Supplemental Information

ARNAX is an ideal adjuvant for COVID-19 vaccines to enhance antigen-specific CD4+ and CD8+ T cell responses and neutralizing antibody induction

Tomomi Kawakita ^{1,2,3}, Toshiki Sekiya ^{2,3,4,5}, Yayoi Kameda ⁶, Naoki Nomura ^{3,7}, Marumi Ohno ^{2,3,8}, Chimuka Handabile ^{2,3}, Akari Yamaya ⁹, Hideo Fukuhara ^{2,10}, Yuki Anraku ¹¹, Shunsuke Kita ^{2,11}, Shinsuke Toba ^{12,13}, Hirotake Tsukamoto ¹⁴, Tomohiro Sawa ¹⁵, Hiroyuki Oshiumi ¹⁶, Yasushi Itoh ¹⁷, Katsumi Maenaka ^{2,10,11,18}, Akihiko Sato ^{2,12,13}, Hirofumi Sawa ^{2,4,8,13}, Yasuhiko Suzuki ^{2,6}, Lorena E Brown ^{4,5}, David C Jackson ^{4,5}, Hiroshi Kida ^{1,2,3,4}, Misako Matsumoto ^{1,9,19}, Tsukasa Seya ^{1,9,19,*}, Masashi Shingai ^{1,2,3,4*}.

¹ Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan

² Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan

³ Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan

⁴ International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan

⁵ The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.

⁶ Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan

⁷ Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan

⁸ One Health Research Center, Hokkaido University, Sapporo, Japan

⁹ Nebuta Research Institute for Life Sciences, Aomori University, Aomori, Japan

¹⁰ Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.

¹¹ Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, Japan.

¹² Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, Toyonaka, Japan

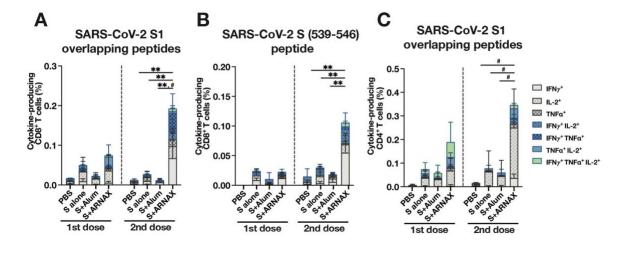
¹³ Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan

¹⁴ Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

¹⁵ Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

¹⁶ Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.

*Corresponding authors: Tsukasa Seya and Masashi Shingai International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Hokkaido, Japan


Tel: +81-11-706-9494; FAX: +81-11-706-9548

E-mail: seya-tu@pop.med.hokudai.ac.jp and shingaim@czc.hokudai.ac.jp

 $^{^{17}}$ Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan.

¹⁸ Global Station for Biosurfaces and Drug Discovery, Hokkaido University; Sapporo, Hokkaido, Japan.

¹⁹ Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan

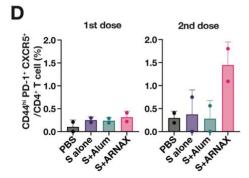
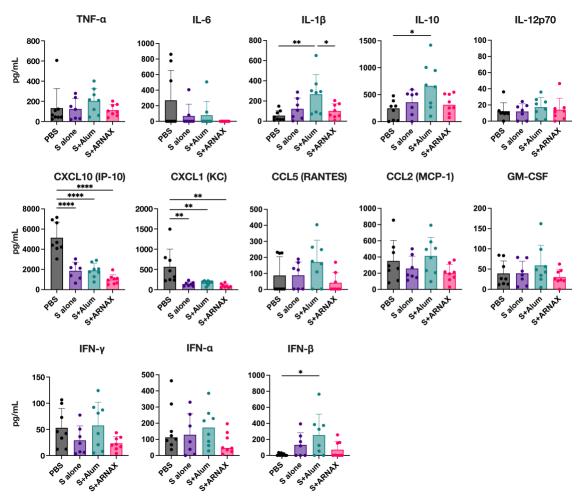



Fig S1. Analysis of cytokine producing T cells

Mice were immunized with each vaccine (n = 7-10). Ten days after the first dose or 4 days after the second dose of vaccine, lymph nodes were harvested. The lymph nodes from 3-4 mice for each experiment were pooled within the vaccine group as a single sample. The pooled lymph node cells were re-stimulated with overlapping peptides (A, C) or AA 539-546 peptide of S protein (B). The results of 3 independent experiments are combined and shown in A, B, and C. Percentages of cytokine-producing CD4⁺ and CD8⁺ T cells (IFN-γ, IL-2, and TNF-α) were analyzed by intracellular cytokine staining using flow cytometry. Individual cytokine patterns are represented by the following: light gray for IFN- γ^+ , light gray with small dots for IL-2⁺, light gray with large dots for TNF- α^+ , light blue with small dot for IFN- γ ⁺ IL-2⁺, light blue with large dot for IFN- γ ⁺ TNF- α ⁺, light blue for TNF- α^+ IL-2+, green for IFN- γ^+ TNF- α^+ IL-2+. Each error bar represents mean \pm SD. Significance is calculated for total cytokine-producing cells and multiple cytokine-producing cells (colored bars) using Two-way ANOVA with Tukey's multiple comparisons test. For total cytokine-producing cells: **P<0.01, multiple cytokineproducing cells: #P<0.05. The percentage of Tfh, defined as CD44hi, PD-1+, and CXCR5⁺, in CD4⁺ T cells in lymph nodes was analyzed (D). The results of 2 independent experiments are combined and shown in D.

Fig. S2. Cytokine and chemokine levels in the sera at 3 days post-infection Serum samples collected at 3 dpi were analyzed in a bead-based immunoassay to measure concentrations of cytokines and chemokines as indicated. Individual samples are shown as dots, horizontal lines indicate the median (n = 8). Significance was calculated using One-way ANOVA with Tukey's multiple comparisons test. *P<0.05, **P<0.01, ****P<0.0001.

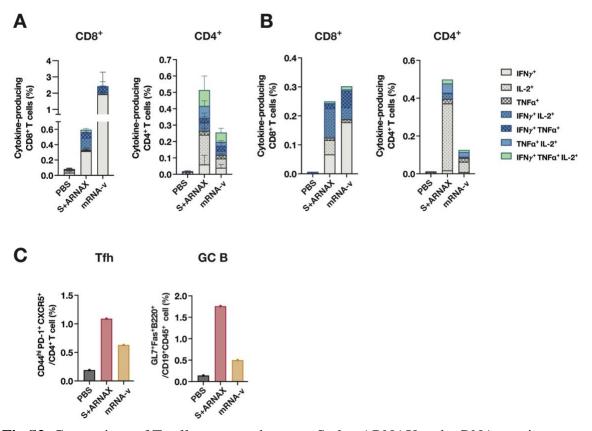
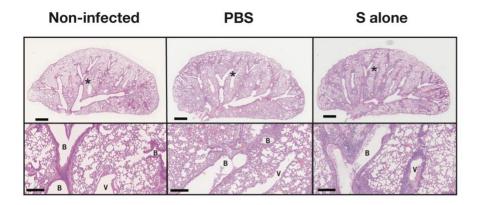



Fig S3. Comparison of T cell responses between S plus ARNAX and mRNA vaccines

Mice were immunized with each vaccine (n = 3). Four days after the second dose of vaccine, spleen and lymph nodes were harvested. The lymph nodes cells from 3-4 mice for each experiment were pooled within the vaccine group as a single sample. The splenocytes (A) and pooled lymph node cells (B) were re-stimulated with overlapping peptides of S protein. Percentages of cytokine-producing CD4+ and CD8+ T cells (IFN- γ , IL-2, and TNF- α) were analyzed by intracellular cytokine staining using flow cytometry. Individual cytokine patterns are represented by the following: light gray for IFN- γ +, light gray with small dots for IL-2+, light gray with large dots for TNF- α +, light blue with small dot for IFN- γ + IL-2+, light blue with large dot for IFN- γ + TNF- α +, light blue for TNF- α + IL-2+, green for IFN- γ + TNF- α + IL-2+. Each error bar represents mean \pm SD for splenocytes. The percentage of Tfh (defined as CD44hi, PD-1+, and CXCR5+) in CD4+ T cells and GCB (defined as GL7+, Fas+, B220+) cells in CD19+ CD45+ B cells in lymph nodes was analyzed (C). Results are representative of at least two independent experiments.

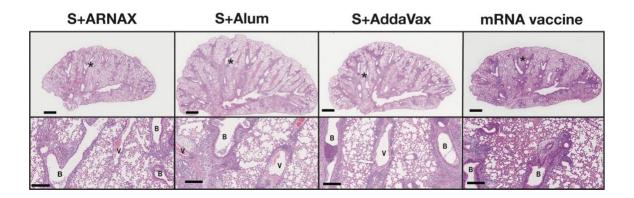


Fig S4. Histopathology of lung section at 3 dpi

Mice were challenged with 1×10^5 PFU of SARS-CoV-2 mouse-adapted strain 2 weeks after the second dose. The lung tissues were harvested at 3 dpi and stained with H&E. Representative pictures of each group (n = 5) were shown. The asterisk of upper panel is indicated indicates an enlarged area (bottom panel). The scale bars indicated 1mm (upper panel) and 250 μ m. Bronchiole and vessel are marked as B and V respectively.

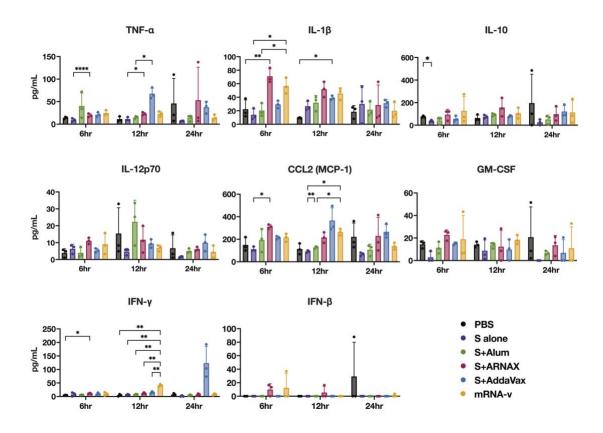


Fig S5. Cytokine and chemokine levels 6-24 hours after vaccination

Sera were collected from immunized mice at 6-24 hours after the first dose of vaccine, and concentrations of the indicated cytokines and chemokines were measured using a bead-based immunoassay (n = 3). Individual samples are shown as dots, horizontal lines indicate the median. Significance was calculated using One-way ANOVA with Tukey's multiple comparisons test. *P<0.05, **P<0.01, ****P<0.0001.

 Table S1
 Cryo-EM data collection, refinement, and validation statistics

EMD-63071 spike protein	
EMDB entry	EMD-63071
Data collection and processing	
Magnification	130,000
Microscope	Krios G4
Voltage (kV)	300
Detector	Gatan K3
Energy filter	Gatan BioContinuum, 10 eV slit
Electric exposure (e-/Å)	52.85
Deforcus range (µm)	-0.5 to -3.0
Pixel size (Å)	0.67
Data Processing Program	CryoSPARC (v.4.2.1)
Movies	3,500
Initial / Final particle images (no.)	14,448,075 / 31,127
Symmetry imposed	C1
Map resolution (Å)	3.67
FSC threshold	0.143