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Abstract: Many phytochemicals have been recognized to have potential therapeutic 

efficacy in cancer treatment. In this study, we investigated ethyl gallate (EG) for possible 

proapoptotic effects in the human promyelocytic leukemia cell line, HL-60. We examined 

cell viability, morphological changes, DNA content and fragmentation, and expression of 

apoptosis-related proteins for up to 48 h after EG treatment. The results showed that EG 

induced morphological changes and DNA fragmentation and reduced HL-60 cell viability 

in a dose-dependent and time-dependent manner. Western blotting analysis indicated that 

EG-mediated HL-60 apoptosis mainly occurred through the mitochondrial pathway, as 

shown by the release of cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G 

(Endo G), as well as the upregulation of Bcl-2-associated X protein (Bax). EG also 

activated the death receptor-dependent pathway of apoptosis by enhancing the expression 

of caspases-8, -9, and -3 and the Bcl-2 interacting domain (Bid). Collectively, our results 

showed that EG induces apoptosis in HL-60 via mitochondrial-mediated pathways.  
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1. Introduction 

Many anticancer agents have been reported to mediate their activity through mitochondrial events 

such as depletion of glutathione, production of reactive oxygen species, and activation of intrinsic 

apoptosis pathways (for example, cytochrome c, Apaf-1, and caspase-9) [1–3]. Over the years, natural 

products have played a significant role in the development of anticancer drugs [4,5]. 

Apoptosis is a central mechanism to eliminate unwanted cells that may accumulate during 

physiological processes and pathologic conditions such as cancer and autoimmune disease [6]. During 

apoptosis, intrinsic death signals activate caspase-9 via a mitochondrial-dependent complex [7]. 

Caspase-3 is activated by caspase-8 and caspase-9, and it participates in apoptosis by cleaving cellular 

proteins [8]. 

Mitochondria are involved in a variety of cellular processes and functions, such as cell 

differentiation, growth, survival, and apoptosis [9,10]. Mitochondria are key organelles in the 

development of anticancer therapeutics that promote cell death [11–13]. Most approaches focus on  

2 mitochondrial-based strategies. One is to target the mitochondria directly, for example, with agents 

that act on the Bcl-2 family members. The second approach is to induce cancer cell apoptosis 

indirectly through mitochondrial-mediated pathways [14]. 

Paclitaxel (Taxol®) is a naturally occurring microtubule-stabilizing anticancer drug isolated from 

the bark of the Pacific yew tree (Taxus brevifolia). Although paclitaxel is currently considered one of 

the most important chemotherapeutic agents [15], it can cause severe side effects such as allergic 

shock, hypotension, neurotoxicity, and nephrotoxicity [16,17]. 

Galla Rhois extract is a mixture of polygalloyl esters of glucose that contains gallotannins such as 

ethyl gallate (EG), methyl gallate, and gallic acid, and it has been reported to have various biological 

activities, including antibacterial [18], antimetastatic or anti-invasive effects [19], as well as  

anti-apoptotic and anti-necrotic protective effects on liver cells [20]. EG is used as a food additive and 

has been reported to exhibit anticancer [21], antimicrobial [9], and free radical scavenging activities [22]. 

In this study, we show that EG isolated from Galla Rhois has anticancer activity against a human 

leukemia cell line. Mechanistic studies show that EG acts on mitochondrial-dependent pathways and 

the caspase cascade to activate the intrinsic apoptotic pathway through expression of caspases-8, -9, and -3; 

apoptosis-inducing factor (AIF); and endonuclease G (Endo G). 

2. Results and Discussion 

2.1. Effect of EG on the Morphology and Viability of HL-60 Cells 

After treatment for 24 h or 48 h with EG, HL-60 cells showed changes in morphology, including 

shrinkage of the cell membrane and the development of apoptotic bodies (Figure 1A). Consistent with 

these effects, the viability of EG-treated cells decreased in a time- and dose-dependent manner (Figure 1B), 

demonstrating that EG has a cytotoxic effect on HL-60 cells. 
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Figure 1. Effect of ethyl gallate (EG) on the morphology and viability of HL-60 cells. 

Cells were cultured with 50 µM, 75 µM, 100 µM, 150 µM, 200 µM, or 300 µM EG for 24 h or 

48 h. (A) The morphological changes of HL-60 cells were visualized by phase-contrast 

microscopy (200×); (B) Cell viability was measured by the methanethiosulfonate/phenazine 

methosulfate solution (MTS) assay. Each point is the mean ± SD of 3 experiments. 

 

 

2.2. Analysis of EG-Induced Apoptosis in HL-60 Cells 

To determine whether the cytotoxicity of EG for HL-60 cells was a result of apoptosis, we analyzed 

the DNA content and cell cycle distribution of EG-treated cells by flow cytometric analysis of  

PI-stained cells. EG treatment increased the proportion of cells in subG1 phase, indicative of  

a reduction in DNA content, in a concentration- and time-dependent manner. Treatment of cells for  

24 h or 48 h with 50 µM or 75 µM EG increased the percentage of cells in the subG1 phase from  

a baseline of 2.9% to 26.5% or 52.6%, respectively (Figure 2A). Similarly, HL-60 cells treated with  

50 µM, 75 µM, or 100 μM EG for 48 h showed a dose-dependent increase in apoptosis, as measured 

by the DAPI assay (Figure 2B). Finally, DNA fragmentation in the EG-treated cells was confirmed by 

agarose gel electrophoresis, which showed the presence of DNA laddering, a marker of apoptosis, in 

EG-treated HL-60 cells (Figure 2C). 
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Figure 2. Effect of EG on the cell cycle and induction of apoptosis in HL-60 cells. Cells 

were incubated with 50 μM or 75 μM EG for 24 h or 48 h. (A) Cells were examined for 

DNA content by staining with Propidium iodide (PI) and analysis by flow cytometry.  

M1: Sub G1 phase, M2: G1 phase, M3: S phase, M4: G2/M phase; (B) Cells were fixed, 

stained with DAPI, and examined by fluorescence microscopy; (C) DNA fragmentation 

was examined by 1.0% agarose gel electrophoresis of genomic DNA, followed by ethidium 

bromide staining. M: DNA molecular weight marker, Con: control, Adria: adriamycin. These 

results presented are representative of data obtained from three independent experiments 

carried out in triplicate. 

 

 

2.3. Effect of EG on the Expression of Apoptosis-Associated Proteins in HL-60 Cells 

To investigate the molecular mechanism by which EG induced apoptosis in HL-60 cells, we 

examined the expression of several apoptosis-associated proteins by western blotting. We found that 

EG treatment of HL-60 cells decreased the expression of Bcl-2 at 75 μM EG, and increased Bax and 

truncated Bid (tBid) expression at 24 h (Figure 3A). Also, caspase-9 expression increased after 

treatment of 75 μM EG for 24 h (Figure 3B). Caspase-8 expression did not increase until 6 h after 

treatment of 50 μM or 75 μM EG and increased at 12 h after treatment of 50 μM or 75 μM EG  

(Figure 3B). Caspase-3 expression increased at 12 h and 24 h after treatment of 50 μM or 75 μM EG 
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(Figure 3B). AIF, Endo G and cytochrome c expression increased at 24 h after treatment of 75 μM EG 

(Figure 3B,C). These results suggest that EG induced apoptotic death in HL-60 cells via activation of 

the caspase enzyme cascade and through mitochondrial pathways. 

Figure 3. Effect of EG on the expression of apoptosis-associated proteins in HL-60 cells. 

HL-60 cells (5 × 105 cells) were treated with 50 μM or 75 μM EG for 6 h, 12 h, or 24 h. 

Cell lysates were resolved by SDS-PAGE and subjected to western blotting. (A) Bcl-2, 

Bax, and tBid. Con: Control, Cyto: cytosol, Mito: mitochondria; (B) Caspase-8, caspase-9, 

caspase-3, apoptosis-inducing factor (AIF), and Endo G; (C) Cytochrome c. These results 

presented are representative of data obtained from three independent experiments carried 

out in triplicate. These results presented are representative of data obtained from three 

independent experiments carried out in triplicate. 

  

 

Gallotannin and other tannins have been reported to have a variety of biological effects, including 

anti-inflammatory, anticancer, and antiviral effects [23–25]. One study showed that galloylglucose 

inhibits gelatinase-mediated degradation of type IV collagens, thereby inhibiting metastatic tumor cell 

invasion through the extracellular matrix [26]. In another report, gallic acid induced G0/G1 cell cycle arrest 

and apoptosis in HL-60 cells by inhibiting cyclin D and E and by activating mitochondrial-dependent 

pathways [27]. 

The present study showed that EG decreased the viability of HL-60 cells (Figure 1B) by the 

induction of apoptosis (Figure 1A). EG dose-dependently induced DNA fragmentation and apoptosis, 



Int. J. Mol. Sci. 2012, 13 11917 

 

as revealed by increases in the subG1 DNA content of the cells (Figure 2A), DAPI staining (Figure 2B), 

and increased DNA laddering on agarose gels (Figure 2C).  

The role of Bcl-2 family proteins in EG-induced apoptosis was investigated by examining their 

expression. Bax and tBid levels were shown to increase, while Bcl-2 expression decreased (Figure 3A). 

Our findings are consistent with the known pattern of events occurring in apoptosis, in which an 

increase in the ratio of Bax to Bcl-2 stimulates the release of cytochrome c from the mitochondria into 

the cytosol. Cytochrome c promotes caspase-9 activation and binding to apoptotic protease activating 

factor-1 (APAF-1), which leads to the activation of caspase-3.  

Caspases play a key role in the initiation and execution of apoptosis [28]. In this study, caspases-3, -8, 

and -9 were activated in EG-treated HL-60 cells. Activation of caspase-8 by death receptors results in 

the cleavage and activation of the effector caspase-3. Caspase-8 also cleaves Bid, which induces 

cytochrome c efflux from the mitochondria and subsequent activation of caspases-9 and -3, as 

described above [29]. Our results indicate that EG induced the cleavage of full-length Bid to generate 

tBid, which translocates to the mitochondria. 

Mitochondria play a crucial role in many apoptotic responses through the caspase-independent 

release of apoptogenic proteins such as AIF and EndoG [30]. AIF and EndoG are released into the 

cytosol and translocate to the nucleus where they induce chromatin condensation and extensive DNA 

fragmentation [31]. Previous reports have shown that Bcl-2 overexpression prevents AIF release and 

consequently reduces cell death [31,32]. This is consistent with the present study, which shows that a 

decrease in the Bcl-2 protein level by EG treatment may promote the release of AIF from the 

mitochondria. Although further studies are needed, the present work suggests that mitochondrial 

dysfunction may be a good surrogate biomarker for assessing the antitumor activity of EG in human 

leukemia cells. 

3. Materials and Methods 

3.1. Chemicals and Reagents 

Propidium iodide (PI), dimethyl sulfoxide (DMSO), ribonuclease A (RNase A), and 4,6-diamidino-

2-phenylindole dihydrochloride (DAPI) were obtained from Sigma-Aldrich Corp. (St. Louis, MO, 

USA). Antibodies specific for the following proteins were purchased from the indicated sources. 

Caspase-3 (Cell Signaling Technology; Danvers, MA, USA); caspase-8, caspase-9, and Endo G (Enzo 

Life Sciences; Farmingdale, NY, USA); AIF (Bethyl Laboratories; Montgomery, TX, USA); B-cell 

lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and Bcl-2-interacting domain (Bid) (Santa 

Cruz Biotechnology; Santa Cruz, CA, USA); cytochrome c (BioVision; Conesa, Buenos Aires, 

Argentina); and β-actin (Sigma-Aldrich; St. Louis, MO, USA). RPMI 1640 medium, penicillin-streptomycin, 

fetal bovine serum (FBS), and L-glutamine were obtained from Gibco-BRL (Grand Island, NY, USA). 

Ethyl gallate isolated from Galla Rhois was obtained from Dr. Youn-Chul Kim’s Laboratory at the 

College of Pharmacy, Wonkwang University, Iksan, South Korea (Figure 4). All chemicals were of 

reagent grade. 
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Figure 4. Chemical structure of ethyl gallate. 

 

3.2. Cell Culture 

The human promyelocytic leukemia cell line HL-60 was obtained from the American Type Culture 

Collection (ATCC; Manassas, VA, USA). Cells were grown in 75 cm2 tissue culture flasks in RPMI 

1640 medium supplemented with 10% FBS, 100 U/mL penicillin, 100 μg/mL streptomycin, and 2 mM 

L-glutamine and maintained at 37 °C in a humidified 5% CO2 atmosphere.  

3.3. Cell Viability 

HL-60 cells were cultured to 80% confluence in 24-well tissue culture plates. 1 mL of 100 mM EG 

diluted with 1 mL RPMI 1640 medium to adjust to pH 7.2 values. Varying concentrations (0 μM,  

50 μM, 75 μM, 100 μM, 150 μM, 200 μM, and 300 μM) of EG were added to the wells and the cells 

were incubated for 24 h or 48 h at 37 °C. Cell morphology was then observed using a phase-contrast 

microscope at 200× magnification (Olympus; Hamburg, Germany) and images were recorded. Cell 

viability assays were performed using the CellTiter 96® AQueous One Solution Cell Proliferation 

Assay (Promega; Madison, WI, USA) according to the manufacturer’s instructions. An aliquot of the 

methanethiosulfonate/phenazine methosulfate solution (MTS) was added to each well, and the cells 

were incubated at 37 °C for 1.5 h. The absorbance was read at 490 nm wavelength using a Tecan 

Infinite F200 microplate reader (Tecan; Männedorf, Switzerland).  

3.4. Cell Cycle Analysis by Flow Cytometry and DAPI Staining of Apoptotic Cells 

HL-60 cells (1 × 106) were treated with 50 μM or 75 μM EG for 24 h or 48 h at 37 °C. Cells were 

then harvested by centrifugation and fixed in 70% ethanol at 4 °C for 24 h. Fixed cells were 

resuspended in PBS containing 40 μg/mL PI, 100 μg/mL RNase A, and 0.1% Triton X-100 and 

incubated in the dark for 30 min at room temperature. Cell cycle distribution was analyzed by flow 

cytometry on a FACSCalibur (BD Biosciences; San Jose, CA, USA). To investigate apoptotic cells, 

HL-60 cells (1 × 106) incubated with different concentration of 50 μM, 75 μM and 100 μM EG for 24 h  

or 48 h at 37 °C, and then DAPI staining conducted as described previously [33]. The cells were 

photographed using a fluorescence microscopy. 

3.5. DNA Fragmentation Analysis 

HL-60 cells were seeded at 1 × 106 cells per well in 24-well plates and incubated with different 

concentrations of EG (0 μM, 50 μM, or 200 μM) for 24 h. The cells were washed twice in ice-cold 

PBS and then harvested by centrifugation. DNA was extracted from the cell pellets using DNeasy 
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Blood & Tissue Kit (Qiagen; Hilden, Germany) according to the manufacturer’s instructions. DNA 

was separated by 1% agarose gel electrophoresis, and DNA fragments were visualized by ethidium 

bromide staining and digitized imaging of the gel. 

3.6. Western Blotting Analysis 

The expression of apoptosis-related proteins (caspases-8, -9, -3; AIF; Endo G; Bid; Bax; and Bcl-2) 

in HL-60 cells was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis  

(SDS-PAGE) of lysates followed by western blotting. For this, HL-60 cells (1.5 × 106) were treated 

with 50 μM or 75 μM EG for 6 h, 12 h, or 24 h. Total cell lysates were obtained by resuspending cells 

in ice-cold radioimmunoprecipitation assay (RIPA) buffer [50 mM Tris-HCl (pH 7.8), 150 mM NaCl, 

1% Triton X-100, 0.5% sodium deoxycholate, and 0.1% sodium dodecyl sulfate] for 30 min followed 

by centrifugation. Protein concentration was determined using a NanoDrop spectrophotometer 

(NanoDrop Technologies; Silverside Rd, WA, USA). Aliquots of lysates (100 μg protein equivalents) 

were resolved by 12% SDS-PAGE and transferred onto nitrocellulose membranes (Bio-Rad; Gangnam 

ku, Seoul, Korea). The membranes were blocked and incubated with the indicated primary antibodies 

and then with horseradish peroxidase-conjugated secondary antibodies. Blots were visualized using an 

enhanced chemiluminescence (ECL) kit (Amersham; Kangnam-ku, Seoul, Korea) and imaged using 

the FluorChemE imaging system (Cell Biosystems; St. New Montgomery, CA, USA). 

To measure release of cytochrome c from HL-60 mitochondria, cell lysates were separated using a 

mitochondrial/cytosol fractionation kit (BioVision; Conesa, Buenos Aires, Argentina). In brief, 2 × 107 cells 

were harvested by centrifugation at 600× g for 5 min and washed twice with cold PBS. The pellets 

were resuspended in 500 μL of extraction buffer containing dithiothreitol and a protease inhibitor 

mixture (BioVision) and incubated on ice for 10 min. The cells were then homogenized at 4 °C using a 

Dounce tissue grinder and centrifuged at 700× g for 10 min at 4 °C. The supernatant was collected and 

re-centrifuged at 10,000× g for 30 min at 4 °C. The resulting supernatant was harvested and designated 

as the cytosolic fraction. The pellet was resuspended in an appropriate buffer and designated as the 

mitochondrial fraction. Cytochrome c expression in the fractions was analyzed by western blotting as 

indicated above. 

4. Conclusion 

The present study described that EG isolated from Galla Rhois has anticancer activity against a 

human leukemia cell line acting on mitochondrial-dependent pathways and the caspase cascade to 

activate the intrinsic apoptotic pathway through expression of caspases-8, -9, and -3; apoptosis-inducing 

factor (AIF); and endonuclease G (Endo G). It will be interesting to further investigate the anticancer 

activity of the EG in preventing various cancer mediated injuries in in vivo pathological situations. 
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