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We examine the dynamic features of non-trivial allosteric 
binding sites to elucidate potential drug binding sites. 
These allosteric sites were previously found to be allosteric 
after determination of the protein-drug co-crystal struc-
ture. After comprehensive search in the Protein Data 
Bank, we identify 10 complex structures with allosteric 
ligands whose structures are very similar to their func-
tional forms. Then, possible pockets on the protein sur-
face are searched as potential ligand binding sites. To 
mimic ligand binding to the pocket, complex models are 
generated to fill out each pocket with pseudo ligand blocks 
consisting of spheres. Normal mode analysis of the elastic 
network model is performed for the complex models 
and unbound structures to assess the change of protein 
dynamics induced by ligand binding. We examine nine 
profiles to describe the dynamic and positional charac-
teristics of the pockets, and identify the change of fluctu-
ation around the ligand, ΔMSFbs, as the best profile for 
distinguishing the allosteric sites from the other sites in 8 
structures. These cases should be considered as examples 
of dynamics-driven allostery, which accompanies signif-
icant changes in protein dynamics. ΔMSFbs is suggested 
to be used for the search of potential dynamics-driven 
allosteric sites in proteins for drug discovery.
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Allosteric drug binding sites have drawn recent attention 
as new types of drug targets. From the early 2000s, a par
ticular type of ligand binding site has been experimentally 
discovered in various proteins through drug discovery re-
search [1]. Ligands of this type of binding site had not been 
recognized as a new type prior to identification of the site. 
These ligands were found to bind the sites distant from func-
tionally important endogenous ligand binding sites, while 
typical drugs directly block such ligand binding sites. This 
new type of allosteric drug binding site can be considered 
as an attractive target to obtain new intellectual property 
and/or to overcome drug resistance. Only a few allosteric 
drug binding sites of this type have been discovered to date, 
because they were typically found by chance using a set of 
expensive experi ments, e.g., the combination of high through-
put screening of a large compound library and determination 
of the complex structure by X-ray crystallography. The suc-
cesses of such experiments are not necessarily guaranteed, 
because they are a matter of chance. Therefore, a theoretical 
prediction method is required to compensate for experimen-
tal difficulties.

To predict the possible ligand binding sites of proteins, 

The dynamic features of non-trivial allosteric binding sites were examined to elucidate potential drug binding sites. 
After comprehensive search in the Protein Data Bank, we identified 10 complex structures with allosteric ligands that 
do not cause significant conformational change. 101 complex models were generated to fill out possible pockets on 
the protein surface and normal mode analysis of the elastic network model was performed to examine the change 
of protein dynamics induced by ligand binding. We found the change of fluctuation around the ligand as the best 
profile for distinguishing the allosteric sites from the others.
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a powerful concept to rationalize allosteric regulation.
In this work, we examine the dynamic characteristics of 

the dynamics-driven allosteric sites in proteins and attempt 
to quantify features common among the allosteric sites by 
analyzing the fluctuation of the simulated proteins. Ligand 
complex co-crystal structures were selected from the Protein 
Data Bank [12] and possible binding pockets on the protein 
surface were searched. Pseudo ligand blocks (PLBs), which 
mimic binding ligands, were generated to fill the pockets. 
Elastic network model (ENM) calculations [13] of the com-
plex models constructed using a protein monomer and a 
PLB were performed to examine the effects of the ligands 
on the protein dynamics. Eight profiles that are expected to 
 describe the characteristics of the allosteric regulation were 
selected and examined. After analyzing the difference among 
the allosteric, active, and other possible ligand binding sites, 
quantities that better discriminated the experimentally iden-
tified allosteric sites were identified. The dynamicsdriven 
allosteric sites can be considered to be structurally sensitive 
to perturbation, which induces significant changes in the pro-
tein dynamics upon ligand binding.

Material and Methods
Selection of dynamics-driven allosteric proteins

In this work, we focused on monomeric proteins without 
significant conformational change upon ligand binding. Pro-
teins that satisfied the following three conditions were se-
lected: 1) the functional unit is monomeric, 2) the allosteric 
site was not known to be functionally important before the 
complex structure was solved, and 3) the regulator is a drug-
like organic compound. In most of the multimeric allosteric 
proteins, large conformational changes occur among do-
mains and ligand binding to the allosteric sites located at the 
domain-domain or protein-protein interface interferes with 
functionally important movement. Thus, we assumed that 
there could be differences in mechanisms between monomer 
allosteric proteins and multimers.

To define the dataset for the analysis, protein structures 
were searched on the RSCB Protein Data Bank (PDB) 
 website [12]. The following three conditions were applied 
to searching queries: 1) Has Ligands, 2) keyword: alloste 
(ric, rically, ry), and 3) Resolution: ≤ 2.5 angstrom. 890 
allosteric cocrystal structures that satisfied the three 
 criteria were selected from the PDB website: “Has Ligands”, 
“keyword: allosteric” and “Resolution: ≤ 2.5 angstrom”. The 
PDB was retrieved on May 8th, 2012. 4326 ligands con-
tained in these co-crystal structures were also downloaded in 
SMILES form. The obtained structures were further screened 
using three additional conditions applied to all including 
 ligands with Pipeline pilot [14]: 1) organic compounds,  
2) druglikeness to meet the Lipinski’s Rule of five [15], and 
3) Molecular weight: >200. Among the 4398 ligand struc-
tures constructed, 3376 ligands survived the applied first two 
conditions. The third condition was applied to eliminate 

many different profiles, e.g., shape of the pockets, amino 
acid composition, and binding free energy, have been exam-
ined. Ming et al. proposed a dynamics perturbation analysis 
(DPA) algorithm to predict functional sites in protein struc-
tures [2–4]. The regions where interactions cause a large 
change in the protein conformational distribution were found 
using relative entropy. They succeeded in predicting 267 
binding sites out of 305 proteins [2] from the GOLD [5] 
docking test set [6]. They also analyzed a functionally 
 allosteric protein, trypsinogen, using a method similar to 
DPA and concluded that relatively strong communication 
between the regulatory and active sites was evident [4]. 
 Demerdash et al. used a support vector machine to distin-
guish allosteric sites of functionally allosteric enzymes, tran-
scription factors, and signal transduction proteins [7].

Allostery comes from the Greek allos+steric (other+ 
space), which indicates the regulation of reactions by ligand 
binding to a site distant from the active site. Allostery has 
been studied for a long time and was found to widely regu-
late enzymatic reactions and signal transductions. To under-
stand the complexity of allostery, the following four aspects 
are typically considered. 1) Protein structure: classic exam-
ples of allostery have been found in multimeric proteins, 
such as in the well-known Monod-Wyman-Changeux (MWC) 
[8] or KoshlandNémethyFilmer (KNF) [9] models, whereas 
allostery is now recognized as a property observed in mono-
meric proteins as well as in the multimeric protein. 2) Con-
formational change: Tsai et al. classified allosteric protein 
structures that do not involve a change of backbone shape 
[10]. According to their analysis, some proteins do not sig-
nificantly change their conformation with the binding of 
 allosteric ligands. In some kinases, well-known allosteric 
sites are formed with conformational change of the loop near 
the active site. 3) Effect: Two opposite methods of regula-
tion, positive or negative, depending on whether the effecter 
increases or decreases the ligandbinding affinity of the pro-
tein. 4) Regulator: The ligands can be either homotropic or 
heterotropic, and either small compounds or proteins. Homo-
tropic is where the allosteric ligand (modulator or effecter) is 
identical to the active site ligand, whereas heterotopic is 
where the ligands are different. Not only small compounds, 
but also proteins are known as allosteric ligands. In this 
 respect, protein-protein interaction as well as protein-small 
compound interaction should be included in allosteric regu-
lation.

In 2004, Gunasekaran et al. stated that allostery is not 
 limited to well-known oligomeric proteins, but is more 
likely to be found as an intrinsic property of all proteins, and 
that structural perturbation at any site could lead to redis-
tribution of the conformational sub-states [11]. This concept 
is based on the idea that allosteric ligands do not necessarily 
cause large structural changes, which suggests tight coupling 
between allosteric ligand binding and the change induced in 
the protein dynamics. Redistribution of a protein conforma-
tional ensemble, referred to as dynamics-driven allostery, is 
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cause these allosteric sites do not exist in either the active 
site co-crystal or the apo structures. Of note, the allosteric 
site of p38 MAP kinase.1 overlaps with the active site, be-
cause the allosteric sites were formed by the conformational 
change around the active site. In the other cases, the  allosteric 
sites are distant from the active sites.

The structures of the selected proteins bound to the al-
losteric ligands are very similar to those of the active site 
complexes, i.e., RMSD are around 1 Å or smaller (Table 1). 
This indicates that the allosteric effects on these proteins are 
not evident from the structure change only but are rather ex-
pected to be related to the change in protein dynamics (Fig. 
1A, B). Therefore, we examined the effects of the ligand 
binding on protein dynamics in this work.

Elastic network model
The effects of the ligand binding were analyzed by the 

elastic network model (ENM) and normal mode analysis. 
ENM is a coarse-grained model for proteins [13] in which all 
the interactions between pairs of heavy atoms within a cutoff 
distance are approximated by the harmonic potential and the 
protein dynamics are described by normal modes as a linear 
combination of harmonic oscillators.

In this work, the ENM was employed to analyze protein 
fluctuations for the following two reasons. Firstly, the ENM 
is suitable to observe the dynamic effects of a protein with a 
simple and fast calculation [13]. In ENM, collective normal 
modes are determined only by diagonalization of a Hessian 
matrix of the potential energy. A more accurate molecular 
dynamics (MD) approach is much more time consuming, 

 typical nonspecific ligands. Finally 736 cocrystal structures 
were obtained. These were classified into 179 UniProt fami-
lies and subsequently eliminated as “functionally allosteric 
protein”, “oligomeric protein” and those structures without 
reference papers, which resulted in the selection of 9 co 
crystal structures. One additional structure of p38 MAP 
 kinase, p38 MAP kinase.2 hereafter (PDB ID: 3HVC [16]), 
was also found when p38 MAP kinase.1 (PDB ID: 1KV1 
[17]) was investigated. Although the ligand is not explicitly 
described as allosteric, this was determined to be the case 
after examining the structure and the original paper [16]. In 
each case, it was confirmed that the ligand was bound to a 
site different from the active site by comparing the PDB 
 entries with identical UniProt IDs. Thus, a total of 10 struc-
tures were selected for this work (Table 1); Nine enzyme 
and one receptor  protein structures comprised of 8 distinct 
proteins. The co- crystal structures with known active site 
 ligands were also collected. Two new allosteric sites were 
found for HCV NS5B (HCV NS5B.1 and HCV NS5B.2, 
hereafter) and p38 MAP kinase (the aforementioned p38 
MAP kinase.1 and p38 MAP kinase.2). Only one receptor 
protein in the dataset is an androgen receptor that contains 
hormone-like compounds in the cofactor site. Large collec-
tive conformational change upon ligand binding (hinge 
bending) was found only in glucokinase (see root-mean-
square deviations, RMSD, in Table 1). Glucokinase is also 
the only protein where the ligand functions as an activator. 
In the cases of HCV NS5B.2 and p38 MAP kinase.1, partial 
conformational change is supposed to induce the formation 
of a new allosteric binding pocket upon ligand binding be-

Table 1 Selected proteins co-crystallized with allosteric ligands

Type Proteina UNP Ligand  
Activity

# of  
complex  
models

RMSDa from  
apo  

structure  
(Å)

RMSDa from  
active site  
complex  

(Å)

Enzyme GlmU [29]  
(2VD4)

P43889 18 μM (IC50) 5 0.21
(2V0H)

0.15
(2V0J)

glucokinase [32]  
(1V4S)

P35557 Activate 15 fold  
at 1 μM

8 9.2
(1V4T)

0.74
(3IDH)

HCV NS5B.1 [33]  
(2HWI)

P26663 3 μM (IC50) 18 0.48
(1C2P)

0.37
(3BSC)

HCV NS5B.2 [30]  
(2BRK)

P26663 26 nM (IC50) 20 1.1
(1C2P)

1.1
(3BSC)

CK2 [34]  
(3H30)

P68400 40 μM (Ki) 8 1.1
(1NA7)

1.2
(1JWH)

p38 MAP kinase.1 [17]  
(1KV1)

Q16539 5900 nM (IC50) 11 1.2
(1WFC)

1.1
(1ZYJ)

p38 MAP kinase.2 [16]  
(3HVC)

Q16539 600 nM (IC50) 10 1.4
(1WFC)

0.77
(1ZYJ)

TEM1 [35]  
(1PZP)

P62593 490 μM (Ki) 7 0.94 
 (1YT4)

0.93
(1AXB)

PTP1B [36]  
(1T48)

P18031 350 μM (IC50) 7 0.86
(3SME)

0.96
(2CM7)

Receptor Androgen receptor [37]  
(2PIP)

P10275 Lowaffinity 7 no available
structure

0.24
(2AMA)

a PDB ID is indicated in parenthesis.
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site models, respectively. The other complex models are re-
ferred to as decoy models (see Fig. 2 for examples).

Normal mode analysis and calculation of MSF
To examine the effects of ligand binding to protein dy-

namics, ENM analysis was applied to the generated complex 
models and unliganded models. Tirion’s all heavy atom 
model [13] was used. Under the harmonic approximation, 
the potential energy is defined as:

E = ∑
d0

ij<Rc

C(dij – d0
ij)2 , (1)

where dij is the distance between atom i and j, dij
0 is the dis-

tance between the corresponding atoms in the reference 
structure, Rc is the cutoff distance, and C is the strength of 
the potential (force constant). Here, the reference structure 
indicates each model structure, Rc is set to 9 Å and C is set 
to 1 (unitless). Therefore, the magnitude of the atomic fluc
tuation is significant only when the difference or ratio is 
 considered. After diagonalization of the Hessian matrix H, 
normal mode eigenvectors and eigenvalues are obtained,

UTHU = Λ , (2)

where U is the eigenvector matrix whose kth column vector 
uk is the kth eigenvector. The kth element of Λ, λk is equal to 
ωk

2, where ωk is the angular frequency of the kth normal 
mode. The set of vectors is orthonormal and linearly inde-
pendent. uki is a three-dimensional subset of uk for the ith 
atom.

The mean square fluctuation (MSF) of each atom is ob-
tained from the eigenvalues and eigenvectors of the ENM. 
MSF of the ith atom with the kth mode is given by,

MSFki = 
kBT uT

ki uki

λk
 , (3)

where kB is the Boltzmann constant and T is the absolute 
temperature. Thus MSF for the ith atom is obtained,

MSFi = ∑
n

k=1
MSFki . (4)

because the equation of motion is to be solved step by step. 
It is well known that the collective motions of proteins are 
well described with the ENM, despite its rough approxima-
tion of the interaction energy and shorter calculation time 
[18,19]. The ENM is expected to provide a good approxima-
tion to smooth out the fine structures of the allatom poten-
tial energy surface (Fig. 1C). Secondly, all heavy atoms are 
treated equally under the coarse-graining approximation; 
carbon, nitrogen, oxygen, and any other heavy atoms are not 
distinguished and the effects of the ligand on the protein dy-
namics are examined regardless of the detailed chemical 
structure of the ligand.

Construction of complex models
Complex structure models based on ENM were con-

structed using the following procedure. Unliganded model 
structures were first prepared by removing all the hetero
atoms (ligands and water molecules) from the original co- 
crystal structures of the protein-allosteric ligand complexes. 
Pockets on the surface of the unliganded models were 
searched using the PASS [20] program to find possible li-
gand binding sites. The binding sites found were then filled 
with probe spheres. Active site points (ASPs), regarded as 
the centers of binding pockets, were obtained. The blocks of 
the probes were generated to fill out the pocket by gathering 
the probes within a distance of 6 Å around each ASP. The 
radius of the PASS probe is smaller than the radius of carbon 
and the density of the probes are much higher than typical 
chemical ligands; therefore, pseudo ligand blocks (PLBs) to 
fill out the pockets were regenerated as follows. Firstly, the 
volume of the first blocks was calculated using the MAMA 
program [21], and the number of applicable atoms to fill the 
volume was then calculated. An appropriate number density 
value of 0.09 Å–3 was employed from analysis of the protein 
and ligands of this dataset. Finally, the coordinate of PLBs 
were generated using the Situs program [22]. Each combi-
nation of a PLB and unliganded protein was treated as a 
protein- ligand complex model and was employed for the 
 following analysis. The complex models with PLB in the 
allosteric and active sites are termed allosteric site and active 

Figure 1 Basic concept of the dynamics-driven allostery and ENM visualized by effective energy surface as a function of conformational 
change. A) Energy surface change in dynamics-driven allostery which accompanies change in conformational distribution. Possible potential energy 
surfaces are unbounded (black line) and bound (red line) structures. The stable structure does not change upon ligand binding. B) The change in 
classic allostery. Conformational change occurs upon ligand binding, which corresponds to the shifts of the stable structure. C) Potential energy 
surface in the finegrained allatom model (blue line) and coarsegrained ENM (black line). The middle dot indicates a stable structure (typically a 
crystal structure).
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opposite. The total reduction ratio is defined as,

ζ = ∑
n

k=1
ζk . (6)

The lowest 100 normal modes were considered for this cal-
culation.

Analyzed profiles
We analyzed the nine profiles shown in Table 2 as possi-

ble quantities correlated to allostery. The radius of gyration 
of PLBs (Rg) was selected to characterize the size of the 
 ligands, which was calculated using the MAMA [21] pro-
gram from Uppsala Software Factory. With Rg, we can 
 examine if the size of the pocket filled with PLB correlates 
with the  allosteric effect. Meansquare fluctuation of the 
PLB binding sites before binding (MSFbs) was measured to 
examine if each binding site is intrinsically flexible in the 

The summation in Eq. (4) was taken for the lowest 100 
normal modes except for the zero frequency modes for 
 overall translations and rotations. MSF of each residue was 
calculated as the average over the heavy atoms. The dynamic 
influence of each PLB per residue was assessed by subtract-
ing MSF of the unliganded model from MSF of the corre-
sponding complex model with PLB:

ΔMSFi = MSFi
PLB – MSFi

unliganded . (5)

ζk is the reduction ratio of MSF along the kth normal mode 
upon the ligand binding, which is defined similar to the 
anharmonic ity factor to quantify the fluctuation ratio be-
tween the principal and normal modes along each principal 
mode [23,24]. When ζk is unity, the fluctuation of the kth 
 normal mode does not change. The condition ζk < 1 indicates 
a decrease of the mode fluctuation and ζk > 1 indicates the 

Figure 2 Examples of generated complex models. A) The complex structure of TEM1 (PDB ID: 1PZP), B) allosteric site model, C) active site 
model, and D) one of the decoy models. PLBs are shown by magenta spheres. Amino acid residues are colored according to their ΔMSFi upon PLB 
binding; strong reduction in fluctuation (deep blue), medium reduction (cyan), and no significant reduction (white).

Table 2 Nine profiles examined to characterize dynamic allosteric sites

Profile Definition

Rg Radius of gyration of PLB
MSFbs MSF of the PLB binding site before binding
rcm-PLB Distance between the center of mass of protein and PLB
ras-PLB Distance between the active site and PLB
ΔMSFas ΔMSF around active sites
ΔMSFbs ΔMSF around the PLB binding site
ΔMSFall ΔMSF of all the residues
ζ Reduction ratio of MSF
Druggability Pocket druggability probability predicted by PockDrug-Server [25]
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By definition the druggability ranges from zero to one. 
The raw values of the other eight profiles for ten protein 
structures were in the ranges, Rg: 1.4~3.7 Å, MSFbs: 0.06~ 
0.25, rcm-PLB: 4.24 ~ 28.69 Å2, ras-PLB: 1.07~46.85 Å, ΔMSFas: 
–0.5788~0.0007, ΔMSFbs: –0.0092~–0.0004, ΔMSFall: 
–3.822~–0.093, and ζ: 90.77~99.98 (Supplementary Table 
S1). The eight profiles were linearly normalized between 0 
and 1 from the minimum to maximum values for each pro-
tein. Average values of the profiles are shown in Table 3 
(see Supplementary Table S2 for the individual values with 
normalization). Large difference between the allosteric site 
models from the others is considered as good indicators to 
distinguish. Therefore, MSFbs, ΔMSFbs, ζ, and druggability 
are regarded to be relatively good indicators, which are ana-
lyzed more in detail below.

MSFbs of the allosteric site models is shown in Table 4. As 
shown in Table 3, the average value of MSFbs was smaller 
than that of the other sites, which means that the binding 
sites of the allosteric ligands are relatively less flexible 
 regions compared to the other binding pockets on average. 
In GlmU, HCV NS5B.1, p38 MAP kinase.1, TEM1, and 
Andro gen receptor, MSFbs is significantly smaller than the 
other sites. However, this is not the feature common to all the 

unliganded state. MSFbs was calculated for the residues 
within 4 Å from PLBs. To quantify the position of PLBs on 
the protein, the distance between the center of mass of the 
protein and PLB, rpro-PLB was introduced. We also analyzed 
the distance between the active site and PLB, ras-PLB. With 
this quantity, we checked if the allosteric effect is related to 
the distance from the active site. The center of the active site 
was defined as the center of mass around the Cα atoms of the 
active site residues. ΔMSFas was introduced to examine the 
change in atomic fluctuations around the active site upon 
 ligand binding. The change of the average MSF of the resi-
dues within 4.0 Å from the active site ligands was consid-
ered between the unliganded and liganded proteins. ras-PLB 
and ΔMSFas were analyzed to investigate the influence of the 
ligand binding on the active sites. ΔMSFbs quantifies the 
middlerange effect of the ligand binding on MSF. The aver-
age MSF of the residues within 30 Å from PLB was consid-
ered to get the difference. This value was found to most 
effec tively discriminate the allosteric sites from the other 
sites among the examined nine profiles (see Results). With 
shorter cut off distances, we observed weaker correlations 
with the allostery. We also employed a profile to cover whole 
protein. ΔMSFall shows the long-range effect of the ligand 
binding on MSF of all the residues. ζ defined by Eq. (6) 
quantifies the reduction ratio of MSF. Finally we examined 
druggability of the generated models by PockDrug-Server, 
which can extract the binding pocket from a submitted 
protein- ligand model and predict the pocket druggability as 
probability [25].

Results
For the 10 selected structures, 101 complex models were 

constructed (Table 2). The breakdown is: 10 active site 
models, 11 allosteric site models, one cofactor site model 
(TEM1) and 79 decoy site models. Two allosteric site  models 
were generated for glucokinase. Root-mean-square devi-
ations (RMSDs) of Cα atoms were calculated using MOE 
2010.10 [26].

Table 3 Average values of the normalized nine profiles for the allosteric site, active site, decoy, and all models

Profile Allosteric sitea Active siteb Decoyb Allb

Rg 0.62±0.31 0.63±0.31 0.44±0.31 0.49±0.32
MSFbs 0.42±0.36 0.59±0.37 0.63±0.30 0.60±0.31
rcm-PLB 0.59±0.32 0.32±0.36 0.58±0.31 0.55±0.33
ras-PLB

c 0.49±0.30 – 0.51±0.33 0.50±0.32
ΔMSFas

c 0.81±0.30 – 0.78±0.33 0.79±0.33
ΔMSFbs 0.42±0.36 0.59±0.37 0.63±0.30 0.60±0.31
ΔMSFall 0.50±0.31 0.40±0.41 0.63±0.30 0.59±0.32
ζ 0.46±0.34 0.61±0.42 0.66±0.29 0.63±0.31
Druggability 0.90±0.11 0.64±0.36 0.45±0.35 0.52±0.37

a Mean values of the 10 allosteric site models are shown. b Differences of the mean values from the allosteric site models 
are shown. c The active site models are excluded from the normalization.
Values shown before and after ± represent the average and standard deviation of the corresponding data, respectively.

Table 4 Normalized MSFbs for the allosteric site models

Type Protein
Allosteric site models

MSFbs Rank/all

Enzyme GlmU 0.00 1/5
glucokinasea 0.59, 1.00 5, 8/8

HCV NS5B.1 0.22 8/18
HCV NS5B.2 0.61 6/20

CK2 0.66 7/8
p38 MAP kinase.1 0.00 1/11
p38 MAP kinase.2 0.46 6/10

TEM1 0.09 3/7
PTP1B 0.73 6/7

Receptor Androgen receptor 0.06 2/7
a glucokinase has two allosteric site models.
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Table 3, the druggability of the allosteric and active site 
models are relatively high, which is consistent to the fact 
that the ligands are stably bound to these sites. Another 
impor tant feature is that the druggability of the allosteric site 
models are notably higher than the others (around 0.7 or 
higher) including the active site models, which indicates the 
druggability is an important factor to be considered to pre-
dict potential dynamics-driven allosteric sites. Overlap ratio 
shown in Table 5 is considered in Discussion.

ζ is a quantity that is expected to be a good indicator from 
the average value shown in Table 3. Table 6 shows individ-
ual ζ values. In the cases of GlmU, glucokinase, CK2, and 
TEM1, ζ values were smaller than 0.30 and the ranks of the 
allosteric site models were within the top 3; however, this 
index cannot clearly discriminate the allosteric site models 
from the other 6 cases. In addition, ζ values for the original 
complex structure with the allosteric ligands were not par-
ticularly good.

Before conducting the profile analysis, we had expected 
that the change of fluctuation around the active sites upon 
binding to the allosteric site would be significant; however, 
the average ΔMSFas value for the allosteric sites shown in 
Table 3 was comparable to those of the other sites. Table 7 
shows the details of ΔMSFas. ΔMSFas is significantly small 
only in the case of p38 MAP kinase.1, intermediate in GlmU 
and PTP1B, and is greater than 0.9 in all the other cases. 
This suggests that the dynamic change around the active 
sites is not strongly related to the allosteric effect in most of 
these cases. A clear exception is p38 MAP kinase.1, the only 
case where ΔMSFbs is not a good indicator to distinguish the 
allosteric site among all the enzymes examined. As men-
tioned above, this is the case in which the allosteric site 
 occupies a part of the active site, which cannot be considered 
as a typical allosteric site. The allosteric mechanism of p38 
MAP kinase.1 is expected to be related to a clear reduction 
of MSF around the active site (ΔMSFas for the original 
 allosteric ligand is –0.44), which is suggested to be different 
from the mechanisms for the other sites.

cases. Interestingly, the catalytic sites of 98 non redundant 
enzymes are situated in dynamic minima simulated by 
Gaussian network model [27] and principal component 
analysis of solution structures of enzymes also showed the 
catalytic sites are highly immobile [28]. The present result 
implies that some of the allosteric sites have a feature similar 
to the catalytic sites.

ΔMSFbs values of individual cases are shown in Table 5. 
For the enzymes, six cases in Table 5, the allosteric site 
models were found to be within the top 3. Even the two 
cases in which ΔMSFbs of the allosteric site models were not 
signifi cantly different from the others (GlmU and HCV 
NS5B.2), ΔMSFbs calculated for the original complex struc-
tures with the allosteric ligands were ranked as the top 2. 
This difference was probably due to the fact that the PLBs 
were too small compared to the actual allosteric ligands, 
which also suggests the importance of the ligand size in 
allostery (see Discussion). Including the results from the orig-
inal complex structure with the allosteric ligands, ΔMSFbs 
works very well (8 out of 9 enzymes), except for the case of 
p38 MAP kinase.1, in which the allosteric site occupies a 
part of the active site. Therefore, p38 MAP kinase.1 should 
be understood as the exceptional case. ΔMSFbs is not a good 
measure in the case of androgen receptor. Average ΔMSFbs 
values for the 8 allosteric site models except for p38 MAP 
kinase.1 and PTP1B are 0.33±0.30, which is significantly 
smaller than the average value of 0.65±0.29 for 66 decoy 
blocks, indicating a significant reduction of protein fluc
tuation around the allosteric site caused by ligand binding. 
Therefore, ΔMSFbs can be considered as the best indicator to 
characterize the allosteric site. As mentioned in Materials 
and Methods, the medium range distance of 30 Å was used 
for the calculation of ΔMSFbs. As shown by ΔMSFall, the long 
range effect showed weaker correlation with the allosteric 
effect. We also examined the range shorter than 30 Å but the 
present definition was found to be the best value to obtain 
the highest correlation with the allosteric sites.

In Table 5, the druggability is also shown. As shown in 

Table 5 Normalized ΔMSFbs for the allosteric site models and original co-crystal complexes with the allosteric ligands

Type Protein
Allosteric site models Original

ΔMSFbs Rank/alla Druggability Overlap ratio ΔMSFbs
b

Enzyme GlmU 1.00 5/5 0.98 0.24 0.64(2)
glucokinase 0.00, 0.09 1,2/8 0.91, 0.98 0.39, 0.87 0.29

HCV NS5B.1 0.33 3/18 0.69 0.58 0.23
HCV NS5B.2 0.61 4/20 1.00 0.42 0.23(2)

CK2 0.26 2(1)/8 0.93 0.35 –0.05
p38 MAP kinase.1 0.70 9/11 1.00 0.62 0.79
p38 MAP kinase.2 0.32 3(2)/10 0.89 1.00 0.60

TEM1 0.32 2/7 1.00 0.39 0.22
PTP1B 0.00 1/7 0.87 0.79 –0.41

Receptor Androgen receptor 1.00 7/7 0.70 0.67 1.00
a The number in parenthesis is the rank order excluding the active site model. b The number in parenthesis is the ranking within the 
original ligand complex and pseudo complex models.
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change of the low frequency normal mode fluctuation, which 
indicates the effects are not localized around the allosteric 
sites but are distributed over the protein including the bind-
ing sites and allosteric sites. These features are important to 
understand the mechanism of dynamics-driven allostery.

In the cases of GlmU and HCV NS5B.2, the importance 
of the ligand block size is suggested, as discussed in Results. 
In Table 5, we show overlap ratios of the predicted allosteric 
PLBs with the original allosteric ligands, which are defined 
as the ratio of the original ligand atoms covered by the PLBs. 
When the original allosteric ligands are employed, ΔMSFbs 
value with the allosteric site model changed from 1 to 0.64 
in GlmU and from 0.61 to 0.23 in HCV NS5B.2. PLB of 
GlmU overlaps with a part of the actual allosteric ligand 
(PDB ID: 2VD4 [29]) with the ratio of 0.24 (Fig. 3A). PLB 
of HCV NS5B.2 has more overlap with the actual allosteric 
ligand (0.42) (PDB ID: 2BRK [30]), but the key functional 
groups of the ligand are not generated (Fig. 3B). To over-
come this problem, further refinement of the block genera-
tion method should be developed in the future. The overlap 

Discussion
The results of 8 cases out of the 10 examined structures in 

this work clearly show that these allosteric effects are cor-
related to reduction of the protein fluctuation around the 
allosteric site. Therefore, these cases can be considered as 
examples of dynamics-driven allostery. In a DPA study [4], 
the authors analyzed the allosteric mechanisms of trypsino-
gen and found relatively strong communication between the 
regulatory and active sites. In the proteins studied in this 
work, communication between the allosteric and active sites 
was not found to be necessarily significant except for p38 
MAP kinase.1 because ΔMSFas of the allosteric sites are 
comparable to the other sites. Similar to the DPA study with 
the GOLD test set [2], the ligands binding on the allosteric 
sites examined in this work are suggested to cause a change 
in the protein conformational distribution, as shown in Fig-
ure 1A, rather than causing an effect specific to the active 
sites. The values of ζ were found to be significant in some 
cases. Ligand binding to these allosteric sites causes a large 

Table 6 Normalized ζ for the allosteric site models and original cocrystal complexes with the 
allosteric ligands

Type Protein
Allosteric site models Original

ζ Rank/all a ζ

Enzyme GlmU 0.00 1/5 0.53
glucokinase 0.00, 0.44 1, 4(3)/8 0.38

HCV NS5B.1 0.64 5/18 0.53
HCV NS5B.2 0.64 7/20 0.64

CK2 0.07 3(2)/8 –0.26
p38 MAP kinase.1 0.91 8/11 0.92
p38 MAP kinase.2 0.67 4/10 0.74

TEM1 0.28 3/7 0.37
PTP1B 0.53 3(2)/7 0.38

Receptor Androgen receptor 0.91 5/7 0.95
a The number in parenthesis is the rank order excluding the active site model.

Table 7 Normalized ΔMSFas for the allosteric site models and original co-crystal complexes 
with the allosteric ligands

Type Protein
Allosteric site models Original

ΔMSFas Rank/Alla ΔMSFas

Enzyme GlmU 0.64 2/4 0.26
glucokinase 1.00, 0.99 6,5/7 0.99

HCV NS5B.1 1.00 14/17 1.00
HCV NS5B.2 0.99 13/19 0.98

CK2 0.93 3/7 0.95
p38 MAP kinase.1 0.00 1/10 –0.44
p38 MAP kinase.2 1.00 6/9 0.99

TEM1 0.91 3/6 0.99
PTP1B 0.50 2/6 0.44

Receptor Androgen receptor 0.97 4/6 0.97
a The rank order excludes the active site models.
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and dynamic profiles, and found that fluctuation around the 
ligand binding site (ΔMSFbs) was significantly suppressed 
upon binding to the allosteric site in 8 structures out of 9 
enzymes examined in this work. One exception is the case in 
which the allosteric site occupies a part of the active site. 
These allosteric sites can be considered to be structurally 
sensitive to perturbation, inducing significant changes in the 
protein dynamics upon ligand binding. These cases should 
be regarded as examples of dynamics-driven allostery. De-
spite our initial speculation, there was generally no strong 
communication determined between the active and allosteric 
sites in the cases we examined.

ΔMSFbs can be employed as a new type of the index to 
evaluate potential allosteric sites. Although ΔMSFbs does not 
cover all types of allosteric sites, it can be used to search 
possible dynamicsdriven allosteric sites. ΔMSFbs is a rela-
tively simple concept, where the potential allosteric sites of 
enzymes that are distant from the active site can be selected. 
This quantity may also be useful to find new types of drug 
target sites and lead to compound discovery. To improve the 
prediction power, it is essential to refine the block generation 
method and the prediction of possible conformational 
changes upon ligand binding.

The druggability is another important profile to be exam-
ined. The druggability of the dynamics-driven allosteric 
sites is significantly higher than that of the active sites and 
the others. The combination of ΔMSFbs and the druggability 
can be considered as a good indicator to predict potential 
dynamics-driven allosteric sites.
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ratio of CK2 and TEM1 is also low but the rank of ΔMSFbs is 
relatively high. In these cases, the PLBs of the allosteric site 
models occupy the core parts of the pockets, which can sig-
nificantly affect ΔMSFbs values with relatively small blocks.

Among the 10 protein structures examined, large con-
formational change upon allosteric ligand binding was ob-
served only in one case (glucokinase). However, the gluco-
kinase complex with the active site ligand takes the structure 
very similar to the complex with the allosteric ligand as 
shown in Table 1. Small conformational changes at loop 
 regions were observed in 3 cases (HCV NS5B.2, p38 MAP 
kinase.1, and TEM1). For more effective prediction, the 
 effect of conformational change should be taken into 
 account. To consider this, loop sampling methods should be 
combined with our method to conduct better generation of 
complex models. Another possibility is the use of the linear 
response theory [31] to predict large conformational changes 
such as hinge or domain motions. ΔMSFbs did not work well 
in the case of the receptor protein; only one case in this 
 category was found. In this case, the distance between the 
active and allosteric sites (ras-PLB) is relatively short and 
 MSFbs is very small, which implies a different allosteric 
mechanism.

In addition to ΔMSFbs, MSFbs, and ζ are considered to be 
relatively good indicators although they are not always suc-
cessful in distinguishing the allosteric sited from the other 
pockets. Nevertheless, ΔMSFbs, MSFbs, and ζ are suggested 
to be examined to find possible dynamicdriven allosteric 
sites. The results strongly suggest that dynamics is essential 
factor to characterize the allosteric effects of the proteins 
studied in this work.

Conclusion
The dynamic features of new types of allosteric sites were 

examined and quantities to characterize potential allosteric 
sites was developed based on the change of protein fluctua-
tion upon ligand binding using ENM analysis. We focused 
on the non-trivial allosteric binding sites, assessed the static 

Figure 3 Size difference between PLBs and the allosteric ligands 
in the co-crystal. PLBs bound to the allosteric site (pink CPK) in A) 
GlmU (2VD4) and B) HCV NS5B.2 (2BRK), which are smaller than 
the allosteric ligands in the PDB (stick model).



126 Biophysics and Physicobiology Vol. 13

Mol. Des. 14, 383–401 (2000).
[21] Kleywegt, G. J. & Jones, T. A. Detection, delineation, measure-

ment and display of cavities in macromolecular structures. Acta 
Crystallogr. Sect. D. Biol. Crystallogr. 50, 178–185 (1994).

[22] Wriggers, W., Milligan, R. A. & McCammon, J. A. Situs: a 
package for docking crystal structures into low-resolution 
maps from electron microscopy. J. Struct. Biol. 125, 185–195 
(1999).

[23] Hayward, S., Kitao, A. & Go, N. Harmonicity and anharmo-
nicity in protein dynamics—a normal-mode analysis and prin-
cipal component analysis. Proteins 23, 177–186 (1995).

[24] Kitao, A., Hayward, S. & Go, N. Energy landscape of a native 
protein: jumping-among-minima model. Proteins 33, 496–517 
(1998).

[25] Hussein, H. A., Borrel, A., Geneix, C., Petitjean, M., Regad, 
L. & Camproux, A. C. PockDrug-Server: a new web server for 
predicting pocket druggability on holo and apo proteins. 
Nucleic Acids Res. 43, W436–W442 (2015).

[26] MOE 2010.10, Chemical Computing Group Inc., 1010 
 Sherbrooke Street West, Suite 910, Montreal, Canada H3A 
2R7 (2010).

[27] Yang, L. W. & Bahar, I. Coupling between catalytic site and 
collective dynamics: a requirement for mechanochemical activ-
ity of enzymes. Structure 13, 893–904 (2005).

[28] Yang, L. W., Eyal, E., Bahar, I. & Kitao, A. Principal compo-
nent analysis of native ensembles of biomolecular structures 
(PCA_NEST): insights into functional dynamics. Bioinfor-
matics 25, 606–614 (2009).

[29] Igor, M., Sandra, L., Lakshmi, N., Dirk, B., Michael, M., 
 Steven, V., et al. Structure of a small-molecule inhibitor com-
plexed with GlmU from Haemophilus influenzae reveals an 
allosteric binding site. Protein Sci. 17, 577–582 (2008).

[30] Di Marco, S., Volpari, C., Tomei, L., Altamura, S., Harper, S., 
Narjes, F., et al. Interdomain communication in hepatitis C 
virus polymerase abolished by small molecule inhibitors 
bound to a novel allosteric site. J. Biol. Chem. 280, 29765–
29770 (2005).

[31] Ikeguchi, M., Ueno, J., Sato, M. & Kidera, A. Protein struc-
tural change upon ligand binding: linear response theory. 
Phys. Rev. Lett. 94, 078102 (2005).

[32] Kamata, K., Mitsuya, M., Nishimura, T., Eiki, J.-i. & Nagata, 
Y. Structural basis for allosteric regulation of the monomeric 
allosteric enzyme human glucokinase. Structure 12, 429 
(2004).

[33] Yan, S., Appleby, T., Larson, G., Wu, J. Z., Hamatake, R., 
Hong, Z., et al. Structure-based design of a novel thiazolone 
scaffold as HCV NS5B polymerase allosteric inhibitors.  Bioorg. 
Med. Chem. Lett. 16, 5888 (2006).

[34] Raaf, J., Brunstein, E., Issinger, O.G. & Niefind, K. The 
CK2α/CK2β interface of human protein kinase CK2 harbors 
a binding pocket for small molecules. Chem. Biol. 15, 111 
(2008).

[35] Horn, J. R. & Shoichet, B. K. Allosteric inhibition through 
core disruption. J. Mol. Biol. 336, 1283–1291 (2004).

[36] Wiesmann, C., Barr, K. J., Kung, J., Zhu, J., Erlanson, D. A., 
Shen, W., et al. Allosteric inhibition of protein tyrosine phos-
phatase 1B. Nat. Struct. Mol. Biol. 11, 730–737 (2004).

[37] Estébanez-Perpiñá, E., Arnold, L. A., Nguyen, P., Rodrigues, 
E. D., Mar, E., Bateman, R., et al. A surface on the androgen 
receptor that allosterically regulates coactivator binding. Proc. 
Natl. Acad. Sci. USA 104, 16074–16079 (2007).

References
[1] Hardy, J. A. & Wells, J. A. Searching for new allosteric sites in 

enzymes. Curr. Opin. Struct. Biol. 14, 706–715 (2004).
[2] Ming, D., Cohn, J. & Wall, M. Fast dynamics perturbation 

analysis for prediction of protein functional sites. BMC Struct. 
Biol. 8, 5 (2008).

[3] Ming, D. & Wall, M. E. Allostery in a coarse-grained model of 
protein dynamics. Phys. Rev. Lett. 95, 198103 (2005).

[4] Ming, D. & Wall, M. E. Quantifying allosteric effects in pro-
teins. Proteins: Struct. Funct. Bioinform. 59, 697–707 (2005).

[5] Jones, G., Willett, P., Glen, R. C., Leach, A. R. & Taylor, R. 
Development and validation of a genetic algorithm for flexible 
docking. J. Mol. Biol. 267, 727–748 (1997).

[6] Ming, D. M. & Wall, M. E. Interactions in native binding sites 
cause a large change in protein dynamics. J. Mol. Biol. 358, 
213–223 (2006).

[7] Demerdash, O. N. A., Daily, M. D. & Mitchell, J. C. Struc-
ture-based predictive models for allosteric hot spots. PLoS 
Comput. Biol. 5, e1000531 (2009).

[8] Monod, J., Wyman, J. & Changeux, J.-P. On the nature of 
allosteric transitions: a plausible model. J. Mol. Biol. 12, 
88–118 (1965).

[9] Koshland, D. E., Némethy, G. & Filmer, D. Comparison of 
experimental binding data and theoretical models in proteins 
containing subunits. Biochemistry (Mosc) 5, 365–385 (1966).

[10] Tsai, C.-J., del Sol, A. & Nussinov, R. Allostery: absence of a 
change in shape does not imply that allostery is not at play. J. 
Mol. Biol. 378, 1–11 (2008).

[11] Gunasekaran, K., Ma, B. & Nussinov, R. Is allostery an intrin-
sic property of all dynamic proteins? Proteins: Struct. Funct. 
Bioinform. 57, 433–443 (2004).

[12] Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, 
T. N., Weissig, H., et al. The protein data bank. Nucl. Acids 
Res. 28, 235–242 (2000).

[13] Tirion, M. M. Large amplitude elastic motions in proteins 
from a single-parameter, atomic analysis. Phys. Rev. Lett. 77, 
1905–1908 (1996).

[14] Scitegic, Pipeline Pilot [6.1.5] (2008).
[15] Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. 

Experimental and computational approaches to estimate solu-
bility and permeability in drug discovery and development 
settings. Adv. Drug Del. Rev. 46, 3–26 (2001).

[16] Perry, J. J. P., Harris, R. M., Moiani, D., Olson, A. J. & Tainer, 
J. A. p38α MAP kinase Cterminal domain binding pocket 
characterized by crystallographic and computational analyses. 
J. Mol. Biol. 391, 1–11 (2009).

[17] Pargellis, C., Tong, L., Churchill, L., Cirillo, P. F., Gilmore, T., 
Graham, A. G., et al. Inhibition of p38 MAP kinase by utiliz-
ing a novel allosteric binding site. Nat. Struct. Mol. Biol. 9, 
268–272 (2002).

[18] Atilgan, A. R., Durell, S. R., Jernigan, R. L., Demirel, M. C., 
Keskin, O. & Bahar, I. Anisotropy of fluctuation dynamics of 
proteins with an elastic network model. Biophys. J. 80, 505–
515 (2001).

[19] Chennubhotla, C., Rader, A. J., Yang, L. W. & Bahar, I. Elastic 
network models for understanding biomolecular machinery: 
from enzymes to supramolecular assemblies. Phys. Biol. 2, 
S173–180 (2005).

[20] Brady, G. P. & Stouten, P. F. W. Fast prediction and visualiza-
tion of protein binding pockets with PASS. J. Comput.-Aided 


