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Abstract: The development of hyperspectral remote sensing equipment, in recent years, has provided
plant protection professionals with a new mechanism for assessing the phytosanitary state of crops.
Semantically rich data coming from hyperspectral sensors are a prerequisite for the timely and
rational implementation of plant protection measures. This review presents modern advances in
early plant disease detection based on hyperspectral remote sensing. The review identifies current
gaps in the methodologies of experiments. A further direction for experimental methodological
development is indicated. A comparative study of the existing results is performed and a systematic
table of different plants’ disease detection by hyperspectral remote sensing is presented, including
important wave bands and sensor model information.

Keywords: remote sensing; hyperspectral; plant diseases; early detection; oil palm; citrus; cereals;
solanaceae

1. Introduction

The spread of various, including invasive, plant diseases and pests is one of the most
important problems in modern agriculture [1]. Therefore, to solve these relevant problems,
the timely monitoring of plant diseases and pests is necessary. Remote sensing methods
hold great promise for solving these problems [2]. Remote sensing data can identify crop
conditions, including diseases, and provide useful information for specific agricultural
management practices [3,4].

There are two types of remote sensing technologies: passive (such as optical) and
active remote sensing (such as LiDAR and radar). Passive optical remote sensing is usually
divided into two groups based on the spectral resolution of the sensors used: multispectral
and hyperspectral remote sensing [5]. Hyperspectral sensing shows great potential as a
non-invasive and non-destructive tool for monitoring biotic and abiotic plant stress among
passive remote sensing methods, which measure reflected solar radiation [6]. This method
collects and stores information from the spectroscopy of an object in a spectral cube that
contains spatial information and hundreds of contiguous wavelengths in the third dimen-
sion. Hyperspectral imaging offers many opportunities for the early recognition of plant
diseases by providing preliminary indicators through subtle changes in spectral reflectance
due to absorption or reflection. Hyperspectral images with hundreds of spectral bands can
provide detailed spectral portraits, hence, they are better able to detect subtle variations in
soil, canopies or individual leaves. Thus, hyperspectral images can be used to solve a wider
class of problems for the accurate and timely determination of the physiological status of
agricultural crops. The early identification of disease spread and pest outbreaks may avoid
not only significant crop loss, but also reduce pesticides usage and mitigate their negative
impacts on human health and the environment, thus, improving the existing IPM [7,8].
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In recent years, a wide range of miniature hyperspectral sensors available for commer-
cial use have been developed, such as Micro- and Nano-Hyperspec (Headwall Photonics
Inc., Boston, MA, USA), HySpex VNIR (HySpex, Skedsmo, Skjetten, Norway) and Fire-
flEYE (Cubert GmbH, Ulm, Germany) [9]. These sensors can be installed on manned or
unmanned airborne platforms (for example, airplanes, helicopters, and UAVs) to obtain
hyperspectral imaging and support various monitoring missions [10,11].

There are various types of hyperspectral cameras, e.g., push-broom cameras, whisk-
broom cameras and snapshot cameras. The measurement principle of each sensor type
depends on its ability to obtain the whole picture (snapshot) at one time, one line of the
picture (push broom) or one point of the picture (whisk broom) [12].

The general routine of collecting and processing hyperspectral images is presented
in Figure 1. The light reflected from plant leaves is collected by the hyperspectral camera
(Figure 1A) [13]. A hyperspectral data cube (Figure 1B) is obtained from the hyperspectral
camera. Then various data normalization (Figure 1C) and feature extraction (Figure 1D)
algorithms are applied to reduce the data’s dimensionality. Finally, different automatization
techniques are used to automate the classification process (Figure 1E).
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Hyperspectral remote sensing provides image data with very high spectral resolu-
tion [16,17]. This high resolution allows subtle differences in plant health to be recognized.
Such a multidimensional data space, generated by hyperspectral sensors, has given rise to
new approaches and methods for analyzing hyperspectral data [18,19].

For a long time, feature extraction methods have been used that reduce the data
dimension without loss (or with minimal loss) of the original information on which the
classification of hyperspectral images is based [20]. One of the most widely used dimension-
ality reduction techniques in HRS is principal component analysis (PCA). PCA computes
orthogonal projections that maximize data variance and outputs the dataset in a new,
uncorrelated coordinate system. Unfortunately, the informational content of hyperspectral
images does not always coincide with such projections [21]. Thus, other methods are also
used for feature extraction. The common methods for extracting hyperspectral data used
in pathological research traditionally include PCA [22], derivative analysis [23], wavelet
methods and correlation plots [24]. Alternatively, the hyperspectral image data can be
processed at the image level to extract either spatial representation alone or joint spatial
spectral information. If only spatial features are considered, for example, when studying
structural and morphological features, spatial patterns among neighboring pixels with
relation to the current pixel in the hyperspectral image will be extracted. Machine vision
techniques, such as using a two-dimensional CNN, with a p × p chunk of input pixel data
have been implemented to automatically generate high-level spatial structures. Extraction
of spatial characteristics, in tandem with spectral elements, has been shown to significantly
improve model performance. [25]. The use of spatial spectral characteristics can be achieved
using two approaches: (i) by separately extracting spatial characteristics using CNN [26,27]
and combining data from a spectral extractor using RNN, or LSTM [27,28]; and (ii) by
using three-dimensional patterns in hyperspectral data cubes (p × p × b) associated with
p × p spatially adjacent pixels and b spectral bands to take full advantage of important
distinctive patterns.

In preparing this review, we tried to determine whether there is a general experimental
method by which to achieve consistent results in the detection of plant diseases using
hyperspectral remote sensing (HRS). We planned to identify existing gaps and tried to
find solutions to level those gaps by analyzing existing publications. We believed that
the main gaps could be related to the biological aspect of the experiments [29–31] and
to the incorrect definition and interpretation of wavebands important for plant disease
detection, which is also strongly related to biological aspects, namely plant physiology and
biochemistry [31–34]. Considering the machine methods for analyzing hyperspectral data,
we believe that, despite the advances in such techniques, such as ANN, SVM and others,
their usage for identifying plant diseases with HRS is only a matter of choosing methods
for data processing automation. Thus, in this review we will not discuss the advantages or
disadvantages of different machine learning methods, especially since these issues have
already been discussed by other authors in [35–38] and other papers.

There are many works devoted to the topic of plant disease detection using HRS;
therefore, an urgent task is to prepare a review of hyperspectral remote sensing according
to those articles whose authors tried to solve the problem of early detection of plant diseases
as one of the key tasks for improving the existing IPM [39–42]. The early detection of plant
diseases is, for a number of reasons, much more difficult than detecting them at the stage of
visible symptoms. We believe that the knowledge of methods for identifying plant diseases
at the symptomatic stage is the basis for their early detection at the asymptomatic stage.
For this reason, we have included these articles in the review along with articles on the
early detection of plant diseases using HRS.

The primary search for data on the topic of early detection of plant diseases was
carried out using the following keywords (hyperspectral; plant diseases; plant pests; early;
detection) during the period from 2006 to 2021. The most important data, selected on the
basis of an analysis of the experience gained on the topic, are presented in the form of tables
concluding each section of the review.
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The choice of plant cultures mentioned in the review was dictated by the need for a
sufficient sample of information for analysis. Thus, after analyzing the available articles,
we opted for four crops: oil palm, citruses, Solanaceae family plants and wheat. A number
of articles devoted to the early detection of diseases in various crops also will be mentioned
but without detailed analysis because of lack of sufficient information. Though the low
number of articles devoted to the crops different from oil palm, citruses, Solanaceae family
plants and wheat made it impossible to perform a deep study or detect dependences in the
successful or unsuccessful usage of HRS for plant disease early detection of other species.
Thus, the objective of the article was set to analyze the current state of hyperspectral
remote sensing for early plant disease detection of four different crop types: oil palm,
citruses, Solanaceae family plants and wheat. In our opinion, the selection of these plant
species represents a sufficiently representative sample to identify the main advantages and
disadvantages of HRS in relation to the early plant diseases detection with generalization
to other crops.

So, the main objective of our article was to prove the possibility of early plant disease
detection by hyperspectral remote sensing. Another scientific assumption that authors tried
to verify is that the spectral reflectance (i.e., important bands) should coincide (possibly
with some small shift) with the same diseases and plants. Another objective of this review,
then, was to systematize the modern research carried out in the field of using HRS for
the detection—Primarily the early detection—Of plant diseases. Within this analysis, the
available results are summarized and the main gaps in the field of early detection of plant
diseases with HRS are highlighted.

The rest of this paper is organized as follows. Section 2 reviews the current state of
hyperspectral remote sensing for early plant disease detection in four types of plants in
detail (Section 2.1 for oil palm, Section 2.2 for citrus, Section 2.3 for the Solanaceae family,
Section 2.4 for wheat). Due to a lack of information for comprehensive analysis, all other
crops are jointly reviewed in Section 2.5. Section 2.6 is the summary for the reviewed
materials. Section 3 discussed found gaps and problems, and conclusions are presented
in Section 4.

2. Materials and Methods
2.1. Hyperspectral Remote Sensing of Oil Palm Diseases

The palm oil is used in many different ways and is a leader amongst other vegetable
oils on the world market; this is why it is very important to control palm oil pests and
diseases [43]. There are not so many of them; nevertheless they may adversely affect the
palm oil harvest [44]. This section highlights the articles on the detection of such diseases
using HRS.

The most important disease of oil palm is basal stem rot (BSR) caused by Ganoderma
boninense [45,46]. This disease is a major threat to sustainable oil palm production that can
reduce yields by 80% [47,48]. Ganoderma boninense are capable of degrading lignin to carbon
dioxide and water, and then use the celluloses as nutrients for the fungus, destroying the
host plant in the process [49].

Lelong et al. studied the possibility of discriminating several levels of Ganoderma
boninense fungus contamination on oil palm trees’ canopy hyperspectral reflectance data.
Using the PLS-DA method, a global performance accuracy of 92–98% was achieved [50,51].
Shafri et al. investigated the possibility of identifying oil palm diseases using HRS, as well
as applying various vegetation indices to such data. It was possible to achieve accuracy
over 80% for various indices, however, it was concluded that red, edge-based techniques
are more effective than vegetation indices in detecting BSR-infected oil palm trees [52–54].
In later studies, the possibility of discriminating between three classes of BSR disease
severity (healthy, mild and severe symptoms) was examined. A dataset of hyperspectral
snapshots of various distances was used to discriminate BSR severity with variable degrees
of success [55]. The work continued, in the article, on an optimal SVI development for
the early detection of BSR in oil palm seedlings. The authors used the developments
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and the experience of earlier studies; the significant and insignificant wavelengths and
indices were selected from [52–55]. The wavelengths then were used to create a SVI for the
early detection of BSR. The result of the work was the determination of the best indices,
presumably most suitable for the early detection of BSR in oil palm [56]. In their next article,
the authors continued to improve the technology by performing a thorough analysis of
airborne hyperspectral images using different SVIs, red edge position, and continuum
removal [57].

Concerning the early detection of BSR, in 2014 Liaghat et al., for the first time, achieved
this goal. The authors investigated the capability of reflectance spectroscopy to detect
BSR at three stages of infection, and the results confirmed the applicability of VIS-NIR
spectroscopy to classify BSR-infected oil palm leaves from healthy samples in early stages
of the infection. The goal was the possibility of detecting infected oil palms in early
stages, which was successfully achieved with an overall accuracy rate of 97% (without
false-negatives) when a k-NN-based classification model was used [58]. Ahmadi et al. took
into account not only the HRS, but also the weather data (temperature, precipitation and
relative humidity). Two datasets were generated under different weather conditions, the
dry and rainy season respectively. The data processing was carried out by using various
ANNs. The plants were classified into four groups, healthy and mildly, moderately and
severely infected ones. It was possible to obtain 100% classification accuracy for the mildly
infected palms that were not showing any visible symptoms, thus, achieving the goal of
the early detection of BSR. An important observation concerns the fact that ANNs showed
better performance in identifying the diseased palms rather than healthy ones, with the
remark that although the studied healthy palms did not have BSR, they may have suffered
from other diseases or stresses that influenced their spectral properties [59]. Azmi et al.
used different types of SVM to identify disease symptoms. It should be noted that the
authors studied a very large number of articles on the topic and presented their data in the
form of a comparative table. Unlike other studies where the experiments were carried out
on an oil palm plantation or nursery, this experiment was carried out in a greenhouse with
artificial, constant conditions. In this study, NIR reflectance showed significant differences
between the inoculated Ganoderma boninense and healthy subjects. The infection could
be detected early even in the absence of physical symptoms of the disease using SVM
classifiers with different numbers of NIR bands. It was mentioned that using a large
number of bands provided high classification accuracy, while a lesser number of bands
gave slightly less accuracy. The authors supposed that the developed method needs to be
tested in an open environment in order to confirm its reliability for field usage, taking into
account the peculiarities of work with sunlight angle, shade and weather conditions [60].

The Orange Spotting (OS) is an another oil palm disease, caused by the coconut
cadang-cadang viroid (CCCV), which has killed over 40 million coconut palms only in the
Philipinnes [61,62]. Currently, for oil palms this disease appears to be of minor importance.
However, due to its high severity on coconut and other palms, it is being studied to
prevent oil palm epiphytotics, which CCCV may cause in the future due to possible
mutations. Interesting results were obtained by Selvaraja et al. studying OS on oil palm
trees. Using a HRS dataset for various SVI, the authors discovered that OS could be detected
in symptomatic oil palm trees. In an earlier study the authors were able to determinate
oil palm trees with potassium stress from those with OS, which can be useful in oil palm
plantation management [63,64]. Another group of authors conducted a number of studies,
including the publication of a review article on various ANNs for plant disease detection
using HRS [36]. On the subject of OS, the authors conducted and published a number of
studies on SVI and ANN choice for disease determination, as well as chlorophyll content at
the leaf scale of the diseased plants. The hyperspectral data of OS diseased and healthy
oil palm seedlings was processed by five different ANNs for evaluation of four red-edge
indices followed by the selection of spectral bands from the red edge (680–780 nm), with a
result that a red-edge inflection point (at 700 nm) could serve as a good indicator of the
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plant stress caused by OS in oil palm seedlings [65,66]. A systematization of the reviewed
materials is present in Table 1.

Table 1. Oil palm disease early detection by HRS.

Publication Year Culture Treat Equipment Studied Bands Important Bands Study Type Reference Location

2009 oil palm basal stem rot
APOGEE

spectroradiometer of
unmentioned model

450–1100 715, 734, 791 field [52] Malaysia

2009 oil palm basal stem rot
APOGEE

spectroradiometer of
unmentioned model

300–1000 462, 487, 610.5,
738, 749 field [53] Malaysia

2010 oil palm basal stem rot PP Systems Unispec-
SC spectrometer 310–1130

670–715,
490–520,
730–770,
920–970

field [50,51] Indonesia

2011 oil palm basal stem rot
APOGEE

spectroradiometer of
unmentioned model

350–1000

495, 495.5, 496,
651.5, 652,
652.5, 653,
653.5, 654,
654.5, 655,
655.5, 656,
656.5, 657,
657.5, 658,
658.5, 659,
659.5, 660,

660.5, 661, 908

field [55] Malaysia

2014 oil palm basal stem rot ASD spectrometer of
unmentioned model 325–1040 not mentioned field [58] Malaysia

2017 oil palm basal stem rot
APOGEE

spectroradiometer of
unmentioned model

325–1000

495, 495.5, 496,
651.5, 652,
652.5, 653,
653.5, 654,
654.5, 655,
655.5, 656,
656.5, 657,
657.5, 658,
658.5, 659,
659.5, 660,

660.5, 661, 908

field [56] Malaysia

2017 oil palm basal stem rot GER
1500 spectrometer 273–1100 540–560,

650–780 field [59] Malaysia

2018 oil palm basal stem rot
Specim

spectrograph of
unmentioned model

350–1000 650–750 field [57] Malaysia

2020 oil palm basal stem rot Cubert S185 camera 325–1075 800–950 greenhouse [60] Malaysia

2014 oil palm orange
spotting

ASD FieldSpec
4 spectrometer 300–1050

400–401,
404–405,
455–499,
500–599,
600–699,
700–712

field [63,64] Malaysia

2019 oil palm orange
spotting

ASD HandHeld
2 spectrometer 400–1050 601–630 field [36] Malaysia

2019 oil palm orange
spotting

ASD HandHeld
2 spectrometer 325–1075 680–780 field [65,66] Malaysia

2.2. Hyperspectral Remote Sensing of Citrus Diseases

The citrus fruits, which are grown in more than 75 countries around the world, are
an important commercial crop. The most threatening diseases in the citrus industry are
citrus bacterial canker (CBC), caused by Xanthomonas citri [67,68], and citrus greening
disease, also known as Huanglongbing (HLB), primarily caused by a bacterium, Candidatus
liberibacter spp., spread by insects [69]. These bacteria interfere with the nutrient supply
of citrus trees until the infected trees die. HLB’s diagnosis methods are mainly based on
genetic methodologies, such as PCR. An effective and environmentally friendly method of
treatment has not yet been found, and the only measure to slow down or reduce further
infestation is to destroy the affected trees [70–72].
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Various authors have published a number of articles devoted to the determination
of HLB using HRS. Sankaran et al. used portable halogen lamps mounted on a platform
to provide an additional illumination to citrus leaves in outdoor studies of HLB [73,74].
After several studies the authors achieved an average overall classification accuracy of
87% with a minimum number of false negatives, using SVM to analyze the dataset of
healthy and diseased samples [75]. The effect of wind and the presence of HLB-infected
leaves within the canopy were mentioned as an additional factor, which resulted in some
spectral variations [73]. Li et al. used red-edge position in the field and laboratory experi-
ments on Valencia and Hamlin orange cultivars to achieve a noticeable difference between
healthy and HLB-damaged canopies. The indoor dataset achieved higher accuracy than
the outdoor dataset (about 95% vs. about 90%) due to a better environment and more
samples. Overall, different spectral feature analyses of different datasets were achieved
between 43 and 95% accuracy [76]. Kumar et al. obtained more accurate results when using
a multispectral rather than a hyperspectral camera (87% vs. 80% accuracy). The MTMF
method proved to be the most successful for hyperspectral images, as was the SAM method
for multispectral ones [77]. Weng et al. described the classification models for healthy, HLB-
infected (asymptomatic and symptomatic) and nutrient-deficient citrus leaves of the citrus
Unshiu and Ponkan, which achieved accuracies of 90.2%, 96.0% and 92.6% for the cool
season, the hot season and the entire period, respectively, using LS-SVM. The authors have
demonstrated the possibility of hyperspectral reflection imaging combined with analysis of
citrus carbohydrate metabolism for the detection of HLB in different seasons and cultivars.
The classification model developed for the Satsuma cultivar dataset was successfully used
for HLB detection of the Ponkan cultivar by calibration model transfer, and obtained an
overall detection accuracy of 93.5% with a low rate of false negatives [78].

A greatest success in early the detection of HLB was achieved by Deng et al., with a
study on early non-destructive detection and grading of citrus HLB disease [79–83]. The
research was able to provide three models of early diagnosis and the grading of HLB disease
by taking advantage of the PLS-DA method, tested with a leave-one-out cross-validation
strategy. In the third model established with preprocessed spectral reflectance data by
Savitzky-Golay, the smoothing and first-derivative methods had the best discrimination,
which achieved a prediction accuracy of no less than 92% on five kinds of leaf samples,
and an overall classification accuracy rate of 96.4%. In subsequent works the authors used
multiple machine learning algorithms (logistic regression, decision tree, SVM, k-NN, LDA
and ensemble learning) to distinguish between the groups of healthy and HLB-infected
(symptomatic and asymptomatic) samples, based on the reflectivity of leaves. In the
three-group classification (healthy and symptomatic/asymptomatic HLB leaves), SVM
achieved an accuracy of 90.8%, while in two-group classification (healthy and symptomatic
HLB leaves) accuracy reached 96%. The results showed that a small number of bands
is not enough for stable classification; meanwhile, 13 characteristic bands identified by
the proposed method provided the best performance. The team continued the study,
researching the possibility of determining HLB using two different hyperspectral cameras
installed on a UAV. The pixel-level-based HLB classification accuracy was 99.33% for the
training set and 99.72% for the verification set.

There are also two interesting studies on the successful (96–100% accuracy) early
detection of decay in citrus using HRS. The fruit damage discussed in these publications
was caused by Penicillium digitatum fungy. Although this topic relates more to the post-
harvest crop storage than the plant diseases, we saw fit to mention these articles [84,85].
The systematization of the reviewed materials is presented in Table 2.

2.3. Hyperspectral Remote Sensing of Solanaceae Plant Diseases

The Solanaceae family, which includes tomatoes, potatoes, tobacco, peppers and other
crops, is one of the most common vegetable crops, both in greenhouses and outdoors. There
are a number of diseases affecting these crops, such as early and late blight [86,87], different
viruses [88,89], bacterial and target spot [90] and others, that can cause serious losses to
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yields. Due to the high economic harmfulness of these diseases, it is very important to
detect them at early stages in order to apply timely and proper control measures. This
section highlights articles on the detection of such diseases using HRS, including their
early detection.

Table 2. Citrus disease early detection by HRS.

Publication Year Culture Treat Equipment Studied Bands Important Bands Study Type Reference Location

2012 citrus citrus greening
Spectra Vista SVC

HR-1024
spectrometer

350–2500

537, 612, 638,
662, 688, 713,
763, 813, 998,
1066, 1120,
1148, 1296,
1445, 1472,
1546, 1597,
1622, 1746,
1898, 2121,
2172, 2348,
2471, 2493

field [73–75] USA

2012 citrus (orange) citrus greening

Spectra Vista SVC
HR-

1024 spectrometer
& Varian Cary

500 Scan

457–921 650–850 field and lab [76] USA

2012 citrus (orange) citrus greening Specim Aisa
Eagle camera 457–921

410–432,
440–509,
634–686,

734–927, 932,
951, 975, 980

field [77] USA

2018 citrus citrus greening

Specim Imspector
V10E spectrograph

combined
with camera

379–1023 493, 515, 665,
716, 739 lab [78] China

2019 citrus citrus greening

Cubert S185
camera and ASD

HandHeld
2 spectrometer

400–1000

544, 718, 753,
760, 764, 930,
938, 943, 951,
969, 985, 998,

999

field [80] China

2020 citrus citrus greening

Cubert S185
camera & ASD

HandHeld
2 spectrometer

450–950,
325–1075

468, 504, 512,
516, 528, 536,
632, 680, 688,

852

field [79] China

2020 citrus citrus greening ASD HandHeld
2 spectrometer 370–1000 not mentioned field [83] China

Successful studies determining the pathogenic states of tomato plants using hyperspec-
tral sensing have been undertaken by a number of research teams from different countries.
Lu et al. studied yellow leaf curl virus and late blight caused by Phytophthora infestans, target
spot caused by Corynespora cassicola and bacterial spot caused by Xanthomonas perforans on
tomato leaves in laboratory conditions, using multiple spectral vegetation indices selected
by PCA, and reached up to 100% accuracy, including early-stage detection [91,92]. Polder
et al. investigated the possibility of detecting potato virus Y (PVY) with the CNN method
and achieved 75–92% accuracy [93]. Griffel et al. used PLS-DA and SVM classification
method to achieve 89.9% accuracy in PVY detection [94]. Van De Vijver et al. studied early
blight caused by Alternaria solani in the Bintje potatoe variety with spectral analysis and
reached up to 92% accuracy [95]. Abdulridha et al. studied yellow leaf curl, target spot and
bacterial spot in tomato leaves of the Charger and FL-47 cultivars in field and laboratory
conditions, using different vegetation indexes, and obtained accuracies of 94–100% for
determining different diseases from each other and 98–100% for determining healthy from
diseased plants [96,97]. Zhang et al. investigated late blight on potatoes using HS image
processing with MNF and SAM and successfully detected the disease with unmentioned
accuracy [98]. Fernandez et al. studied late blight on Shepody cultivar potatoes with
different spectral indices applied in the 400–900-nm diapason and achieved 85–91% accu-
racy [99], and used the same method in red and red-edge diapasons (660–780 nm) with
89% accuracy [100]. Krezhova et al. used methods of statistical and derivative analyses
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to detect tomato spotted wilt virus (TSWV) on the tobacco cultivar Samsun NN. At the
asymptomatic stage the differences in reflectance spectra were statistically significant [101].
Xie et al. detected early and late blight [102] and gray mold [103] on tomato leaves of the
Zheza 809 cultivar. They used an ELM classifier model for late and early blight and a k-NN
model for gray mold, with the former achieving 94 to 100% accuracy, while between 44 and
66% accuracy was achieved for detecting asymptomatic gray mold diseased tomato leaves,
1 day past inoculation.

All of the authors managed to achieve a stable definition of the symptoms of the
diseases in the visible stages. Most of the experiments were carried out in the field. The
articles [96,97] should be noted separately, as the field experiments in these studies were
duplicated by laboratory ones, as recommended in [29–31], and we suppose that it was
why the authors achieved the best results in the accuracies of determining both various
diseases and the differences between healthy and diseased plants.

Wang et al. presented two studies on the early detection of TSWV on sweet pepper
with CNN analysis of HRS data. In the first study, the authors processed hyperspectral
shots taken with a camera in the range of 400–1000 nm under laboratory conditions with
a new GAN architecture, named as OR-AC-GAN. For the pixel-level classification, the
false positive accuracy rate was 1.47% for healthy plants [104,105]. In second study the
OR-AC-GAN was further improved and achieved a result in of 96.25% accuracy in the
early detection of TSWV before visible symptoms showed up. The statistic results from
the proposed OR-AC-GAN model were superior to the results of direct CNN model and
AC-GAN model [105]. Gu et al. also successfully detected TSWV on tobacco in the early
stages using three wavelength selection methods (SPA, BRT and GA), and four machine
learning techniques (BRT, SVM, RF and CART). Among the selected bands, most were
located at the NIR region (780–1000 nm). The models built by the BRT algorithm using the
wavelengths selected by SPA obtained the best overall accuracy of 85.2% [106]. Zhu et al.
studied tobacco mosaic virus (TMV) on tobacco of the MS Yunyan 87 cultivar. It was shown
that it is possible to detect the TMV disease in the range of 450 to 1000-nm wavelengths
with the usage of different machine learning algorithms, i.e., SVM, BPNN, ELM, LS-SVM,
PLS-DA, LDA and RF. Most of the classification models showed acceptable results, while
the identification rate was greater than 85%. The distinction between the healthy tobacco
leaves and diseased ones resulted in classification accuracies of up to 95% with the BPNN
and ELM models. [107,108]. Morellos et al. studied the early detection of tomato chlorosis
virus (ToCV) in Belladonna cultivar tomato plants. The NCA algorithm was used for the
effective wavelengths and most important SVI selection. The XY-F network and MLP–ARD
ANN detected the ToCV infection and its severity level, scoring an overall accuracy of
over 85%, with MLP–ARD performing generally better than XY-F [109].

Bienkowski et al. studied the possibility of the early detection of late blight and
black leg and a variety of soilborn diseases (R. solani, C. coccodes and S. subterranea) on
five different potato cultivars, Maris Piper, Estima, King Edward, Desiree and Mayan
Gold, using either PLS and BPNN in greenhouse and field experiments. Unfortunately,
the authors did not specify the phenotypic and genotypic differences of the cultivars
or whether there was a difference in the important wavelengths for each cultivar. The
models detected and distinguish diseases with obvious symptoms, even asymptomatic
ones, correctly classifying the spectra from the greenhouse experiments with an accuracy
of 84.6%. When the diseases were analyzed separately, the models were able to distinguish
between the healthy and asymptomatic spectra leaves, plus three kinds of late blight with
an accuracy of 92%. Models constructed with whole-plant reflectance data from the field
had less accuracy [110].

Franceschini et al. studied early and late blight detection in three different tomato
cultivars, Raja, Connect, and Carolus, with different degrees of resistance to late blight.
Both UAV and ground-level data were used, including leaf analysis of chlorophyll content
and canopy height. The important bands were chosen due to their importance in describing
changes in the biochemical and biophysical traits of vegetation at the leaf and canopy levels.
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The relationship of leaf and vegetation pigment content was found to be less important than
changes associated with structural traits. It was possible to identify considerable spectral
changes related to late blight at early stages in between 2.5 and 5.0% of affected leaf area.
The authors mentioned that the characteristics of different potato cultivars may potentially
affect the spectral response, and they recommend considering it in future studies [111].

Gold et al. investigated the pre-symptomatic detection and differentiation of late blight
and early blight in potato on four different potato cultivars: Katahdin, Snowden, SP951
and russet Burbank. The authors mention that cultivar features had a strong influence on
spectral reflectance, but not on the visible reflectance range alone. The cultivars differed
biochemical and physiological indices at different time stages of disease. The spectral re-
sponses of the four potato cultivars to infection were very different, yet they had important
commonalities that made discrimination easier. Using the RF, PLS-DA, PCoA and NDSI
approaches, the authors could distinguish the infected plants with greater than 80% accu-
racy two–four days before visible symptoms appeared. The individual stages of disease
development for each pathogen could be distinguished from the corresponding control
samples with accuracies of 89–95%. The authors reported that they could distinguish latent
Phytophthora infestans from both latent and symptomatic Alternaria solani infection with
greater than 75% accuracy. The spectral characteristics important for the detection of late
blight changed during infection, while the spectral characteristics important for the detec-
tion of early blight remained unchanged, reflecting the different biological characteristics
of the pathogens concerned. The authors mentioned that phenolics concentration may be
important for detecting symptomatic late and early blight infections. Finally, the authors
reported their belief that this study establishes that the host genotype has a significant
influence on spectral reflectivity and, therefore, on the biochemical and physiological char-
acteristics of plants exposed to infection by pathogens. [112,113]. A systematization of the
reviewed materials is presented in Table 3.

Table 3. Solanaceae disease early detection by HRS.

Publication Year Culture Treat Equipment Studied Bands Important Bands Study Type Reference Location

2003 tomato late blight Megatech GER-
2600 spectrometer 400–2500

750–930,
950–1030,
1040–1130

field [98] USA

2014 tobacco TSWV Ocean Optics
USB2000 spectrometer 450–850

475.22, 489.37,
524.29, 539.65,
552.82, 667.33,
703.56, 719.31,
724.31, 758.39

greenhouse [101] Bulgaria

2015 tomato late blight,
early blight

Specim Imspector
V10E spectrograph

combined
with camera

400–1000 442, 508, 573,
696, 715 lab [102] China

2017 tomato gray mold

Specim Imspector
V10E spectrograph

combined
with camera

380–1023 655, 746,
759–761 lab [103] China

2017 tomato yellow leaf
curl

Specim Imspector
V10E spectrograph

combined
with camera

450–1000
560–575,
712–729,
750–950

lab [91] China

2017 tobacco TMV

Specim Imspector
V10E spectrograph

combined
with camera

450–1000

697.44, 639.04,
938.22, 719.15,
749.90, 874.91,
459.58, 971.78

lab, greenhouse [107,108] China

2018 tomato
late blight,
target and

bacterial spot

Spectra Vista SVC
HR-

1024 spectrometer
350–2500

445, 450, 690,
707, 750, 800,

1070, 1200
lab [92] USA

2018 tomato TSWV

Specim Imspector
V10E spectrograph

combined
with camera

400–1000 700–1000 lab [104] Israel
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Table 3. Cont.

Publication Year Culture Treat Equipment Studied Bands Important Bands Study Type Reference Location

2018 potato PVY ASD FieldSpec
4 spectrometer 350–2500 500–900,

720–1300 field [94] USA

2019 tomato late
blight, blackleg

StellarNet Blue
Wave spectrometer 400–1000 not mentioned greenhouse, field [110] UK

2019 tobacco TSWV Surface optics
SOC710VP camera 400–1000 780–1000 lab [106] China

2019 potato PVY Specim
FX10 camera 400–1000 not mentioned field [93] The Netherlands

2019 potato early blight

Specim Imspector
V10E spectrograph

combined
with camera

430–900 550, 680,
720–750 field [95] Belgium

2019 tomato bacterial spot,
target spot

Resonon Pika
L camera 380–1020

408–420,
630–650,
730–750

lab and field [97] USA

2019 pepper early TSWV

Specim Imspector
V10E spectrograph

combined with
a camera

400–1000 700–1000 lab [105] Israel

2019 potato late blight Senop Oy
Rikola camera 500–900 620, 724, 803 field [111] The Netherlands

2020 tomato
yellow leaf

curl,
bacterial spot

Resonon Pika
L camera 380–1020 550–850 lab and field [97] USA

2020 tomato early ToCV
PP Systems

Unispec-
SC spectrometer

310–1100

402.2, 405.5,
412.2, 415.6,
425.7, 429.0,
449.2, 556.4,
559.7, 563.0,
566.4, 676.4,
679.7, 722.9,
726.3, 862.1

lab [109] Greece

2020 potato late blight ASD FieldSpec
4 spectrometer 400–900

439–481,
554–559,
654–671,
702–709

lab [99] Canada

2020 potato late blight ASD FieldSpec
4 spectrometer 660–780 668, 705,

717, 740 lab [100] Canada

2020 potato early late blight,
early blight

Spectra Vista
SVC HR-

1024 spectrometer
350–2500

700, 857, 970,
990, 1100, 1241,

1380,
1890, 2300

lab [112,
113] USA

2.4. Hyperspectral Remote Sensing of Wheat Diseases

In the world’s agriculture, wheat occupies a leading place; it is cultivated almost
everywhere and is of great importance for the population of the entire globe. There are a
number of harmful diseases, mainly of micromicetal origin, affecting this crop, such as scab
caused by Fusarium graminearum and other Fusarium spp., yellow rust caused by Puccinia
striiformis, brown rust caused by Puccinia triticina, powdery mildew caused by Blumeria
graminis f. sp. tritici and others, which can cause serious losses to the yield [114–116].
Due to the importance of wheat there are many articles dedicated to the detection of its
diseases with HRS. In this this review, we concentrate on articles describing the most
researched diseases of one crop, namely wheat Fusarium head blight (FHB) and wheat
yellow rust (YR).

FHB or scab is a serious disease of cereal crops, such as wheat, rye, barley and oat,
that may also affect other crops [117,118]. Affected grains rapidly lose mass and shrink,
which results in high crop losses and quality reductions [119–121]. Fusarium genus fungi
may produce dangerous mycotoxins that are harmful for humans and animals. These
mycotoxins accumulate in living organisms and can enter the human diet along the food
chain [122,123]. Due to the high economic and health harmfulness of this disease, it is
very important to detect it at the early stages in order to apply timely and proper control
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measures. There are many species in the Fusarium genus, and their influence on host plants
differs significantly in different environments, complicating the task of determining them.

The studies on determining FHB on wheat using HRS have been undertaken by a
number of research teams from different countries. Delwiche et al. first studied the detection
of FHB in three different wheat cultivars: Grandin, Gunner and oxen, reaching detection
83–98% accuracy. The models developed for just one variety were useless when applied
to other varieties [124]. Barbedo et al. determined FHB (F. graminearum and F. meridionale)
on wheat kernels with over 91% accuracy [125]. Mahlein et al. studied the F. graminearum,
isolate S.19 and F. culmorum isolate 3.37 infestation on seven different wheat cultivars
that had different resistances to the disease: Thasos, Triso, Passat, Scirocco, Chamsin,
Taifun and Sonett (Descriptive List of Varieties, Bundessortenamt, Germany 2017). Using
SVM, it was possible not only to differentiate between healthy and infected samples with
accuracies of more than 76%, but to differentiate between F. graminearum and F. culmorum.
The authors found it possible to use HRS for wheat FHB resistance phenotyping [126,127].
Ma et al. applied CWA in the detection of F. graminearum and obtained an overall accuracy
of 88.7% [128]. Huang et al. obtained a detection accuracy of 75% with SVM optimized
with a genetic algorithm, using correlation analysis and wavelet transform for the selection
of important bands, vegetation indices and wavelet features [24]. Zhang et al. developed
a new Fusarium disease index (FDI) after determining the best index from the existing
indices with PLS regression, reaching 89.8 accuracy in detecting F. graminearum [129,130].
Whetton et al. studied FHB in the laboratory and field in the wheat cultivar Solstice, using
PLSR to determine FHB from yellow rust in wheat and barley [131,132].

Baurigel et al. determined F. culmorum at early stages on wheat cultivar Taifun. The
diseased and healthy wheat ear tissues spectra were differentiated with PCA. The authors
noticed that spectral changes during disease development were based on variations in
the content of carotenoids (500–533 nm) and, especially, that of chlorophylls (560–675 nm
and 682–733 nm). Furthermore, spectral variations in the range of 927–931 nm reflected
differences in the tissue water contents of healthy and diseased plant tissues. It was
mentioned that the detection of FHB in the earliest stages is impossible due to missing
symptoms. However, it was possible to detect FHB in later stages with the SAM method,
with 91% accuracy. The mean detection accuracy was 67% during the whole study period
(BBCH 65–89) [133].

Yellow rust (YR), in cereals, is a dangerous disease that can result in more than 60%
yield shortage from outbreaks. The causative agent of YR is the mushroom Puccinia
striiformis west, which affects more than 20 species of cultivated and wild cereals, including
wheat, rye, triticale, barley and others. Until recently, the disease was of regional importance
throughout the world. In 2000, the area of the pathogen expanded and its harmfulness
increased [134–137]. Presently, YR epidemics can lead to extremely severe crop losses. It is
very important to detect YR at the early stages in order to apply timely and proper control
measures [138,139].

There are many studies dedicated to determining YR in wheat using HRS that have
been undertaken by a number of research teams from different countries. Huang et al. used
PRI to detect yellow rust in three different wheat cultivars, Jing 411, 98–100 and Xuezao,
all differently resistant to yellow rust [140]. Zhang et al. studied another three cultivars,
Jingdong8, Jing9428 and Zhongyou9507, and analyzed the relationship between nutrient
stress and yellow rust injury, resulting in PhRI being the only index sensitive to yellow
rust disease at all growth stages [141]. Krishna et al. used PLS, ANOVA and MLR to
determine important bands and detect yellow rust with 92–96% accuracy. It was shown
that the wheat crops affected by yellow rust have various symptoms and distinct spectra
as compared with healthy ones [142]. Zhang et al. applied DCNN and RF to UAV data,
wherein identification of the diseased and healthy plants was done by assessing NDVI data,
reaching an overall accuracy of 85% [143]. Guo et al. used SVI (NRI, PHRI, GI and ARI) and
spectral and textural features of hyperspectral images for YR detection in the wheat cultivar
Mingxian 169, which is moderately susceptible to YR. The important bands were selected
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with SPA. During the research of wheat YR with UAV, the spatial resolution had lesser
influence in the SVI methods, but significantly influenced the TF-based methods. The total
YR detection accuracy in both studies was up to 95.8% [144,145]. Whetton et al. studied
YR in the laboratory and field on the wheat cultivar Solstice using PLSR to determine FHB
from yellow rust in wheat and barley [131,132].

The early detection of wheat YR was achieved by Bohnenkamp et al. who used two
platforms with two different hyperspectral cameras: a ground-based vehicle (1–2-m height)
and an UAV (20-m height). The data from the JB Asano cultivar, susceptible to YR, and
the Bussard cultivar were analyzed with SAM and SVM to detect wheat YR. The most
interesting moment in this study was the comparison of the hyperspectral data of the wheat
canopy at the ground and UAV scales [146]. In another study Bohnenkamp et al. considered
an interpretable decomposition of a spectral reflectance mixture under controlled laboratory
conditions, studying a method of detecting and distinguishing between brown rust and
yellow rust on the leaves of the wheat cultivars Taifun and Catargo. In this study, the
authors took a very interesting approach to detecting spectral portraits of the pathogens
themselves, studying the possibility of detecting YR uredinium on the surface of a wheat
leaf, which made it possible to detect the disease at an early stage [147].

Zheng et al. were also able to solve the problem of early YR detection, continuing the
research from [140] on the cultivars Jing 411, 98–100 and Xuezao, each differently resistant
to yellow rust, by evaluating multiple different SVIs with LDA. Among those indices,
SIPI, PRI, NDVI, PSRI, ARI, MSR, GI and NRI showed great potential for discriminating
yellow rust disease in different growth stages, and PRI (570-, 525-, 705-nm ranges) for
the early-mid stage and ARI (860-, 790-, 750-nm ranges) for the mid-late growth stage,
were selected as the best spectral indices for monitoring yellow rust disease in wheat, with
up to 93.2% classification accuracy [148]. A systematization of the reviewed materials is
presented in Table 4.

Table 4. Wheat disease early detection by HRS.

Publication Year Culture Treat Equipment Studied Bands Important Bands Study Type Reference Location

2000 wheat fusarium

Specim Imspector V9
spectrometer

combined
with camera

425–860 not mentioned lab [124] USA

2011 wheat fusarium

Specim Imspector
V10E spectrograph

combined
with camera

400–1000
500–533,
560–675,
682–733

lab and field [133] Germany

2015 wheat fusarium

Headwall Photonics
Hyperspec Model

1003B-10151
spectrometer

combined with
a camera

520–1785 1411 lab [125] Brazil

2018 wheat fusarium
Specim Imspector

V10E and ImSpector
N25E spectrographs

400–1000,
1000–2500

430–525,
560–710,

1115–2500
greenhouse [126,127] Germany

2018 wheat fusarium,
yellow rust

Gilden
Photonics camera 400–1000 650–700 lab, field [131,132] UK

2019 wheat fusarium ASD FieldSpec
Pro spectrometer 350–2500 471, 696, 841,

963, 1069, 2272 field [128] China

2019 wheat fusarium Surface optics
SOC710VP camera 400–1000 447, 539,

668, 673 field [129] China

2020 wheat fusarium Surface optics
SOC710VP camera 400–1000 560, 565, 570,

661, 663, 678 field [130] China

2020 wheat fusarium ASD FieldSpec
Pro spectrometer 350–2500

350–400,
500–600,
720–1000

field [24] China
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Table 4. Cont.

Publication Year Culture Treat Equipment Studied Bands Important Bands Study Type Reference Location

2007 wheat yellow rust ASD FieldSpec
Pro spectrometer 350–2500 not mentioned field [140] China

2012 wheat yellow rust ASD FieldSpec
Pro spectrometer 350–2500 not mentioned field [141] China

2014 wheat yellow rust ASD FieldSpec
Pro spectrometer 350–2500 428, 672, 1399 field [142] India

2019 wheat yellow rust ASD FieldSpec
Pro spectrometer 350–1000 460–720, 568–709,

725–1000 field [148] China

2019 wheat yellow rust

Specim ImSpector
PFD V10E camera,

Senop Oy
Rikola camera

400–1000,
500–900

594, 601, 706, 780,
797, 874, 881 field [146,147] Germany

2019 wheat yellow rust Cubert S185 camera 450–950 not mentioned field [143] China

2019 wheat yellow rust
Headwall Photonics

VNIR imaging sensor,
Cubert S185 camera

400–1000 538, 598, 689, 702,
751, 895 lab, field [144,145] China

2.5. Hyperspectral Remote Sensing of Other Crops and Their Diseases

A number of articles devoted to the early detection of diseases in various crops
should also be mentioned, if without detailed analysis. These articles describe the de-
tection of diseases such as: red leaf blotch on almond caused by Polystigma amygdal-
inum [149]; black sigatoka on bananas caused by Mycosphaerella fijiensis [150,151]; barley
blast caused by Magnaporthe oryzae [152]; grapevine leafstripe [153]; grapevine leafroll
caused by Grapevine leafroll-associated virus 3 [154]; verticillium wilt of olive caused by
Verticillium dahliae [155,156]; Xylella fastidiosa disease on olive trees [157]; peanut early leaf
spot caused by Cercospora arachidicola S. Hori and late leaf spot caused by Cercosporidium
personatum [158]; peanut bacterial wilt caused by Ralstonia solanacearum [159]; charcoal rot
on soybean caused by Macrophomina phaseolina (Tassi) Goid [160] and corn leaf spot caused
by Phaeosphaeria maydis (Henn.) [161].

2.6. Summary

The reviewed works prove the possibility of detecting oil palm [36,50–57,63–66],
citrus [73–78], Solanaceae family crops [91–103] and wheat [24,124–132,140–145] diseases
using HRS.

The possibility of detecting oil palm [58–60], citrus [79–82], Solanaceae family crops [104–113]
and wheat [133,146–148] diseases at an asymptomatic, early stages was also proved.

Due to the peculiarities of oil palm and citrus crops, most of the experiments concern-
ing these cultures were carried out in the field, except the research from Azmi et al. [60],
which was conducted in a greenhouse under constant conditions, and of Li et al. [76] and
Weng et al. [78], who conducted laboratory tests.

From Table 1 and the articles cited [56,57,60], it can be concluded that the most con-
venient range for detecting oil palm diseases is the interval from 600 to 950 nm, in which
most of the authors’ were able to confidently determine the symptoms of oil palm diseases,
including those in early stages. However, a strong scatter in the definition of important
waves in various works allows us to conclude that there are unaccounted factors influenc-
ing their manifestation and thus selection. The specific BSR disease progression and its
control methods also can influence the research direction. Therefore, it might be interesting
to collect more data from oil palm seedlings in nurseries, laboratories and greenhouses, to
avoid planting diseased seedlings.

From Table 2 it is obvious that the spread of the important waves for determining
the diseases of citrus plants is even greater than in the case of the oil palm. The reason
may be the physiological difference caused by the varietal diversity of citrus crops and
various abiotic factors, which are mentioned in [76,78]. The study [78] describes the
differences in the spectral portraits of different citrus cultures and the possibility of using
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the classification model developed for the Satsuma cultivar for HLB detection in the
Ponkan cultivar by calibration model transfer. It would be interesting to apply similar
technologies to other varieties of citrus fruits and other crops for which it is possible to
identify diseases using HRS. It would also be interesting to conduct studies comparing the
spectral portraits of different varieties and species of citrus fruits and detecting their abiotic
stresses using a hyperspectral camera. A study of not only citrus tree canopies but also the
citrus fruits themselves, as in the work of Qin et al. [162], is perhaps also an interesting and
promising direction.

From Table 3, we can conclude that, at the moment, it is difficult to identify universal
band ranges associated with certain diseases of Solanaceae family plants, even in the same
culture. This may be related to the observations mentioned in [112,113], that the spectral
responses from different cultivars are highly variable and that the host genotype has a
significant impact on spectral reflectance, and, thus, on the biochemical and physiological
traits of the plants undergoing pathogen infection. It is noteworthy that, in study [110], the
authors did not mention the differences between spectral responses from the different culti-
vars that they describe. Meanwhile, judging by the data from [163], the described cultivars
have phenotypical differences, which, theoretically, should entail a difference in the types
of chlorosis caused by the studied diseases and, accordingly, in their spectral responses.
These facts open up a large field for further studies of diseases in Solanaceae crops using
HRS. It is probably necessary to pay more attention to the study of plants’ phenotyping and
abiotic stress diversity using HRS, in order to subsequently facilitate the task of identifying
those band ranges that are important for the early detection of Solanaceae-infecting diseases.
We also believe that the search for patterns in spectral responses from different cultivars
should start from those most similar in genotype and phenotype, thereafter studying more
different ones. It will probably be possible to create data processing algorithms for the
adaptation of ANNs trained on certain cultivars of Solanaceae crops to other varieties, dif-
ferent from them, as mentioned in [78]. It would be expedient to focus efforts on laboratory
research and industrial greenhouses, since this will eliminate or significantly reduce the
influence of abiotic factors on experiments, which, in the future, will create a basis for
obtaining stable, repeatable results in field experiments.

From Table 4 we can see that, at the moment, as in the case of Solanaceae it is difficult to
identify universal band ranges associated with certain diseases of wheat. It should be noted
that in articles dedicated to wheat disease detection with HRS from all other crops, the
authors pay the greatest attention not only to the variety of cultivars of the studied culture,
but also to the factors of plant resistance and pathogen diversity and take into account their
possible influences on the results of their experiments [124–127,131–133,140,141,145–148].
We also want to note an interesting approach to detecting the spectral portraits of YR
pathogens themselves, described in [147]. In general, the analysis of articles devoted to
wheat diseases—As the most studied crop—Allowed us to finally identify the main gaps in
the field of early detection of plant diseases with HRS.

3. Discussion

We believe that, due to the lack of interaction between specialists in engineering and
biology, there is a significant gap in the scientific basis for planning an experiment to use
remote sensing data in determining plant state. Although the review above demonstrates
the practical possibility of late and early detection of plant diseases using HRS, it also
reveals differences in the technical results (range of important bands) between researchers,
which indicates an insufficient study of the experimental methodology, as can be seen
from Tables 1–4.

As a result of hyperspectral remote sensing, for each pixel of a scene, we get a random
vector, which can be considered the result of a random experiment. The outcome of a
random experiment can be favorable or unfavorable, which is associated with the detection
or non-detection of a disease in the space reflected by a particular pixel. Accordingly,
these vectors can be processed by methods developed in the theory of probability and in
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mathematical statistics, which make it possible to effectively determine the characteristics
of a random experiment. In this case, the tasks of data normalization and the allocation
of those frequency bands (important bands) that make the greatest contribution to the
outcomes of experiments (favorable or unfavorable) and, accordingly, are the most in-
formative for identifying diseases, can be solved. The selection of important bands is a
critical step in the detection of plant diseases using HRS. As a rule, data normalization is
carried out first to get rid of noise. Then, various algorithms are applied to identify im-
portant bands, such as Savitzky–Golay filtering [50,51,58,81–83,99,100,109,131,132,147]; the
Mann–Whitney U test [52,54]; coefficient of variation [60]; PCA [74,76,79,92,95,99,109,133];
SPA [78,102,106–108,144]; GA and BRT [106]; SAM [112,113,129,146].

The listed algorithms make it possible to achieve the determination of important bands.
Various methods of machine learning allow achieving a fairly high accuracy in identifying
diseases (between 60 and 95% accuracy) based on those data. However, from Tables 1–4,
we can conclude that even under very similar experimental conditions—For example when
studying oil palms—Different sets of important bands are obtained at the output, often
with a spread of more than 100 nm [52–60]. Xie et al., in [103], used five different algorithms
to select important bands, taken from five different studies: t-test [164], Kullback–Leibler
divergence [165], Chernoff bound [166], receiver operating characteristics [167] and the
Wilcoxon test [168]. It is noteworthy that, in 4 tests out of 5, only 1 frequency out of
15 matched closely. In this case, the scatter of the ranges of all initially selected important
bands was in the range from 400 to 850 nm, (400, 402, 403, 411, 413, 418, 419, 420, 422,
473, 642, 690, 722, 756 and 850 nm), i.e., practically in the entire range of the used sensor
(380–1020 nm).

Based on the data from Tables 1–4, we assume that, in the experiments on the same
section of a field, repeated in different years or seasons, different important bands will likely
be allocated when using automatic selection methods. Unfortunately, at the moment it is
not possible to test this theory, since there are very few articles in which such experiments
would be described.

Summarizing the topic of choosing the important bands for plant disease detection,
we assume that it would be logical to focus on studying the bands of biochemical changes
occurring in diseased plants and screening out the bands not related to the given disease,
rather than using machine learning.

To successfully conduct the biological component of experiments on the HRS of plant
diseases, it is necessary to understand that plant diseases are a particular case of plant stress.
Plant diseases are processes that occur in plants under the influences of various reasons
and which lead to their oppression and decreased productivity. Plant diseases are divided
into two main groups: infectious and non-infectious [29,30]. The infectious plant diseases
are caused by microorganisms (mainly fungi, bacteria, viruses and nematodes) or parasitic
plants. The non-infectious diseases can be caused by genetic disorders or physiological
metabolic disorders resulting from unfavorable environmental conditions [29,30]. Plant
diseases almost always have visible symptoms that we can observe in a certain spectral
range. In their early stages, such symptoms appear in the form of various chloroses or, less
often, necrosis or pustules, with a huge variety of manifestations [169,170]. In the case of an
asymptomatic course of the disease in its early stages, for example barley Ramularia disease
caused by Ramularia collo-cygni [171], Fusarium head blight of different cereals caused by
Fusarium culmorum [133] or soybean Sudden death caused by Fusarium virguliforme [172],
early detection by remote sensing can be challenging.

Plant stress is a state of the plant in which it is influenced by unfavorable abiotic (light,
heat, air, humidity, soil composition and relief conditions) and biotic factors (phytogenic,
zoogenic, microbogenic and mycogenic). Plant responses to both abiotic and biotic stress
is usually complex and includes both nonspecific (common for different stressors) and
specific components. In a state of stress plants stop their growth, sharply reduce the
activity of their root systems and reduce the intensity of photosynthesis and protein
synthesis [173–175]. In a significant number of stressful situations, an immune response
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causes an increase of certain metabolites content, such as jasmonates or salicylates [175–180].
These reactions can be detected using hyperspectral sensors [181–188]. The study of
plant stress using hyperspectral sensors is presented in a number of works [189–191],
including those comparing the spectral portraits of plants simultaneously exposed to biotic
and abiotic stress [192–195]. It is necessary to take into account many abiotic factors in
addition to the possible influence of pathogens to accurately determine the reasons for stress
manifestation [59,60,63,73,78,92,98,112,113,124,126,127,133,141]. Our analysis indicates that
there is no unified methodology for conducting hyperspectral studies of plant diseases that
takes into account the influence of abiotic factors. That is why we believe it is best to carry
out experiments in laboratory conditions or in industrial greenhouses in order to partially or
completely eliminate abiotic factors. Attempts to create various mobile vehicles operating
at ground level whose purpose is to replace natural light sources with artificial light when
using hyperspectral sensors in field experiments are described in [73–75,92,94,123]. This
solves one of the main problems associated with the inhomogeneity of the solar spectrum
due to changing weather conditions. Nevertheless, this approach cannot completely solve
the problem of the influence of abiotic factors.

It would also be interesting to continue studies describing the definition of the phe-
notype and/or genotype of a plant and its influence on changes in the spectral portrait
thereof [196–201]. Several studies reviewed describe that the host plant genotype has a
significant impact on spectral reflectance and on the biochemical and physiological traits
of the plants undergoing pathogen infection [76,78,110–113,124,126,127,140,141,147,148].
Therefore, it is very important to indicate the culture and cultivar of the studied plants. The
exact indication of pathogens used for inoculation is also very important. We believe that
comparisons of the spectral portraits of plants of different cultivars of the same crop is a
primary task in creating a general methodology for detecting plant diseases using hyper-
spectral sensors. It is possible that the influence of chlorophyll fluorescence on the spectral
portraits of plants and their related SVI may be a significant contribution to the solution
of this problem [155,202–205]. Success in this area may allow the creation of patterns for
determining phenotypes and plant cultivars within one crop, which will become the basis
for a database of hyperspectral portraits of plants.

If we can confidently detect different types of plant stresses and distinguish plants
infected with pathogens from healthy one and/or those affected by abiotic stresses, we can
study the influence of the genotypic characteristics of a pathogen on the spectral profile of
an infected plant. To do this, it is necessary to identify the differences between plants of
the same phenotype as affected by pathogens with different genotypes. Since, for many
pathogens, primarily micromycetes, the intrageneric and even intraspecific diversity is
extremely high, it is necessary to investigate the possible differences in the spectral manifes-
tations of symptoms, for example, between different species of fungi of the genus Fusarium
or between different races of the brown rust pathogen (Puccinia triticina). The aim of such ex-
periment will be to study the effect of the phenotypic and genotypic diversity of pathogens
on the variability of spectral portraits of host plants. The visual manifestations of symptoms
of yellow rust (Puccinia striiformis) caused by different races or different strains of Fusarium
graminearum are often very similar. In the early stages of the disease, chlorosis caused by
pathogens of different species may have similar spectral portraits, which become more
distinguishable in the later stages of the disease, and, thus, is also an important direction for
research [91,92,96,97,102,103,110–112,125–127,131,132]. The influence of plant resistance
on the symptomatology of pathogenesis and works describing the difference in the data
obtained in such cases is also worth mentioning [110–113,126,127,132,140,141,144–146,148].
The determination of resistant cultivars using hyperspectral sensing is also a promising
area of research with great applied potential [126].

One more direction, which is important for the early detection of plant diseases using
HRS, is the study of spectral portraits of pathogens themselves. Unfortunately, this is
only possible for a small number of diseases, such as wheat powdery mildew caused by
Blumeria graminis and wheat yellow rust of wheat caused by Puccinia striiformis, which
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show characteristic external symptoms in the early stages. Usually, these are diseases of
fungal origin, where the object of detection is micromycete mycelium or spores on the leaf
surface of a diseased plant. Disease detection by this method is considered in the example
of wheat yellow rust, using pure fungal spore spectra as reference [147].

Pest control is also an important aspect of plant protection. We hypothesize that
HRS can also be used to early detect such dangerous pests as the Colorado potato beetle
(Leptinotarsa decemlineata), sunn pest (Eurygaster integriceps) [206], or western corn rootworm
(Diabrotica virgifera virgifera), using spectral portraits of imago and different ages of larvae.
Currently, a small number of works have been published on this topic [191,206–210], but
we consider this direction to be very promising, especially for use in industrial greenhouses.
Another possible direction of research is the detection of local outbreaks of pests outside
farmlands, for example, locusts (Acridoidea) or beet webworms (Loxostege sticticalis), in
order to eliminate them early before these pests can cause damage to yields.

We believe that the effect of biochemical changes in plant tissues is critical for the
early detection of plant diseases using passive sensors. The reflectance of light from plants
leaves is dependent on multiple biophysical and biochemical interactions. The VIS range
(400–700 nm) is influenced by pigment content. The NIR range (700–1100 nm) is influenced
by leaf structure, internal scattering processes and by the light absorption by leaf water. The
SWIR range (1100–2500) is influenced by chemicals and water composition [196,211–216].

The most investigated areas in this topic are the determination of changes in the
content of water, nitrogen (N) in plants, as well as of chlorophyll or carotenoids, us-
ing various SVIs, which can be used to detect plant diseases. These techniques can be
used to determine the nitrogen content of plants [217–219] and to detect plant stresses
and diseases [56,57,78,220–222], including the early detection of plant diseases and pest
infestations [147,154,156,157,223].

The topic of detecting individual chemical elements or chemical compounds, including
volatiles, in plants is a less studied problem. In plant physiology, such elements are of great
importance, such as nitrogen (N), one of the key components for chlorophyll; phosphorus
(in the monovalent orthophosphate form H2PO4

−), a key macronutrient; potassium (K+),
influencing leaf color; calcium (Ca2+), which plays a fundamental physiological role in leaf
structure and signaling; magnesium (Mg2+), an essential macronutrient for photosynthesis
(as it is the central atom of chlorophyll); sulfur (S), in the form of sulfate; iron (Fe2+ or Fe3+),
copper (Cu2+), manganese (Mn2+) and zinc (Zn2+), which are essential elements for plant
growth and components of many enzymes; and the ions responsible for salination: Na+,
K+, Ca2+, Mg2+ and Cl− [216]. The detection of these elements by HRS can be a key factor
for identifying plant diseases at an early stage, since plant diseases are accompanied by
a deficiency of some of the listed elements, which is the cause of chlorotic and necrotic
changes in plant tissues [216]. Unfortunately, this task is difficult and poorly studied, but
the following works prove the possibility of determining the chemical composition of plants
in the VIS, NIR and SWIR ranges. Pandey et al. detected a wide range of macronutrients,
namely N, P, K, Mg, Ca and S, and micronutrients, namely Fe, Mn, Cu and Zn, in maize
and soybean plants [224]. Zhou et al. detected cadmium (Cd) concentrations in brown
rice before harvest [225]. Ge et al. tried to analyze chlorophyll content (CHL), leaf water
content (LWC), specific leaf area (SLA), nitrogen (N), phosphorus (P) and potassium (K) in
maize using different SVIs but succeeded only with CHL and N [226]. Hu et al. proved to
determine the content of Ca, Mg, Mo and Zn in wheat kernels [227].

The most difficult and interesting direction is the detection of the content of not in-
dividual elements, but more complex chemical compounds using HRS. As an example of
such works, one can cite the articles by Gold et al., where the mechanisms of physiological
changes in potato plants were considered when inoculated by Alternaria solani and Phytoph-
thora infestans pathogens in the analytical example of the contents of foliar nitrogen, total
phenolics, sugar and starch [112,113]. Fuentes et al. monitored the chemical fingerprints of
different leaf samples and studied the correlation of aphid numbers in wheat plants with
the presence and quantity alcohol, methane, hydrogen peroxide, aromatic compounds and
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amide functional groups compounds [228]. The paper [228] presented results on the imple-
mentation of SWIR HRS (1596–2396 nm) and a low-cost electronic nose (e-nose) coupled
with machine learning. The authors believe that such study of plant physiology models
open their use to assessing models of other biotic and abiotic stress effects on plants. Thus,
the search for plant diseases at early stages using passive sensors, including hyperspectral
ones, should be carried out in three main directions: the search for the characteristic im-
mune response of the host plant to the pathogen, the search for characteristic symptoms of
plant damage by the pathogen or the search for spectral portraits of the pathogen or pest
itself. It is always necessary to take into account other stress factors affecting the spectral
portrait of a diseased plant, which will allow us to accurately determine plant diseases
using passive remote sensing.

Further development of experiment planning should be considered, preferably using
a common methodology, so that there is an opportunity to adequately compare the results.
An experiment tree, which will consider the physiological parameters of the plant should be
designed [229]. All phases of the experiment should be considered and planned in advance,
on the basis of the science of experiment planning, which is sufficiently well developed for
applied physical research, based on the methods of probability theory and mathematical
statistics. The following research phases for each type of sensors should be developed:
laboratory research in deterministic conditions of deterministic parameters; the allocation of
spectral bands responsible for certain parameters of plants (including diseases) in laboratory
experiments; repetition (possibly multiple) of a laboratory experiment to collect statistics
and validate; transfer of the experiment to field conditions to verify the correctness of the
selected spectral bands. Such planning of experiments and the creation of a methodology
for conducting them fills in the gaps associated with the lack of consideration of such
factors as: different phenotypes of plants and their different spectral responses; various
diseases and also their different spectral responses; the need to create and take into account
a model of light propagation from an irradiating source to normalize hyperspectral imagery
data [229–232].

It would be interesting to see more data comparing datasets collected from the same
crops with different models of hyperspectral sensors. There are several articles that mention
the use of two different sensors during the same experiment [76,80,147], but there is no
data on how sensor model can affect data variability. The different types of hyperspectral
sensors, i.e., spectroradiometers and hyperspectral cameras, have their own strengths and
weaknesses, and experiments are needed to compare the results obtained from their usage.
It is mentioned that a spectrometer device has a limitation when compared with a camera,
where it can only take one reading per time for a small sample point, thus requiring a longer
duration of data collection [60], but this should not affect the outcomes of experiments.
It is assumed that the spectral portraits of plants should be the same regardless of the
sensor model and type, which should allow developing a unified platform for the early
detection of plant diseases. We believe that it is also possible, together with the use of
hyperspectral sensors, to use active sensors in laboratory studies, which are successfully
used to determine plant diseases, such as Raman spectrometers [233,234]. Comparison
of spectral portraits obtained from the same samples using two different types of sensors
may help to understand which factors most strongly affect hyperspectral portraits and to
either make appropriate changes to the experiments or to create algorithms for correcting
hyperspectral portraits. Such approach was used by Mahlein et al. in study [127], wherein
HRS data are compared with those of chlorophyll fluorescence and thermal sensors, and by
Fuentes et al. in study [228], wherein an electronic nose was used to determine the content
of certain volatile chemical compounds to refine the HRS data in a SWIR diapason.

We have summarized the available data in a pivot table (Table 5), from which the
following conclusions can be made. Spectrometers used without a connection to a photo
camera have the least efficiency, both in obtaining a high percentage of detection of diseased
plants and in determining the early stages of diseases. However, when used in conjunction
with a photo camera, their effectiveness increases significantly. Hyperspectral cameras
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have the highest percentage of use for early detection and good results in obtaining a high
percentage of detection of diseased plants. We can conclude that these results indicate
that it is better to use hyperspectral cameras or a combination of a photo camera and a
spectrograph to study plant diseases in the early stages. In the future, it is possible to
switch to using a combination of a photo camera and a spectrograph for practical purposes,
since this solution is economically more profitable.

Table 5. Comparative analysis of hyperspectral remote sensing usage.

Spectrometer Spectrometer with a Camera Hyperspectral Camera

total articles 32 13 16
early detection 8 4 6

total/early ratio 25% 33.33% 37.50%
accuracy > 90% 15 13 11

accuracy > 90%/total
articles ratio 46.88% 100% 68.75%

The topic of HRS under consideration is quite new, so we did not add to this compara-
tive analysis table (Table 5) data on the number of articles in which, from our point of view,
the technical and physical parts of an experiment are correctly stated, which is the subject
of a separate discussion.

We hope that the analysis carried out in this review of the main errors and gaps will
help solve problems regarding experiment planning and undertaking.

The main disadvantage (which should be mentioned separately, since almost all
the articles under consideration contain it) is the lack of repeatability in the experiments
performed. It is critical for scientific validity to run an experiment at least twice. If we are
talking about a field experiment, then a repeated experiment is carried out, as a rule, in the
next growing season. In the laboratory, the experiment is carried out at least twice, and the
test of the effectiveness of training any AI algorithms used by researchers should be carried
out on a second dataset without additional training. Only if such experiment is successful
can we talk about the scientific nature of the results thereof and its success in detecting
plant disease. We also want to repeat the importance of understanding the physiology of
the processes occurring in a diseased plant, since, from our point of view, the chemical
composition of the tissues of diseased plants is of primary importance for the selection
of the ranges of important bands for determining disease. These ranges should be very
similar for phenotypically similar plants of the same species, however, from Tables 1–4 it
can be seen that there are practically no exact matches of important bands. In any case, we
believe that such coincidences are insufficient.

Additionally, as we have mentioned earlier, the methods of analyzing the data obtained
(machine learning, neural networks, statistical analysis, manual analysis), in our opinion,
are only methods of automation that do not make a significant contribution to solving the
problem of the early detection of plant diseases with HRS [90–94,97,105,142,143].

The definition of plant diseases with remote sensing cannot be considered in isolation
from other parameters and related factors—i.e., the phase of plant development, phenotype,
multiple external factors. Therefore, the main task that needs to be addressed when
using hyperspectral imaging for early detection of plant diseases, in our opinion, is the
application of a systematic approach. That is, determining the place in a complex natural–
technical system at which it is necessary to analyze the elements of the system and their
interrelationships within the framework of a specific organizational structure to detect
violations of this structure (that is, plant parameters violations during development).

Summing up our review, we would like to point out the articles that, in our
opinion, best describe certain aspects of this problem in relation to various plant
crops [35,60,76,78–80,104,105,109,110,113,126,127,133,146,147,192,203,213]. We would
especially like to acknowledge the work of a team of authors from the Institute of
Crop Science and Resource Conservation (INRES) Plant Diseases and Plant Protection,
University of Bonn [2,35,126,127,146,147,182,196,197]. We believe that these works are
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the most relevant, the most widely disclosing of the topic and which offer the greatest
number of interesting solutions and new approaches.

4. Conclusions

At the moment, a sufficient number of articles are available in the field of using HRS to
conduct successful experiments for the early detection of plant diseases. From the articles
reviewed, it is also clear that the usage of machine learning methods for early detection
requires a significant HRS source data of plant diseases.

We have made a number of assumptions about possible knowledge gaps preventing
the successful replication of experiments in plant disease detection using HRS. Differences
in spectral portraits can be caused by various abiotic and biotic factors that cause plant
stress. The manifestation of disease can also be influenced by the phenotype or genotype
of the host plant, which determine the level of plant resistance. The presence of a mixed
infection may also be an important factor influencing the spectral portrait. Finally, last but
not least, it is important to understand the biochemical changes that occur within the plant
during stress, in what wave range they manifest themselves and how they may affect the
spectral portrait of the plant.

In terms of technical and physical aspects, it is necessary to consider the propagation
model of sunlight when conducting field experiments or to consider the characteristics of
artificial light sources used when conducting laboratory experiments, because HRS is a
passive remote sensing method that depends on external light-source conditions. Other
technical issues may include the incorrect use of the equipment. The correct calibration
of a hyperspectral sensor or camera is needed for proper data collection. Such calibration
depends on hyperspectral sensor temperature; thus, the equipment must be recalibrated
after some continuous period of work due to its warming during operation. It is best if the
experiment description includes information about the times of day when the HRS data
was obtained.

We have reached the main objective of our study by proving the possibility of early
plant disease detection by hyperspectral remote sensing. Our assumption about the coinci-
dence of important bands for the same diseases and plants is partially proved by the results
of the reviewed articles. From the other side, many of the reviewed articles demonstrate a
mismatch of such bands, which highlights one of the found methodological gaps—That a
model of light propagation in different conditions should be developed to normalize data
obtained thereawith.

The systematization of modern relevant works about the early detection of plant
diseases is present in the Discussion and in Tables 1–5.

In our opinion, the direction of further research should be as follows. To successfully
solve the problem of the early detection of plant diseases using HRS, the joint work of
specialists in plant physiology, phytopathology, plant resistance, phenomics, bioinformatics,
information technologies, system analysis and optics or photonics is required. We also
believe that, at this stage of research development, it is more logical to conduct experiments
in laboratory conditions or in industrial greenhouses of the latest generation, where the
variability of abiotic factors is minimized. The creation of databases of hyperspectral
portraits of plants of various crops and cultivars exposed to the influence of various
pathogens should probably be postponed until the general principles of remote sensing of
plant diseases using HRS are developed to avoid possible confusion.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN artificial neural network
ANOVA analysis of variance
ARI anthocyanin reflectance index
BPNN back propagation neural network
BRT boosted regression tree
BSR basal stem rot
CART classification and regression trees
CBC citrus bacterial canker
CCCV coconut cadang-cadang viroid
CNN convolutional neural network
CWA continuous wavelet analysis
CWT continuous wavelet transform
DCNN deep convolutional neural network
ELM extreme learning machine
FDI fusarium disease index
FHB fusarium head blight
GA genetic algorithm
GAN generative adversarial nets
GI greenness index
GPR Gaussian process regression
HLB huanglongbing (citrus greening)
HRS hyperspectral remote sensing
HIS hue, saturation, intensity
IPM integrated pest management
k-NN k-nearest neighbors algorithm
LDA linear discriminant analysis
LRDSI leaf rust disease severity index
LSM least squares method
LS-SVM least squares–support vector machine
LSTM long-term short–term memory
MLP–ARD multilayer perceptron with automated relevance determination
MLR multiple linear regression
MNF minimum noise fraction
MSR modified simple ratio
MTMF mixture tuned matched filtering
NBNDVI narrow-band normalized difference vegetation index
NCA neighborhood component analysis
NDSI normalized difference spectral index
NDVI normalized difference vegetation index,
NIR near-infrared wavelength diapason
NRI nitrogen reflectance index
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OR-AC-GAN outlier removal auxiliary classifier generative adversarial nets
OS orange spotting
PCA principal component analysis
PCoA principal coordinate analysis
PCR polymerase chain reaction
PhRI physiological reflectance index
PLS-DA partial least squares-discriminate analysis
PLSR partial least square regression
RNN recurrent neural network
PRI photochemical reflectance index
PSRI plant senescence reflectance index,
PVY potato virus y
REP red-edge position or red-edge point
RWP red-well point
RF random forest
RVSI red-edge vegetation stress index
SAM spectral angle mapping
SID spectral information divergence
SIPI structural independent pigment index
SMA spectral mixture analysis
SPA successive projections algorithm
SVI spectral vegetation index
SVM support vector machine
SVR support vector regression
SWIR short-wave infrared region
ToCV tomato chlorosis virus
TMV tobacco mosaic virus
TSWV tomato spotted wilt virus
UAV unmanned aerial vehicle
VIS visible wavelength diapason
VIS-NIR visible and near-infrared wavelength diapason
ν-SVR ν support vector regression
XY-F xy-fusion network
YR yellow rust
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