▲ Positive correlation in serum level of IL-18 and transaminase level. [107]

DENV Blood Human ▲
DENV infection severity (dengue with warning signs and severe dengue) was significantly

associated with IL-18 elevation in the febrile and defervescence phase. IL-18 can also be used as
predictors for severe DENV infection progression (AUC = 0:768, P < 0:0001).

[108]

DENV Blood Human ▲ IL-18 promotes less mature NK-cell proliferation and skin-homing in acute DENV infections. [74]

DENV Cells Human ▲ Dengue-infected monocyte cultures showed profound DENV2 replication and higher antiviral
cytokine levels (IFN-α/β, TNF-α, IL-12, and IL-18).

[109]

DENV Cells Human ▲

DENV infection induces an increase of IFNα/β, TNF-α, IL-12, and IL-18 in monocyte cultures
at 24 hour postinfection. Blockade of TIR-domain-containing adapter-inducing interferon-β
(TRIF), myeloid differentiation primary response (MYD88), or NF-κB suppresses the secretion

of these parameters.

[110]

ZV Blood Human ▲

Higher IL-18, IL-8, IL-4, IL-22, IL-23, IL-27, MCP-1, TNF-α, IP-10, EGF, eotaxin, and FGF-2
in pregnant women correlate with fetal development anomalies. Congenital CNS defect in

infants also has higher IL-18 and IP-10 and lower HGF than healthy infants born from ZIKV-
infected mothers.

[84]

ZV Cells Human ▲ Acute ZIKV infection increases transcripts of IL-1 and IL-18 in monocytes, together with
inflammasome involved proteins and caspase 1 and 8 upregulation.

[85]

ZV Cells Human ~ Zika infection did not induce pro-IL-1β, and pro-IL-18 mRNA increases and was confirmed to
have similar IL-1β and IL-18 levels in infected astrocytes and mock.

[111]

ZV Blood Murine ▲ Zika virus enhanced systematic levels of IFN-γ and IL-18 throughout infection. [112]

ZV Tissue Human ▲ Higher expression of inflammasomes, caspase-1, iNOS, arginase-1, IL-33, IL-18, and IL-1β in
the microcephalic brain compared to the control.

[113]
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studies and animal models of infection. No mechanistic
investigations have been published.

In the atopic dermatitis mouse model, the knockout of
IL-18 reduces skin lesion formation [90]. It means the
involvement in Th2-cytokine production and major cyto-
kine plays a role in an allergy reaction. Previously, it has
been reported that in DHF, there are shifts of cytokine from
Th1 to Th2 type [91], implying its possible role in causing
severe dengue progression. Also, IL-18 is one of the cyto-
kines that induce DM patient progression to nephropathy
[92]. In chronic obstructive pulmonary disease (COPD)
patients, smokers and the end stage of COPD has higher
serum level of IL-18 in those who were not smoking and
lower stage [93]. Compared to stable, asymptomatic plaques
in atherosclerotic patients, unstable plaques had consider-
ably more significant levels of IL-18 mRNA [94]. These
two roles of IL-18 in COPD and atherosclerotic patients
might indicate the role of IL-18 as a proinflammatory cyto-
kine, worsening the condition of the disease. The IL-18 role
in cancer is explained as a dual-edge sword, as its secretion
of IFN-γ acts as an antitumor mechanism. However, in
some cancer polymorphisms, IL-18 correlated with protu-
moral effects and upregulated VEGF and SD-44 that facili-
tate metastasis [95]. In triple-negative breast cancer,

tumor-derived IL-18 has also been reported to increase
PD-1 expression on immunosuppressive NK cells [96], facil-
itating the immune evasion of the cancer cells. The possible
regulation of IL-18 in nonviral human diseases is summa-
rized in Table 3.

7. Conclusions

The role of IL-18 in immunomodulating the antiviral
response has been studied not only in DENV but also in
other diseases. However, in the specific circumstances of
high viral burden that cause a lot of infected cell pyroptosis,
high levels of IL-18 were secreted, promoting immune over-
activation and contributing to the further immunopathogen-
esis of DENV infection. Together with this understanding,
suppressing the activity or production of IL-18 in severely
infected patients might prevent the immune overactivation,
thus avoiding more severe progression of the disease.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Table 2: Continued.

Infection Source Host Level Immune response Ref.

JEV Tissue Murine ▲
JEV infected mice secrete mature Il-18 in a time-dependent manner with a peak level on day 7
postinfection. Replicating JEV induces inflammasome activation and further initiates caspase-

1 activation and induces IL-1β and IL-18 production.
[114]

JEV Tissue Murine ▲

JEV induces upregulation of IL-18 and IL-1β in the brain by increased production from
microglia and astrocytes. Furthermore, IL-18 and IL-1β separately promote cytokine (IL-1β,
IL-6, IL-8, IL-18, and TNF-α) and chemokine (IP-10, MCP-1, MIG, and RANTES) production

from microglia and astrocytes. IL-18 or IL-1β activated microglia also have higher
neurotoxicity in JEV infections.

[82]

WNV Spleen Murine ▲
Splenic MΦ takes an important role in suppressing WNV infection in Mɸ, monocytes, and
splenic CD11c+CD11b- DCs by increasing the expression of cytokine (IL-18), complement

protein (C1q), the apoptotic cell clearance protein (Mertk), and caspase-12.
[86]

WNV Cells Human ~ WNV infection-induced DC secretion of type I interferon (IFN), but no or minimal
interleukin (IL) 212, IL-23, IL-18, or IL-10.

[115]

TBEV Blood Human ▲
Human TBEV infection induces the increase of NK cell activation together with higher IL-12,
IL-15, IL-18, IFN-g, and TNF levels in plasma. Even though in acute infection NK cell function

was suppressed, IFN-γ producing capacity in IL-12/IL-18 presence was not affected.
[83]

TBEV
CSF
Serum

Human ▲ Cerebro-spinal fluid (CSF) of TBE patients had an increase in CXCL10, CXCL11, p40 subunit
of IL-12/23, IL-15, and IL-18 levels.

[86]

YFV Plasma Human —
Induction with IL-12 alone, IL-12 and IL-18 or K562 cells in YFV infected NK cells cause more

degranulation and IFN-γ production.
[116]

▲: increase; ▼: decrease; ~: no changes; —: not explained.

Table 3: IL-18 role in other diseases.

Diseases Effects/condition Reference

Atopic dermatitis Induce skin lesion [90]

Diabetes mellitus Neuropathy progression [92]

COPD Higher in severe [93]

Atherosclerosis Higher in severe [94]

Cancer Dual role: antitumor, facilitate metastasis and immune evasion [95, 96]
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