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Snakebite envenomations (SBEs) are a neglected medical condition of global importance
that mainly affect the tropical and subtropical regions. Clinical manifestations include pain,
edema, hemorrhage, tissue necrosis, and neurotoxic signs, and may evolve to functional
loss of the affected limb, acute renal and/or respiratory failure, and even death. The
standard treatment for snake envenomations is antivenom, which is produced from the
hyperimmunization of animals with snake toxins. The inhibition of the effects of SBEs using
natural or synthetic compounds has been suggested as a complementary treatment
particularly before admission to hospital for antivenom treatment, since these alternative
molecules are also able to inhibit toxins. Biodiversity-derived molecules, namely those
extracted from medicinal plants, are promising sources of toxin inhibitors that can
minimize the deleterious consequences of SBEs. In this review, we systematically
synthesize the literature on plant metabolites that can be used as toxin-inhibiting
agents, as well as present the potential mechanisms of action of molecules derived
from natural sources. These findings aim to further our understanding of the potential of
natural products and provide new lead compounds as auxiliary therapies for SBEs.

Keywords: bioactive compounds, plants, envenomation, snakes, snakebites
SNAKEBITE ENVENOMINGS

Snakebite envenomations (SBEs) represent a serious and neglected public health problem that
occurs worldwide, especially in developing countries in tropical and subtropical regions (1, 2). These
countries have high incidences of cases because, to some extent, they still conserve their forests and
biodiversity; however, at the same time, human expansion and urbanization tend to invade places
where biodiversity is greater and this leads to an increase in contact between humans and snakes
(2, 3), especially in the countries of Asia, Sub-Saharan Africa and Latin America (4).
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Worldwide, about 1.8 to 2.7 million snakebites are estimated
to occur annually, which resulted in about 138,000 deaths and
approximately 400,000 cases of people who have permanent
physical sequelae (Figure 1) (1, 5, 6). The highest incidence
occurs in Asia, which presents 73% of the total world cases (~2
million cases), most of them in India, where more than 46,000
deaths were reported in 2020 (1). Africa and the Middle East are
in second place, and present about 580,000 SBEs (21%), of which
7,000 to 32,000 deaths occurred in sub-Saharan Africa alone
(1, 7, 8). Together Latin America and the Caribbean present
about 150,000 SBEs (5%), with 5,000 deaths, most of them in
South America with 50,000 cases, particularly in Brazil with
26,000-29,000 cases per year, of which one third occur in the
Amazon region (6, 9). These estimates may show lower numbers
than what occurs in reality, since a considerable portion of cases
go unreported (4). Underreporting occurs due to SBEs occurring
in remote rural areas where there is difficulty accessing health
services (4, 10).

Among the snakes of greater clinical importance that cause
high levels of morbidity or mortality, those that belong to the
families Elapidae and Viperidae stand out (11). On the Asian
continent, the clinically important species of the family
Viperidae, include the genera Daboia (e.g., D. russelii) and
Echis (e.g., E. carinatus and E. sochureki), which inhabit open
and dry environments. Other species that cause severe
envenomations are the desert vipers, comprising Macrovipera,
Eristicophis and Pseudocerastes genera (12). In Asia, snakes
belonging to the family Elapidae include Naja (e.g., N. naja, N.
kaouthia and N. oxiana) and Bungarus caeruleus (6, 13).

In regard to the clinically important African species, some of the
same Asian genera of the family Elapidae are also reported, such as
Naja (e.g.,N. haje,N.melanoleuca, N. nigricollis andN. anchietae), as
well as species ofViperidae fromBitis andDendroaspis genera (6, 14).
While, inCentral andSouthAmerica, casespredominatewith species
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belonging to theViperidae, especiallyBothrops (e.g.,B.atrox,B.asper,
B. jararaca, B. alternatus, B. jararacussu and B. erythromelas),
Crotalus (e.g., C. durissus and C. simus) and Lachesis (e.g., L.
muta), which inhabit the dense forests of this region (15–17).

Despite the great advances in health services, the treatment of
snakebites is often still a challenge. Although antivenom therapy
reduces mortality, it is ineffective against local tissue damage. In
addition to these factors, serum availability is low in many
distant regions (2). Due to difficulties in accessing treatment,
many people have developed their own methods to minimize the
damage caused by snakebites (9, 10). It is known that medicinal
plants used by traditional healers against snake bites are found all
over the world, so the use of extracts, teas from leaves, roots and
stem bark of plants is common in many of these countries (9, 10).
However, many cases of snakebite envenomation have negative
clinical outcomes before the patient receives appropriate
treatment, due to the dangerous and unscientific use of
substances that can do more harm than good and end up
impairing the patient’s treatment by a professional (9, 10).
However, exploring ethnobotanical knowledge in order to
discover natural inhibitors of snake toxins may also provide
new therapeutic treatments in the future. The literature reports
many in vitro and in vivo studies that have demonstrated that
bioactive molecules isolated and derived from natural products
show antivenom activities (10). Therefore, based on the available
literature, this updated review highlights some of the natural
bioactive compounds that have been isolated from plants, and
may be used as potential adjuvant inhibitors of snake venom
toxins, as well as presenting new perspectives regarding their
potential use in the development of new therapies for snakebites.
Figure 2 represents an overview of the roadmap proposed in
this review.

An extensive literature review was carried out using different
scientific electronic sources, including databases such as
FIGURE 1 | Global distribution of snakebite cases. Adapted from J.M. Gutiérrez et al. (2017) Ref. (6) The final figure was prepared using canva.com.
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Scifinder, Pubmed, Scopus, Web of Science and Google Scholar.
The study databases included original papers published in peer-
reviewed journals, books, dissertations, theses and patents, and
all data of scientific information written or translated into
English published until November 2021 was considered. The
keywords “snakebites, snake envenomation, snake venom,
natural inhibitors, antivenom activity, toxins, plants,
phospholipase inhibitors and metalloprotease inhibitors” were
used individually, but mostly in combination. Data showing the
bioactivity of compounds isolated from plants used in in vitro
and in vivo tests against snake venoms, their toxins and/or the
biological activities caused by them were considered.
VENOM TOXINS

Venoms are used by more than 250,000 species to subdue prey,
confuse competitors or in defense against their predators. The
evolutionary success of venoms has been evidenced by venomous
animals occupying all ecosystems (18). Venomous animals, such
as snakes, have their envenomations defined as an injection into
the tissue of another animal using specialized teeth, commonly
called fangs, and use a glandular secretion rich in toxins to
immobilize and digest their food, though envenomation can also
be used as a defense and survival tool (19, 20). The proteome of
the ancestral venom has diversified among a variety of snake
families due to factors such as genetic mutations and natural
selection in order to shape and differentiate venoms, thus
conferring specific toxicity to each species (21).
Frontiers in Immunology | www.frontiersin.org 3
Approximately 90-95% of the dry weight of snake venom
corresponds to proteins and peptides that act as toxins, and it
may or may not have enzymatic action. This composition can be
made up of phospholipases A2 (PLA2s), metalloproteases
(SVMPs), serine proteases (SVSPs), L-amino acid oxidases
(LAAOs), phosphodiesterases (PDEs), hyaluronidases (HAases),
acetylcolinesterases (AchEs), nucleases, three-finger toxins (3-
FTxs), desintegrins, cysteine-rich secretory proteins, and C-type
lectins (CTLs) (Figure 3) (22). Not all peptides and enzymes are
present in all venoms; the synthesis and secretion of the different
classes of proteins end up not being synchronized and can thus
result in variations in the composition of the venom according to
the different stages of the production cycle (23, 24). Although the
venom of snakes has more than 20 families of proteins, the most
relevant components are found (for the most part) in four of them
in varying proportions, thus representing the main targets to be
inhibited by natural molecules (25). These proteins are PLA2s,
SVMPs, SVSPs and 3-FTxs, and these families interact to attack
several different physiological targets, which causes the various
pathologies described above (26, 27).

It is the action of these toxins within the venoms of different
snake species that determine the pathophysiological outcomes in
patients. In general, with a few exceptions, venoms of Elapidae
snakes are rich sources of neurotoxic PLA2s and 3-FTxs, which
result in neurotoxic activity. These venoms induce minor local
effects, but envenomings may progress to neurotoxicity and acute
respiratory failure, a potential life-threatening manifestation (6).
On the other hand, viper venoms contain many proteases that
cause local and systemic manifestations mainly related to local
FIGURE 2 | Mind map of the topics covered in this review. Snake photo: Asenate A. X. Adrião. The final figure was prepared using canva.com.
May 2022 | Volume 13 | Article 842576

https://canva.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Adrião et al. Plant Inhibitors of Snakebite Toxins: A Review
proteolytic effects and hemostatic disorders (6, 28). Viper venom
proteases and PLA2s are also involved in tissue damage with local
signs and symptoms such as pain, swelling, blistering, bleeding
and ecchymosis. The victims may also present complications such
as secondary bacterial infection, compartmental syndrome, and
necrosis with consequent tissue loss, which leads to amputation in
more severe cases. Other systemic complications such as acute
kidney injury are often reported (29). One important
consideration is that the composition and concentration of each
toxin in the venom may vary according to the age, sex, dietary
habits, and geographic distribution of the snake (30, 31).

Phospholipases A2 (PLA2s)
PLA2s enzymes are commonly found in many taxa, which
include bacteria, plants, invertebrates such as arachnids and
insects, and in vertebrates, in mammalian tissues and in snake
venoms. PLA2s belong to subgroup II of secreted phospholipases
(PLA2s), which is divided into two classes: those that have
aspartate amino acid residues at position 49 (Asp49), which
can catalyze a hydrolysis of the sn-2 acyl bond in phospholipids
present in several cells and free lipids; and those that have a
lysine residue at position 49 (Lys49), which are catalytically
inactive, however, with prominent myotoxic action (32, 33).
The PLA2s of snake venom have a wide variety of impressive
biological effects that act alone or together, and among the effects
are neurotoxicity, myotoxicity, cardiotoxicity, anticoagulation,
spasms, inhibition of platelet aggregation, hypotension and
inflammation (24, 34). Although devoid of catalytic activity,
Lys49 PLA2s are strongly myotoxic and contribute to the
Frontiers in Immunology | www.frontiersin.org 4
venom-induced tissue-damage. Some examples of isolated
PLA2s are the toxins BaPLA2I and BaPLA2III, which belong to
the group of PLA2s that were isolated from the venom of the
snake B. atrox (35).

Snake Venom Metalloproteases (SVMPs)
The SVMPs are enzymes with variable molecular mass (20 to 100
kDa) and are dependent on divalent metallic ions (such as zinc),
which are responsible for maintaining their three-dimensional
structure to perform their catalytic functions. Its catalytic site is
highly conserved among SVMPs and presents the zinc-binding
domain HEXXHXXGXXH and the methionine-turn motif. SVMPs
are classified in groups and subgroups based on their domain
organization. P-I contains only the metalloproteinases domain, P-II
contains the metalloproteinases domain followed by disintegrin and
P-III presents the metalloproteinases, disintegrin-like and cysteine-
rich domains, and a possible additional lectin-like domain, which is
classified as PIIId (36). Due to their size, these enzymes can act
predominantly in the circulatory system to facilitate their dispersion
and the amplification of the toxicity of the components of the
venom that have lower molecular weight (37).

SVMPs act as the main factors responsible for envenomation
mechanisms, such as local and systemic hemorrhage, necrosis,
blisters and further inflammation. These effects are related to their
proteolytic action by the protease domain, and associated domains
such as the disintegrin/disintegrin-like and lectin-like domains.
The hemorrhagic activity results from the cleavage and degrading
of structurally important components of the basal membranes
(laminin, nidogen, fibronectin, proteoglycans and type IV
FIGURE 3 | Structures of representatives of the main toxin classes in snake venoms. Codes inside parentheses denote the PDB codes of the crustal strucutures of
these proteins. The final figure was prepared using Pymol v. 1.6.
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collagen), which promotes the rupture of connective tissue
components that are responsible for the structural integrity of
the blood vessels, thus producing local and systemic hemorrhages
(38). The loosening of the connective tissue is also responsible for
the formation of blisters at the bite site (39–41). The proteolytic
action of SVMPs is also responsible for important systemic effects,
such as coagulation disorders, through the cleavage of coagulation
factors, which induces a procoagulant status. In addition to the
protease domain and other domains such as disintegrin-like and
lectin-like domains, they are also responsible for the action on
platelets. The effect of the series of actions on hemostasis is
characterized by the installation of consumption coagulopathy
responsible for local and systemic bleeding (42, 43). Toxins are
responsible for the direct stimulation of leukocytes, acting as
VAMPs (venom associated molecular patterns), and acting on
inflammatory components of the complement system, in addition
to indirect action via the production of DAMPs (damage-associate
molecular patterns) through proteolytic action on cellular and
extracellular components (44, 45).

Snake Venom Serine Proteases (SVSPs)
Like SVMPs, SVSPs also exert their activity as procoagulants, and
target one or more coagulation factors of the blood coagulation
cascade. This contributes to the digestion of prey, and affects
coagulation, fibrinolysis and platelet aggregation, in addition to
having an effect on the complement system and other immune
system components (39, 46, 47). SVSPs have molecular masses
that range between 26 and 67 kDa and present a highly conserved
catalytic domain composed of the triad His57, Asp102 and Ser195
responsible for catalyzing the cleavage of peptide bonds with
arginine or lysine residues at the C-terminal (47, 48). Acting as
a target in the hemostatic system, SVSPs cause systemic
hemodynamic disorders, specifically activating key proteins that
belong to the coagulation cascade and affect systems such as the
kallikrein-quinine and the complement system, and thus interfer
with endothelial and platelet cells (47, 49).

Three-Finger Toxins (3-FTxs)
The 3-FTxs compose a highly conserved family of non-
enzymatic peptides, which ranges from 60 to 74 amino acid
residues, and has diverse functions (24, 50). Proteomic and
transcriptomic analysis of 3-FTxs has shown that these are
found predominantly in Elapidae venoms, such as
Ophiophagus, Dendroaspis and Naja venoms from Africa and
Asia andMicrurus from the Americas, as well as in Columbridae
and Hydrophiidae snake venoms (51–53). Most 3-FTx
subgroups are neurotoxins, which have as their main target the
cholinergic system, and present selectivity for several receptor
subtypes. In the immune system, they are responsible for
impairing the regulation of inflammatory processes and
signaling through distinct intracellular pathways (51). Mainly,
they stand out as neuromuscular blockers and are highly
competitive antagonists of nicotinic acetylcholine receptors
(nAChRs) in the neuromuscular junction (41). This
neurotoxicity is responsible for the cardiorespiratory failure
observed in snakebite patients. Bungarotoxin, isolated from
Frontiers in Immunology | www.frontiersin.org 5
Bungarus multicinctus, is one of the most important examples
of a potent 3-FTx, and has the characteristic of high-binding to
nAChRs and, as such, it is widely used as a marker in the
biological studies of receptors that study the nAChRs (51).
Cardiotoxins (CTXs) are considered the second largest group
of 3-FTxs, and are also known as cytotoxins, due to their ability
to invoke lysis in several distinct cells (51). Moreover, CTXs are
acetylcholinesterase inhibitors that inhibit the enzyme at the
neuromuscular junctions, thus inducing muscle spasms (51, 54).
Aside from its blocking action of nAChRs, 3-FTxs are also
known for several other biological responses such as inhibition
of platelet aggregation, adrenoreceptors modulation, L-type
calcium channel blockers and anticoagulant activity (55).

Other Toxins
Unlike the more abundant proteins present in the venom of
snakes, there are also less abundant components present in
venoms with lower structural variability levels. These
components add or potentiate the effects of toxins found in
greater abundance, but many of them also interact with specific
physiological targets (56).

In this group, there are LAAOs, HAases, nucleotidases (NUCs)
PDEs.LAAOsoccur in several organismsandarenot exclusive to the
venom of snakes in the Viperidae and Elapidae snakes (57). The
concentrations of LAAO differ among snake species, thus
influencing their level of toxicity. LAAOs are characterized by
having a catalytic specificity for long hydrophobic and aromatic
chains of amino acids, besides presenting a structural and functional
variability, which causes platelet functions, disturbs plasma
coagulation or leads to the death of different cell lineages (58).
HAases are found in small proportions in the venom of snakes;
however, they facilitate the diffusion of the venom in the tissue of the
prey due to their hydrolytic characteristics of hyaluronic acid, an
important component of connective tissue, thus potentiating the
effects of other toxins (59, 60).NUCs have as theirmain function the
generationof adenosine through catalytic activity,which contributes
to the immobilizationof preywhile increasing vascular permeability,
and also promotes hypotension, bradycardia and decreased
locomotor activity. Among the nucleases, PDE exonucleases
catalyze the hydrolysis of phosphodiester bonds, and are
recognized for inducing hypotension, locomotor depression, and
inhibition of platelet aggregation (61, 62). In turn, NUCs and PDEs
are involved in the cleavage of nucleic acid derivatives and realigned
substrates, such as ATP, ADP, and AMP. These NUCs can act
independently or in synergy with other enzymes such as SVMPs,
PLA2s, and disintegrins, which act on the inhibition of platelet
aggregation and synergistically increase the anticoagulant effect of
snake venoms (63–66).
ANTIVENOMS FOR SNAKEBITE
TREATMENT AND THEIR LIMITATIONS

The main intervention for neutralizing toxins and reducing the
effects of the envenomation is intravenous administration of
May 2022 | Volume 13 | Article 842576
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snake antivenom, which is composed of polyclonal antibodies
purified from the plasma of animals such as horses, goats, rabbits
or sheep that have been hyperimmunized with sublethal doses of
the venom (67, 68). According to theWHO (2016), by definition,
antivenoms consist of a purified fraction of immunoglobulins or
fragments of immunoglobulins from the plasma of animals that
have been immunized against one or more snake venoms, and its
administration may be limited to hospital facilities (69).

In general , antivenoms are composed of specific
immunoglobulins for neutralizing snake toxins, with the IgG
isotype being primarily responsible for the neutralizing activity.
There are three basic formulations of antivenoms in terms of
active substances. Most manufacturers produce antivenoms
based on F(ab’)2 divalent fragments, while other antivenoms
contain whole IgG molecules and a few antivenoms are based on
monovalent Fab fragments (70). Depending on the type of
formulation of the antivenom, there will be variations in its
pharmacokinetic activity. These pharmacokinetic differences
have obvious pharmacodynamic implications, for example,
high distribution volumes and rapid clearance of antivenom
make repeated administration necessary. One issue regarding the
antivenoms therapeutic use is their limited effectiveness in
reducing local damage induced by snake venoms. This has
been frequently associated with the pharmacodynamic
characteristics of big molecules, which results in the inability to
antivenom to access affected local tissues. However, it has been
shown recently that antivenom does reach the injured tissue at
the site of the bite and the apparently reduced efficacy of
antivenoms towards local tissue damage occurs mostly because
many endogenous proinflammatory mediators are already
activated by venom toxins before antivenom administration
(71). In this regard, the time between the snakebite and
antivenom administration is crucial for effective treatment and
this is a serious problem in rural areas where access to hospitals is
hampered by distance and lack of fast transport routes for the
patients (72).

In the field of current therapy, the production of snake
antivenoms faces some challenges, since about 70% of the
antibodies produced are related to the previous antibody library
of the immunized animal and do not bind directly to the venom
toxins, and heterologous immunoglobulins may induce
anaphylactic and pyrogenic reactions. In addition, antigenic
reactivity may be reduced due to the taxonomic diversity of
snakes and the different composition of venoms, according to
ontogenetic or geographical variation (73). Besides these factors, it
is relevant to consider that the victims with the highest risk and
those most affected by envenomations are groups that live in
countries and rural regions with a less favorable social and
economic situation, and generally work in agriculture, fishing,
hunting, forestry or are indigenous peoples. These people
normally have difficulties in accessing antivenom as its
distribution may be reduced in many distant regions that have a
high incidence of snakebites (10, 29, 74). As a result, many patients
appeal to the cultural practices or beliefs that delay the appropriate
treatment and increase the risks of negative clinical outcomes.
Patients make use of tourniquets, chemicals, and puncture or
Frontiers in Immunology | www.frontiersin.org 6
aspiration at the site of the bite in order to reduce the effects of the
venom. These practices are common in regions where antivenoms
are scarce and often impair treatment of the patient (9). Due to the
difficult access to treatment, many communities have conserved
their traditional methods to minimize the damage caused by
snakebites (75). Medicinal plants used against snakebites are
found all over the world and, as such, the use of plant extracts,
leaf infusions or herbal compresses is traditionally common in
many of these countries, in particular, as an effort to treat the
effects of the venom such as bleeding and edema (75, 76).

Despite the various technological and scientific advances, even
today, immunotherapy remains the only effective treatment against
SBEs. There is no doubt that current antivenoms have been
invaluable in saving lives; however, the limitations in the
effectiveness of antivenom have motivated the search for
alternative neutralizing agents from natural sources or synthetic
compounds in order to improve or complement conventional
antivenom therapy (77). Strategies have been considered that take
into account the limiting aspects of antivenom and the possibility of
the use of inhibitors of specific toxins, in order to aid the treatment
with antivenom therapy with fast and simple interventions that
could be used soon after SBEs (67, 78, 79). Therefore, the
ethnobotanical knowledge of traditional communities would be a
smart strategy for the discovery of molecules that are capable of
neutralizing the toxins of venoms, and ancient traditional knowledge
may be used for the development of alternative therapies.

The aim of the study is to identify medicinal plants and their
natural products so that they can be isolated and used to inhibit
the toxins from snake venom or act as an adjuvant with snake
antivenoms (75, 76). Nature has been a source of essential
compounds for man since time immemorial. A multitude of
new molecules are constantly being discovered from diverse
organisms, since it is estimated that there are about three
hundred thousand species of plants distributed throughout the
planet. As such, it is evident that the world’s biodiversity
represents a reservoir of biological and chemical assets, which
has not yet been fully exploited and, therefore, the isolation of
unexplored compounds may culminate in the development of
new drugs or the improvement of existing ones (80).

One of the therapeutic strategies for neutralizing the toxic
components of venoms comes from the knowledge of the
mechanism of action of the different types of antibodies, toxins
and, above all, potent and selective enzyme inhibitors, and this
strategy can aid in developing drugs with greater specificity and
effectiveness (77, 81). In this context, natural products present
themselves as formidable enzyme inhibitors. They are a
promising source for adjuvant molecules in combination
therapies and may minimize muscle damage and/or avoid tissue
necrosis, prior to the patient reaching the hospital (68, 82).

Currently, about 60% of medicinal compounds are derived, or
inspired by, natural products or use their pharmacophore as a
model, and 75% are used in the treatment of infectious diseases
(83, 84). The possibility of using natural products can lead to
positive side effects in snakebites, such as a rapid administration,
reduction of the diffusion and action of toxins and, therefore, a
reduction in snakebite mortality and morbidity (68, 82). The
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continuity of studies on the mechanism of action and safety of
these molecules will reveal their potential use in the development
of new therapies for snakebites. This knowledge is important,
and necessary, in order to improve the reality of this neglected
tropical disease in many countries (84). Therefore, this review
aims to provide an updated description of bioactive natural
compounds isolated from plants that have been tested as
potential inhibitors and help readers to understand the
diversity of these compounds and their actions against snake
venom, as well as presenting prospects in applications such as
adjuvant inhibitors against venom toxins.
ETHNOPHARMACOLOGY FOR
SNAKEBITE TREATMENT

The proposal to use natural molecules of low molecular weight is
evidently not to use them as antivenom alternatives in the
treatment of snakebites, but to use them as an auxiliary
therapy, particularly before the administration of antivenom,
in order to minimize the local effects of envenomations. A
positive point about this is that some of these molecules can be
used as the first therapeutic aids to be administered on the way to
a health facility (79). Due to the complexity of snake venoms, it is
unlikely that a single molecule will be able to neutralize all
enzyme toxins, even a universal antivenom seems improbable.
However, harnessing the ethnobotanical knowledge of
traditional peoples so as to discover natural products, such as
snake toxin inhibitors, may enable a range of new therapeutic
treatments in the future.

Many studies have already been published in databases
containing information on molecules that are bioactive and
derived from natural products and that have evidenced
antivenom activities (85). The term “natural products” can
cover an extremely large and diverse variety of many chemical
compounds derived and isolated from biological sources such as
plants, and this interest has been widely sought for years and has
always been based on the experience of randomized tests and
animal test observations (68).

Plants have traditionally been used to treat snake
envenomations since ancient times and are still used by many
people in remote rural areas. This is due to the fact that they are
easily available, are relatively inexpensive, and rarely cause
complications in administration (86).

One of the ways to select bioactive species is through the
traditional knowledge of the people who have been using them
for generations with some degree of efficacy in various situations.
For example, some plants that are being tested for their
effectiveness as snake antivenom have already been used by
traditional communities as treatments for snakebites, thus
arousing the interest of researchers to search for their bioactive
compounds (75, 76). A large part of the world’s population has
already resorted to the use of popular treatments for the most
diverse purposes.

Ethnobotanical and ethnopharmacological investigations
have indicated hundreds of plants that are traditionally used
Frontiers in Immunology | www.frontiersin.org 7
against snakebites. Studies on about 198 species distributed in 73
botanical families have been conducted in India, which is the
country with the high incidence of snakebites worldwide (87).
Otero et al. (88) tested extracts of 74 plant species used by healers
in the northwest region of Colombia for the treatment of
snakebites and 12 of these were active against the venom of B.
atrox. It has been shown that ethnomedicinal preparations
administered orally and applied topically, such as infusions,
decoctions, pulverized material and juices, can be used as
antidotes in the treatment of snake envenomations (88, 89).
These preparations consist mainly of leaves (48%), roots (26%)
and stem barks (8%) of plants (90). Among the botanical
families, Asteraceae is common in the popular use of plants
against snake envenomations, and leaves of the species Tithonia
diversifolia, Microglossa pyrifolia and Conyza sumatrensis are
used in infusions (89, 91, 92).

In addition, some botanical families are highlighted due to the
presence of substances with venom neutralizing properties.
Fabaceae is considered the main family to have potential snake
venom inhibiting substances, and is the most studied (93–103).
After Fabaceae, come the families Zingiberaceae (104–108),
Salicaceae (109–111) and Asteraceae (112–116).

Investigations such as these are of paramount importance
for indicating the species that should be subjected to further
phytochemical studies, thus enabling the discovery and
development of potentially bioactive molecules. Phenolic
compounds constitute the predominant group of substances
that are responsible for the inhibition of snake venom. Within
this group, the subclasses of flavonoids (117–120),
hydroxycinnamic acids and derivatives (103, 121–125);
hydroxybenzoic acids (81, 126–130), tannins (109–133),
coumarins (103, 134), among others. The second majority
group of substances with antivenom activity are terpenes (97,
105, 106, 112, 135–139), which are followed by alkaloids (140–
146), modified glycosides (110, 111, 147), saponins (100, 101,
103, 148) and polyketides (86, 149, 150). In addition, proteins
and peptides are reported as inhibitors of snake venom (61, 107,
151–153). Several substances present inhibition of the main
enzyme class in abundance in most snakes, PLA2s, and
numerous mechanisms by which these compounds can act to
inhibit the venom (112, 144, 153–156).
PLANT PRODUCTS AS
ANTIVENOM AGENTS

Alkaloids
The alkaloids present numerous biological activities, but only a few
reports describe their inhibitory activities against the enzymes
present in snake venoms. To date only 11 active substances have
been described (Figure 4 and Table 1). Schumanniofoside, (1) a
glycosilated benzopyranylpiperidinone alkaloid isolated from the
stem bark of Schumanniophyton magnificum (Rubiaceae) in Nigeria
reduced the lethal effect ofN.melanoleuca venom in vivo in different
concentrations (10-100 mg/kg), with the administered dose of 80
mg/kg reducing the mortality in mice by 15% (140).
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Another study reported the in vivo potential of 12-methoxy-
4-methylvoachalotine, (2) an indolic alkaloid of iboga-type
skeleton. This substance was isolated from the root bark of the
species Tabernaemontana catharinensis (Apocynaceae) from
Brazil (state of São Paulo) and inhibited 100% of the lethality
of C. durissus venom when injected at the concentration of 1.7
mg/100 g, 20 seconds after injection of two mean lethal doses in
mice (LD50) (141).

The steroidal alkaloids 22a,23a-epoxy-solanida-1,4,9-trien-3-
one (3), 22a,23a-epoxy-solanida-1,4-dien-3-one (4), which were
isolated from the leaves of Solanum campaniforme (Solanaceae)
from Brazil (state of Ceará), were tested against the venom of
B. pauloensis, and the antimyotoxic, antihemorrhagic and
antinecrotizing activity was assessed after in vitro incubation of
the venomwith the extracts or isolated alkaloids (142).Through this
study, itwas foundthat thepresenceofalkaloids3and4 resulted ina
reduced necrotic area (~27.0 and 32.0-mm2, respectively), as well as
a decreased hemorrhagic area. Subsequently, the same research
group studied the other constituents of the same plant and found
four new steroidal alkaloids with biological activity against the
venom of B. pauloensis: 22b,23b-epoxy-solanida-1,4-dien-3-one
(5), 22a,23a-epoxy-solanida-4-en-3-one (6), 22b,23b-epoxy-
solanida-4-en-3-one (7), (E)-N-[8’(4-hydroxyphenyl)ethyl]-
22a,23-a-epoxy-solanida-1,4,9-trien-3-imine (8) and (Z)-N-[8′
(4-hydroxyphenyl)ethyl]-22a,23a-epoxy-solanida-1,4-dien-3-
imine (9). In the assays, compounds 3, 5, 6 and 9 showed
antihemorrhagic activity, while compounds 6, 7, 8 and 9 showed
antinecrotic activity (143).
Frontiers in Immunology | www.frontiersin.org 8
The isoquinoline alkaloid berberine (10), obtained from the
species Cardiospermum halicacabum (Sapindaceae) from India,
was discovered to be a PLA2s inhibitor of the venom of D. russelii.
The activity was characterized through the incubation of the plant
extract in the process of crystallization of the toxin, which allowed
the co-crystallization of PLA2s with berberine and, consequently,
the discovery of this natural product as an anti-inflammatory
substance of interest for treating snakebites (144).

The nitrophenanthrene carboxylic acid alkaloid aristolochic
acid (11), found in species of Aristolochia (Aristolochiaceae) from
India, has been reported as a promising antivenom agent. Previous
studies report in vitro inhibitory activity against LAAOofD. russelii
(19% inhibition- IC50 = 33.6 µM) (145). It has also been shown that,
in the venom of D. russelii, 11 inhibited (0.16 µM) the edema-
inducing activity of the enzyme by 50% (146). Another study
showed that the pre-incubation of the complex obtained from
this compound (13.7 µg/mL) reduced the myotoxic effects of
piratoxin-I (PrTX-I) in the venom of B. pirajai (157).

However, the ability of 11 to bind to DNA is related to its
carcinogenesis, which makes it impossible to use this compound
(145). On the other hand, semisynthetic derivatives obtained
from 11 by replacing the nitro group with a chlorine atom (11a)
or a hydroxyl group (11b) eliminated the interaction with DNA,
while achieving inhibition of the LAAO enzyme from the venom
of D. russeli. In addition, substance 11a presented greater
capacity of reduced LAAO-induced reactive oxygen species
(ROS) generation in two cells: human embryonic kidney cells
(HEK293) (76%) and human hepatocellular carcinoma (HepG2)
FIGURE 4 | Chemical structures of snakebite treatment compounds 1-17.
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(68%). Substance 11b also showed significant inhibition of ROS
generation, which was induced by LAAO. Additionally, cellular
viability determined through the redox potential for 11a and 11b
presented ~86 and ~67%, respectively, for HEK293, and ~74 and
~70%, respectively, for HepG2 (145).

Studies with structural adaptations of natural inhibitors, such
as molecular docking, have been conducted to understand the
interaction profile of natural inhibitors by binding to active sites
of the toxin and have helped to elucidate the inhibition abilities
and aided in the design of molecular modifications and
Frontiers in Immunology | www.frontiersin.org 9
adaptations in conformations to improve their inhibitory effect
(158, 159).

Benzenoids
A number of simple substances with substituted benzene nuclei
have been reported in some plants and may be potential snake
venom inhibitory molecules (Figure 4 and Table 1). Among
these plants, H. indicus (Apocynaceae), which is endemic to
India, was the target of studies that showed the potential of 2-
hydroxy-4-methoxy benzoic acid (12) against the venom of
TABLE 1 | Alkaloids (1–11) and benzenoids (12–17) with antivenom properties.

N° Compound Plant Activity inhibited Venom or toxin Snake Reference

1 schumanniofoside Schumanniophyton
magnificumTS

lethality Venom Naja melanoleuca (140)

2 12-methoxy-4-
methylvoachalotine

Tabernaemontana
catharinensisRT

lethality, myotoxicity Venom Crotalus durissus (141)

3 22a,23aepoxy-solanida-
1,4,9-trien-3-one

Solanum
campaniformeL

myotoxicity, hemorrhagic
and skin necrosis

Venom Bothrops pauloensis (142)

4 22a,23a-epoxy-solanida-
1,4-dien-3-one

S. companiformeL myotoxicity, hemorrhagic
and skin necrosis

Venom B. pauloensis (142)

5 22b,23b-epoxy-solanida-
1,4-dien-3-one

S. companiformeL hemorrhagic, increase of
creatine kinase

Venom B. pauloensis (142)

6 22a,23a-epoxy-solanida-4-
en-3-one

S. companiformeL hemorrhagic, necrotic,
increase of creatine kinase

Venom B. pauloensis (142)

7 22b,23b-epoxy-solanida-4-
en-3-one

S. companiformeL necrotic, increase of
creatine kinase

Venom B. pauloensis (142)

8 (E)-N-[8′(4-hydroxyphenyl)
ethyl]-22a,23a-epoxy-
solanida-1,4,9-trien-3-imine

S. companiformeL necrotic Venom B. pauloensis (143)

9 (Z)-N-[8′(4-hydroxyphenyl)
ethyl]-22a,23a-epoxy-
solanida-1,4-dien-3-imine

S. companiformeL proteolytic, hemorrhagic,
necrotic

Venom B. pauloensis (143)

10 berberine Cardiospermum
halicacabumTS

enzimatic, competitive
inhibitor

PLA2 Daboia russelii (144)

11 aristolochic acid Aristolochia indicaR,
A. spruceiS

enzimatic, edematogenous,
myotoxic, muscle damage,
hemolytic

Venom, LAAO,
HAase, PLA2, VRV-
PL-VI (PLA2), PrTX-I
(PLA2)

D. russelii, D. r. pulchella, Vıṕera
russelii, B. jararacussu, B. asper,
B. pirajai, N. naja

(145, 146, 157, 158)

11a hydroxyl aristolochic acid A. indicaR enzimatic LAAO D. russelii, N. naja (145)
11b chloride aristolochic acid A. indicaR enzimatic LAAO D. russelii, N. naja (145)
12 2-hydroxy-4-methoxy

benzoic acid
Hemidesmus
indicusR

hemorrhagic,
edematogenous, coagulant,
lethality, defibrination,
inflammation

Venom D. russelii, V. russelii, N. kaouthia,
Ophiophagus hannah, Echis
carinatus

(126, 128–130)

13 2-hydroxy-4-methoxy
benzaldehyde

- enzimatic, hemorrhagic,
lethality

Venom, PLA2 D. russelii, V. russelii, N. kaouthia (81, 127)

13a 3-methoxy benzaldehyde Janakia
arayalpatraSS

lethality, enzimatic Venom, PLA2 D. russelii, N. kaouthia (127)

13b 3, 4-dihydroxy
benzaldehyde

J. arayalpatraSS lethality, hemorrhagic,
enzimatic

Venom, PLA2 D. russelii, N. kaouthia (127)

13c 2-hydroxy-3-methoxy
benzaldehyde

J. arayalpatraSS lethality, hemorrhagic Venom D. russelii, N. kaouthia (127)

13d 2-hydroxy-3-
methoxybenzylalcohol

J. arayalpatraSS enzimatic, desfibrogenation,
coagulant, lethality

Venom D. russelii, N. kaouthia (127)

14 anisic acid H. indicusR lethality, defibrinogenation,
hemorrhagic, edematogenous

Venom, VRV-PL-VIIIa
(PLA2)

V. russelii, E. carinatus, N. kaouthia,
O. hannah

(130, 160)

15 salicylic acid H. indicusR hemorrhagic Venom V. russelii, E. carinatus, N. kaouthia,
O. hannah

(130)

16 gallic acid - proteolytic, hemorrhagic,
edematogenous,
dermonecrotic, myonecrotic

Venom D. russelii (161, 162)

17 vanillic acid - enzymatic, coagulant 5’AMP N. naja (187)
May 2022 | Volume 1
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D. ruselii, N. kaouthia, O. hannah and E. carinatus (126, 128–
130). This substance effectively inhibited the activity of the
venom, reducing its lethal, hemorrhagic, and coagulant effects,
as well as effectively neutralizing the inflammation induced by D.
russelii venom in rodents. Another benzenoid isolated from this
plant species, 2-hydroxy-4-methoxy benzaldehyde (13), showed
neutralizing activity of PLA2s (in vitro) and reduced lethality and
hemorrhagic activity induced by the venom of D. russelii (81).

Compound 13 was also obtained from the species Janakia
arayalpatra (Periplocaceae) from India (Jammu) in considerable
quantities, which led the authors to prepare semi-synthetic
derivatives (13a-13d). These compounds were active against
the venom of D. russelii and in in vivo tests neutralized the
hemorrhagic effect, lethality and PLA2s activity induced by the
venom. Additionally, in the same study, all compounds showed
neutralization of lethality and hemorrhagic activity of N.
kaouthia venom (127).

Another study showed the inhibitory effect of the compounds
anisic acid (14) and salicylic acid (15), also from H. indicus,
against the venoms of D. russelii, E. carinatus,N. kaouthia andO.
hannah. The lethal effect of the venom and defibrinogenation
were 100% neutralized by 14, both in in vitro and in vivo studies.
Hemorrhagic activity was 100% neutralized by 15 (130).
However, the exact mechanisms of the neutralization of the
venom by these chemical compounds have not yet been
established (130, 160).

Gallic acid (16) inhibited the in vitro proteolytic activity (IC50

0.58 µM) of the venom of D. russelii, but did not inhibit the
PLA2s activity of the same venom (161). However, the enzymatic
inhibitory activity of PLA2s (63%) and inhibition of cytotoxicity
induced by PLA2s (~78%) in C. durissus venom was
demonstrated in the study by Pereañez et al. (162). Compound
16 was also isolated from Anacardium humile (Anacardiaceae)
from Brazil (Minas Gerais) and was able to inhibit the myotoxic
activity induced by the raw venom of B. jararacussu and its two
main myotoxins, bothropstoxin I and II (BthTX-I and BthTX-II).
In addition, compound 16 also inhibited the hemorrhagic effect
(IC50 0.2 µM) and edema formation (IC50 2 µM) in in vivo
experiments (161).

In addition, vanillic acid (17) selectively and specifically
inhibited the enzymatic activity of 5’nucleotidase (5’AMP),
which is known to affect hemostasis by inhibiting platelet
aggregation among other enzymes present in the venom of N.
naja. In a dose-dependent manner, compound 17 inhibited the
anticoagulant effect of N. naja venom by up to 40%. Inhibition
studies with 17 suggest that 5’AMP probably interacts with one
or more factors of the intrinsic blood clotting pathway to cause
the anticoagulant effect (154).

Hydroxycinnamic Acids and Derivatives
Rosmarinic acid (18), a esterefied hydroxycinnamic acid isolated
from several plants, has well-established antivenom properties.
Compound 18 isolated from Cordia verbenacea (Boraginaceae)
inhibited edema and myotoxic activity induced by basic PLA2s:
BthTX-I and BthTX-II. This molecule also almost completely
inhibited the myotoxic effects and partially inhibited edema
induced by both basic PLA2s, thus giving the idea of
Frontiers in Immunology | www.frontiersin.org 10
dissociation between the catalytic and pharmacological domains
(125). The effect of 18 has also been shown against the venoms of
Trimeresurus flavoviridis, Gloydius blomhoffii, Bitis arietans, C.
atrox, Agkistrodon bilineatus and Deinagkistrodon acutus (122–
124) (Figure 5 and Table 2).

Evidence of the potential of caffeic acid (19) was obtained by
complexation with piratoxin-I, a PLA2 containing lysine as a
residue at position 49 (PLA2s-Lys49) of the venom of B. pirajai,
and resulted in the partial neutralization of the myotoxic activity
of PrTX-I (157). This substance also inhibited 41% the cytotoxic
activity induced by C. durissus PLA2s (162).

The modified derivative triacontyl p-coumarate (20), which
was isolated from Bombacopsis glabra (Bombacaceae) from
Brazil (state of Bahia), was promising against the harmful
effects of B. pauloensis venom and also against isolated SVMPs
(jararhagin) or PLA2s (BnSp-6) (121). Compound 20 neutralized
fibrinogenolytic activity and plasma fibrinogen depletion (53%)
when induced by venom or isolated toxins. This molecule also
efficiently inhibited hemorrhagic activity (3 MDH) and
jararhagin-induced hemorrhagic activity (121) (Figure 5
and Table 2).

The substance p-coumaric acid (21) complexed with PLA2s
from D. russelii showed effective catalytic inhibitory activity with
an IC50 of 38.0 µM (156). Chlorogenic acid (22) and cynarin (23)
showed percentages of inhibition of mortality against B. jararaca
venom in mice with high (90%, 22) and weak (30%, 23) activities,
respectively (103).

Ferulic acid (24) showed the potential to inhibit PLA2s, as
well as a strong inhibitory activity against the induction of edema
by the PLA2s enzyme of C. durissus (112). Another study
reported the enzymatic inhibitory activity of PLA2s (17%) in
this substance, as well as the inhibition of cytotoxicity induced by
PLA2s (37%) in the venom of C. durissus (162). In this same
study, the inhibitory capacity of propylgallate (25) in the
enzymatic (51%) and cytotoxic (94%) activity of PLA2s of the
venom of this same species were also reported (Figure 5
and Table 2).

Tannins
Some studies of tannins as active molecules against snake
venoms have been reported. Gallotannin tannic acid (26),
found in several plants, but obtained commercially, efficiently
inhibited the HAases and the hemorrhagic effect, and reduced
the in vivo lethal effect of C. adamanteus venom, causing an
increase in the survival time of mice (120). Ellagitannins were
isolated from Casearia sylvestris (Salicaceae) leaves from Brazil
(state of São Paulo), and ellagic acid (27) and 3’-O-methyl
ellagic acid (28) were tested against the effects of venom and
PLA2s (Asp 49 BthTX-II) from the venom of B. jararacussu. The
inhibition constant (Ki) values for enzymatic activity were
approximately 3 and 7 nM, for 27 and 28, respectively;
moreover, the IC50 values found in the edematogenic and
myotoxic activity were 23.8 µM for 27 and 34 µM for 28
(109) (Figure 5 and Table 2).

Casuarictin (29), an ellagitannin isolated from the leaves of
Laguncularia racemosa (Combretaceae) from Brazil (state of São
Paulo), was evaluated in PLA2s isolated from the rattlesnake C.
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durissus. The compound was able to form a protein complex
consisting of a stable complex of PLA2s and casuarictin (casu). In
addition, molecular interactions of casu with PLA2s were able to
virtually eliminate the native edematogenic effect, as well as
protein-induced myonecrosis when injected 10 min after PLA2s.
Therefore, casu can be considered to be a potential anti-
inflammatory substance that can be used to treat PLA2s-induced
edema and myonecrosis (131). Another study performed with the
ethanolic extract of the seed grains of Thai mango (Mangifera
indica - Anacardiaceae) and its main active ingredient, and
1,2,3,4,6-pentagalloyl glucopyranose (30) exhibited inhibitory
effects on the enzymatic activities of PLA2s, HAases and LAAO
of the venoms from Calloselasma rhodostoma and N. naja in in
vitro tests (133) (Figure 5 and Table 2).

Coumarins
The incubation of Bn IV, a Lys49 PLA2s from B. neuwiedi venom
together with coumarin umbelliferone (31), a substance abundant
in Citrus spp., virtually eliminated platelet aggregation, edema (IC50

0.2 µM) and myotoxicity induced by Bn IV, and also decreased its
inflammatory effects. Compound 31 showed interaction with Asp
and Lys residues from the PLA2s catalytic site, which are
interactions that are important for the activity of the toxin (163).
In the class of coumarins, dihydrofuranocoumarin (+)-alternamin
(32), a new substance extracted from the aerial parts of Murraya
alternans (Rutaceae) from Myanmar, was able to inhibit bleeding
induced by the venom of T. flavoviridis by 24% at the concentration
of 250 µg/mL when compared to the control (134). Also joining this
Frontiers in Immunology | www.frontiersin.org 11
list, bergapten (33), isolated from Dorstenia brasiliensis (Moraceae)
from Brazil (state of Rio de Janeiro), was modest in its inhibition of
the lethality of B. jararaca venom in mice (20% reduction in
lethality) (103) (Figure 5 and Table 2).

Flavonoids
Flavonoids have numerous biological activities, among them, anti-
inflammatory and antioxidant activities stand out, and this makes
several representatives of this class potential antivenom agents. In
this context, two SVSPs, thrombin-like SVSPs (SP1 and SP2), of C.
simus venom were isolated and incubated in vitrowith the flavanone
aglycon hesperetin (34), which is commonly isolated in Rutaceae.
The results indicated that 34 acts as a potent non-competitive
inhibitor (against SP1) or mixed inhibitor (against SP2). Thus, a
naturally occurring flavone that can be easily extracted from oranges
can serve as a low-cost inhibitor of the investigated snake venom
proteases (118). Substance 34 also inhibits PLA2s activity of C. atrox
venom (164). Additionally, substance 34, which was obtained from
orange peels, acted as a reversible inhibitor of SVSP isolated from the
venom of B. jararaca (165) (Figure 6 and Table 3).

The flavanone pinostrobin (35) was isolated from the leaves
of Renealmia alpinia (Zingiberaceae) from Colombia. It is a plant
used in folk medicine to treat snake bites and was evaluated as to
its ability against the venom of C. durissus and B. asper.
Compound 35 presented an IC50 of 1.76 µM against PLA2s
activity in C. durissus venom. When mice were injected with
PLA2s and treatments of 0.4, 2.0 and 4.0 µM of pinostrobin were
applied, PLA2s-induced myotoxic activity was inhibited by up to
FIGURE 5 | Chemical structures of snakebite treatment compounds 18-33.
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87% (104). Compound 35 was effective in inhibiting proteolytic
effects (22%) induced by B. asper venom, and presented indirect
percentage inhibition of hemolytic activity of 21%. In this same
study, R. alpinia extract inhibited indirect hemolytic, coagulant
and proteolytic activities of B. asper venom after pre-incubation
in vitro (Figure 6 and Table 3).

The glycosilated flavanone, hesperidin (36), which was isolated
fromCitrus sinensis (Rutaceae), showedmoderate inhibitory action of
lethality caused by B. jararaca venom (103). Flavones, such as the
aglycones apigenin (37) and luteolin (38) of synthetic origin, are
inhibitors of the hyaluronidase and hemorrhagic action and reduces
of the lethality of the venomofC. adamenteus (119, 120).Additionally,
the synthetic compound 37 showed PLA2s inhibitory activity of C.
atrox venom (164). The flavones pectolinarigenine (39) and
hispiduline (40), isolated from A. integrifolia (Verbenaceae) from
Brazil (state of Roraima), partially inhibited the PLA2s activities (20
and 15% respectively) andHAases inB. atrox venomwith 60 and 40%
inhibition, respectively (166) (Figure 6 and Table 3).
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Anotherprominent representative ismorelloflavone (41),which
is a dimeric flavone isolated from Garcinia madruno (Clusiaceae)
from Colombia. This compound exhibited IC50 values of 0.48 µM
and 0.38 µM in PLA2s enzymatic activity for aggregate and
monodisperse substrates, respectively. Results of molecular
docking with 41 suggest the formation of hydrogen bonds with
the residues Gly33, Asp49, Gly53 and Thr68 of the toxin, which are
fundamental for inhibition (167) (Figure 6 and Table 3).

Flavonols are among themost studiedanalogues, especiallybecause
they are more recurrent and often isolated in phytochemical
approaches. Aglycone quercetin (42), isolated from Morus nigra
(Moraceae) (117), Phyllanthus klotzschianus (Phyllanthaceae) (103)
and Erythroxylum ovalifolium (Erythroxylaceae) (168), have been
shown to be potent inhibitors of edema, proteolytic activity and
lethality induced by the venom of the snakes B. jararacussu, L. muta
and B. jararaca, respectively. Compound 42, of synthetic origin, was
also able to inhibit the PLA2s activity ofD. russelli (IC50 2 µM) andN.
najavenoms(maximuminhibitionof40%)(169).Theresultsobtained
TABLE 2 | Hydroxycinnamic acids (18–25) and tannins (26–33) with antivenom properties.

N° Compound Plant Activity inhibited Venom or
toxin

Snake Reference

18 rosmarinic acid Cordia
verbenaceaL,
Argusia
argenteaL

enzimatic, edematogenous,
myotoxicity, hemorrhagic,
hidrolytic fibrogenolysis

Venom,
BthTX-I,
BthTX-II
(PLA2), SVMP

B. jararacussu, Trimeresurus flavoviridis, Gloydius
blomhoffii, Bitis arietans, C. atrox, Agkistrodon bilineatus,
Deinagkistrodon acutus, Protobothrops flavoviridis

(122–125)

19 caffeic acid - reduction in plasma
fibrogen, myotoxic, muscle
damage, cytotoxicity

Venom,
SVMP, PrTX-I
(PLA2)

B. pirajai, C. d. cumanensis (157, 162)

20 triacontyl p-coumarate
(PCT)

Bombacopsis
glabraRB

reduction in plasma
fibrogen, coagulant,
myotoxicity

Venom, SVMP Bothropoides pauloensis (121)

21 p-coumaric acid - enzimatic PLA2 D. r. pulchella (156)
22 chlorogenic acid Vernonia

condensata
lethality, enzimatic Venom, PLA2 B. jararaca, D. russelii (103)

23 cynarin Cynara
scolymus

lethality Venom B. jararaca (103)

24 ferulic acid Baccharis
uncinellaA

enzimatic, edematogenous,
cytotoxicity

PLA2 C. d. terrificus, C. d. cumanensis (112, 162)

25 propylgallate - enzimatic, cytotoxicity,
myotoxicity

Venom C. d. cumanensis (162)

26 tannic acid - enzimatic, hemorrhagic,
lethality, creatine kinase
reduction

Venom,
HAase

C. adamenteus (120)

27 ellagic acid Casearia
sylvestrisL

enzimatic, edematogenous,
myotoxicity

Venom, PLA2 B. jararacussu (109)

28 3`-O-methyl ellagic acid C. sylvestrisL edematogenous,
myotoxicity

Venom, PLA2 B. jararacussu (109)

29 casuarictin Laguncularia
racemosaL

edematogenous,
myonecrosis

PLA2 C. d. terrificus (131)

30 pentagalloylglucopyranose Mangifera
indicaSK

enzimatic PLA2, HAase,
LAAO

Calloselasma rhodostoma, N. n. kaouthia (133)

31 umbelliferone - edematogenous,
inflammatory, platelet
aggregation

Venom, PLA2 B. neuwiedi (163)

32 (+)-alternamin Murraya
alternansA

hemorrhagic Venom T. flavoviridis (134)

33 bergapten Dorstenia
brasiliensis

lethality Venom B. jararaca (103)
May 2022 | Volume 13 | Art
L, leaves; RB, root bark; A, aerial; SK, seed kernels. Hyaluronidase: HAase; L amino acid oxidase: LAAO; Phospholipase A2: PLA2; Metalloproteinase: SVMP.
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in the studyofCotrimet al. (2011) showed thepotential of42 to inhibit
the PLA2s activity ofD. russelii venom, as well as inhibitingC. durissus
venom-induced platelet-aggregation and myotoxicity by
approximately 40%. This compound completely inhibited the
activity of purified HAases from the venom of N. naja (170, 171)
(Figure 6 and Table 3).

In addition to this, kaempferol (43) showedantivenompotential
(120), as well as the flavonoids fisetin (44) and myricetin (45) of
synthetic origin, which presented inhibitory potential against the
PLA2s ofC. atrox venom. Compound 45 was also active, exhibiting
an IC50 value of 150 µM and 1 µM for inhibition of B. atrox venom
proteolytic and hemorrhagic activities, respectively (172). In the
same study, the glycosilated flavonol quercitrin (46), which is of
synthetic origin, also showed inhibitory potential against PLA2s of
C. atrox venom. In addition, compound 46, isolated from the leaves
of Brownea rosa-de-monte (Fabaceae) from Panama, showed high
inhibition of the coagulant and hemorrhagic effects of the venomof
B. asper. Furthermore, a 0.1 µM concentration of 43 extended the
plasma coagulation time by two to six times (94).

Another glycosilated flavonol, quercetin-3-O-rhamnoside (47),
isolated from the species Euphorbia hirta (Euphorbiaceae) from
India, significantly inhibited (93%)N. najaPLA2s evaluated in vitro
using egg yolk as a substrate, and also inhibited HAases and
hemolytic activity (173). In addition, edema and lethality were
reduced, prolonging the lifespan of the mice (173). Rutin (48)
inhibited the hemorrhagic activity ofL.muta venom in vivo by 28%
(168) and also showed inhibitory activity (40%) ofPLA2s ofC.atrox
venom (164) (Figure 6 and Table 3).
Frontiers in Immunology | www.frontiersin.org 13
Taxifolin (49), a flavanonol of synthetic origin, exhibited
potential for inhibition of the PLA2s enzyme of C. atrox venom
(164). Some papers have already reported flavan-3-ols as potential
antivenom substances. Flavan-3-ol catechin (50), isolated from the
stem of Scolopia chinensis (Salicaceae) from China, also showed
inhibitory activity (16%) against snake venom phosphodiesterase I
(PDE I) (110). This substance also showed PLA2s inhibitory
activity of C. atrox venom, and is of synthetic origin (164).
Flavan-3-ol esterified with gallic acid, gallocatechin (51), isolated
from the leaf extract of Schizolobium parahyba (Fabaceae) from
Brazil (state of Minas Gerais), neutralized the biological and
enzymatic activities of venoms and toxins isolated from B.
jararacussu and B. neuwiedi (93). Compound 51 exhibits
efficient inhibition of hemorrhagic and fibrinogenolytic activity
of isolated SVMPs (Bjussu-MP-I, Bjussu-MP-II). Gallocatechin
also inhibited the myotoxic activity of B. alternatus venom and
BnSP-6 (Lys49 PLA2s of B. neuwiedi) (93). Epigallotechin gallate
(52), abundant in Ilex paraguariensis (yerba mate), was
commercially acquired and evaluated for its PLA2s enzymatic
inhibition ability in vitro using egg yolk as a substrate. In addition,
the compound decreased the cytotoxic effect induced by a
myotoxic PLA2s in vitro of the venom of C. durissus, with an
inhibitory activity (IC50 = 0.38 µM). Results show that 52 is
considered a potential antmyotoxic agent (162).

Chalcone butein (53), isolated from Butea monosperma
(Fabaceae), inhibited the activity of daboxin P, a PLA2s, with
an IC50 value of 541 µM. In addition, this substance inhibited the
PLA2s activity of the raw venom (5 µg/ml) of N. naja (100%), B.
FIGURE 6 | Chemical structures of snakebite treatment compounds 34-60.
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caeruleus (49%), D. russelii (72%) and E. carinatus (47%) at a
concentration of 1,200 µM (174) (Figure 6 and Table 3).

Isoflavonoids and Derivatives
When analyzing the effect of the isoflavone harpalycin 2 (54),
isolated from the leaves of Harpalyce brasiliana (Fabaceae) from
Frontiers in Immunology | www.frontiersin.org 14
Brazil (state of Ceará) and used in folk medicine as an anti-
inflammatory for the treatment of snakebites, promising
activities were found. Compound 54 inhibited the enzymatic
activity and edematogenic and myotoxic effects of PLA2s from B.
pirajai, C. durissus and N. naja venoms. Piratoxin 3 (PrTX-III)
(B. pirajai venom) was inhibited by 59%, C. durissus venom by
TABLE 3 | Flavonoids (34-53) and isoflavonoids and derivates (54-60) with antivenom properties.

N° Compound Plant Activity inhibited Venom or
toxin

Snake Reference

34 hesperetin Citrus sinensisP enzimatic SVSP C. simus (118, 165)
35 pinostrobin Renealmia alpiniaL enzimatic, myotoxicity,

proteolytic, hemolytic,
coagulant

Venom,
PLA2

C. d. cumanensis, B. asper (104)

36 hesperidin C. sinensis enzimatic, hemorrhagic,
lethality

Venom,
HAase

C. adamenteus (103)

37 apigenin - enzimatic, hemorrhagic,
lethality

Venom,
HAase

C. adamenteus, C. atrox,
N. n. sputatrix

(119, 120,
164)

38 luteolin - enzimatic, hemorrhagic,
lethality

Venom,
HAase

C. adamenteus, C. atrox,
N. n. sputatrix

(119)

39 pectolinarigenin A. integrifoliaL enzimatic PLA2,
HAase

B. atrox (166)

40 hispidulin A. integrifoliaL enzimatic PLA2,
HAase

B. atrox (166)

41 morelloflavone Garcinia madrunoA enzimatic, coagulant,
myotoxicity, edematogenous

PLA2 C. d. cumanensis (167)

42 quercetin Phyllanthus klotzschianusA, Morus nigraL,
Erythroxylum ovalifoliumL, E. subsessileS

enzimatic, edematogenous,
proteolytic, lethality

Venom,
HAase

B. jararacussu, Lachesis
muta, B. jararaca, N. naja

(104, 117,
168, 171)

43 kaempferol - enzimatic, hemorrhagic,
lethality

Venom,
HAase

C. adamanteus, C. atrox,
N. n. sputatrix

(119, 120)

44 fisetin - enzimatic PLA2 C. atrox (164)
45 myricetin - enzimatic, proteolytic,

hemorrhagic
Venom,
PLA2

C. atrox, B. atrox (164, 172)

46 quercitrin - enzimatic PLA2 C. atrox (164)
47 quercetin-3-O-

rhamnoside
Euphorbia hirtaWP enzimatic, hemolytic, lethality,

edematogenous
Venom,
PLA2,
HAase

N. naja (173)

48 rutin E. ovalifoliumS, E. subsessileS hemorrhagic Venom L. muta (164, 168)
49 taxifolin - enzimatic PLA2 C. atrox (164)
50 catechin Scolopia chinensisS enzimatic PDE-I - (110)
51 gallocatechin Schizolobium parahybaL hemorrhagic, fibrogenolytic,

myotoxicity
Venom,
SVMP,
PLA2

B. jararacussu, B. neuwiedi,
B. alternatus

(93)

52 epigallotechin gallate - enzimatic, cytotoxicity PLA2 C. d. cumanensis (162)
53 butein Butea monosperma enzimatic Daboxina

(PLA2)
D. russelii (174)

54 harpalycin 2 Harpalyce brasilianaL enzimatic, edematogenous,
myotoxicity

Venom,
PLA2, PrTX-
III

B. pirajai (95, 96)

55 7,8,3’-trihydroxy-4’-
methoxyisoflavone

Dipteryx alataS myotoxicity, neuromuscular Venom,
BthTX-I

B. jararacussu (98)

56 edunol Brongniartia podalyrioidesR, H. brasilianaR morthality, myotoxicity,
proteolytic, enzimatic

Venom,
PLA2

B. atrox, B. jararacussu (99, 102)

56a bioisostere H. brasilianaSS myotoxicity Venom B. jararacussu (99)
57 cabenegrins A-I Annona crassifloraR lethality Venom B. atrox (176)
58 cabenegrins A-II A. crassifloraR lethality Venom B. atrox (176)
59 wedelolactone Eclipta prostrateSY proteolytic, myotoxicity Venom,

PLA2

B. jararacussu (66)

59a analogue of
wedelolactone

E. prostrateSY myotoxicity Venom B. jararacussu (66)

60 demethylwedelolactone E. albaR myotoxicity PLA2 C. d. terrificus,
B. jararacussu

(177)
May 2022 | Volume 13 | Ar
L, leaves; R, roots; S, stem; SS, semi-synthetic; A, aerial; P, peels; SY, synthesis. Hyaluronidase, HAase; Phosphodiesterase I, PDE-I; Phospholipase A2, PLA2; Metalloproteinase, SVMP;
Serine protease, SVSP.
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79% and N. naja venom by 88%. Edema in mouse paws induced
by exogenous administration of PLA2s showed significant
inhibition by harpalycin 2 (Har2) in the initial stage. In
addition, Har2 also inhibited the myotoxic activity of these
PLA2s (95, 96).

The compound 7,8,3’-trihydroxy-4’-methoxyisoflavone (55),
isolated from Dipteryx alata (Fabaceae) from Brazil (Tocantins),
was able to neutralize neurotoxicity (in phrenic nerve-diaphragm
experiments in mice) and myotoxicity against the venom of B.
jararacussu (98). Pre-incubation of 55 (200 µg/mL) with the
venom attenuated the induced neuromuscular blockade by 84%.
The neuromuscular blockade caused by BthTX-I, the main
myotoxic PLA2s of this venom, was also attenuated by 55.
Histological analysis of the diaphragm muscle incubated with
55 showed that most of the fibers were preserved (only 9% were
damaged) when compared to the venom on its own (50%) (98).

The derivatives of isoflavonoids, pterocarpans and coumestans,
have also been identified as antivenom agents. Pterocarpan edunol
(56), isolated from the root of Brongniartia podalyrioides
(Fabaceae) from Mexico, reduced the lethality of B. atrox venom
by 30% after administration of 3.1 mg/kg in mice that were
previously treated by the same route with an LD50 of the venom
(102). Substance 56 was also isolated from the root of Harpalyce
brasiliana (Fabaceae) from Brazil. It was obtained by synthesis in
order to obtain larger amounts of material for the tests and also
showed antimyotoxic, antiproteolytic and anti-PLA2s properties
(175). These properties could be enhanced by the synthesis of a
derivativeof56, the bioisostere (56a), inwhich theprenyl groupwas
replaced by the benzyl group. Compound 56a was able to fully
inhibit themyotoxicactivity of the venombypre-incubation invitro
with an IC50 of 9.97 µM. Interestingly, at 100mM, this pterocarpan
also inhibited 65% of the phospholipase activity of the venom from
B. jararacussu, as well as more than 80% of its proteolytic
activity (175).

Other prenylated pterocarps in ringA are described as very active
compounds against B. atrox venom, with cabenegrins A-I (57) and
A-II (58) being potential lead compounds (176). These substances
were isolated fromtheplantAnnonacrassiflora (Annonaceae),which
is a popularmedicinal plant from northeastern Brazil that is used for
treating snakebite (176) (Figure 6 and Table 3).

The coumestan, wedelolactone (59) has been isolated from
species such as Eclipta alba and E. prostrate (Asteraceae) in Brazil
(state of São Paulo) (115, 116, 177). In the study by Diogo et al.
(2009), this compound inhibited basic PLA2s-induced myotoxic
activity from the venoms of C. durissus and B. jararacussu
(BthTX-I and II) (177). Compound 59 also inhibited the
proteolytic, PLA2s and myotoxic activity (IC50 = 1 µM) of the
venom of B. jararacussu (178).

Active at 30 µM, the analogue of wedelolactone (59a), which
was synthesized with different patterns of oxygenation in the A
and D rings, antagonized the release of creatine kinase (CK)
induced by the venom of B. jararacussu in skeletal muscle.
Compound 59a also inhibited the myotoxic activity of the
venom with an IC50 of 1 µM, which is similar to that of the
wedelolactone compound (178). In addition, compound 59a was
shown to be less potent for binding to benzodiazepine receptors,
Frontiers in Immunology | www.frontiersin.org 15
indicating that 59a is less susceptible to producing adverse effects
in the central nervous system (178). Given the results, it is possible
that these products may be useful in the therapy of snakebite and
other coagulation disorders (178). Another study proved the
inhibitory effect of the compound demethylwedelolactone (60)
from E. alba, in which it neutralized the myotoxic activity induced
by isolated PLA2s (BthTX-I and II) from C. durissus and B.
jararacussu venom (177) (Figure 6 and Table 3).

Modified Glycosides
The compound 2-(6-benzoyl-b-glucopyranosyloxy)-7-(1a,2a,6a-
trihydroxy-5-oxocyclohex-3-enoyl)-5-hydroxybenzyl alcohol (61),
isolated from the bark and branches ofBennettiodendron leprosipes
and Flacourtia ramontchi (Salicaceae) (used as a folk medicine),
presented 14% inhibition against PDE-I (111). In this same study,
the homaloside D (62) showed activity similar to 61, with 13%
inhibition. Itoside B (63) and itoside F (64), isolated from Itoa
orientalis (Salicaceae), showed 21% and 13% inhibition,
respectively, against PDE-I (111) (Figure 7 and Table 4). Despite
being active, all modified glycosides showed that they possessed
lower potential when compared with other natural product classes.

Two new phenolic glycosides, scoloquinenoside C (65) and
scoloposide C (66), were isolated from the stem of S. chinensis
(Salicaceae) in China. In addition, phenolic glycosides have shown
inhibitory activity against PDE-I from snake venom (110).

Another study also showed inhibitory activity against PDE-I
from snake venom, in which two new phenolic glycosides called
benzoylsalreposide (67) (IC50 of 171 µM) and salireposide (68)
(IC50 of 171 µM) were used. These were isolated from Symplocos
racemosa (Symplocaceae) from Pakistan (147, 179) (Figure 7
and Table 4).

Polyketides
The natural naphthoquinone, lapachol (69), was isolated from
the species Tabebuia impetiginosa (Bignoniaceae) from Brazil
(state of Rio de Janeiro), and has been used as a starting point for
obtaining new bioactive quinones (180). In this same work, an
analogue of this natural compound (69a) showed the ability to
antagonize the proteolytic activity (3-100 µM) and collagenase
activity (10-100 µM) of B. atrox venom. In addition, in vivo pre-
incubation of the venom with compound 69a at concentrations
of 1 mg/kg and 3 mg/kg eliminated the hemorrhage induced by
the venom of B. atrox and, in relation to the venom of B.
jararaca, the inhibition was greater than 70% with 10 mg/kg of
the compound. The authors attributed the protective effect of the
analogue of 69a in the skin to the inhibition of proteolytic
activities and collagenase, i.e., this compound may be
interesting for preventing degradation of the vessels (180).

Another naphthoquinone, isohemigossypolone (70), isolated
from the roots of Pachira aquatica (Malvaceae) from Brazil (state
of Bahia), was able to significantly inhibit the in vitro coagulant
activity of B. pauloensis venom. In in vivo experiments, the
compound was able to significantly inhibit myotoxic activity
caused by B. pauloensis venom, as well as neutralize the
metalloproteinase activity of the whole venom by 70% and of the
isolated SVMP (BthMP) by 40% (149) (Figure 7 and Table 4).
May 2022 | Volume 13 | Article 842576
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Selvanayagam et al. isolated a quinonoid xanthene from the
root bark of the species Ehretia buxifolia (Boraginaceae) from
India (Tamilnadu), which is used as an antidote for E. carinatus
envenomation (86). The compound ehretianone (71) was isolated
from the methanolic extract of the bark of the plant species and
was tested for antivenom activity against envenomations by E.
carinatus in mice. In prophylactic treatment, the dosage of 3.75
mg/kg was administered 30 min before venom injection and
mortality was reduced by 35% when compared to the controls.
Frontiers in Immunology | www.frontiersin.org 16
In the curative study, the same dosage of the compound gave
significant protection up to 5 min after the injection of venom.

Melanin (72) extracted from black tea is a non-hydrolyzed
complex of tea polyphenols and has been tested for its effect on
venoms of the snakes A. contortrix, A. halys and C. atrox. In in
vitro assays, there was a 43% decrease in the specific activity of
the PLA2s enzyme and, in in vivo experiments, there was a
significant increase in the survival time of mice after
administration of the venoms of the three snake species (150).
TABLE 4 | Modified glycosides (61-68) and polyketides (69-72) with antivenom properties.

N° Compound Plant Activity
inhibited

Venom
or toxin

Snake Reference

61 2-(6-benzoyl-b-glucopyranosyloxy)-7-(1a,2a,6a -trihydroxy-
5-oxocyclohex-3-enoyl)-5-hydroxybenzyl alcohol

Bennettiodendron leprosipesB,
Flacourtia ramontchiBC

enzimatic PDE-I - (111)

62 homaloside D B. leprosipesB, F. ramontchiBC enzimatic PDE-I - (111)
63 itoside B Itoa orientalisB enzimatic PDE-I - (111)
64 itoside F I. orientalisB,BC enzimatic PDE-I - (111)
65 scolochinenoside C S. chinensisS enzimatic PDE-I - (110)
66 scoloposide C S. chinensisS enzimatic PDE-I - (110)
67 benzoylsalireposide Symplocos racemosaWP enzimatic PDE-I - (147)
68 salireposide S. racemosaWP enzimatic PDE-I - (147)
69 lapachol - enzimatic Venom B. jararaca, B. atrox (180)
69a analogue of lapachol - enzimatic Venom B. jararaca, B. atrox (180)
70 isohemigossypolone Pachira aquaticaR injury Venom B. pauloensis, B. moojeni (149)
71 ehretianone Ehretia buxifoliaSB morthality Venom E. carinatus (86)
72 melanin Thea sinensis Linn.BT enzimatic Venom,

PLA2

A. contortrix laticinctus, A.
halys blomhoffii, C. atrox

(150)
May 2022 | Volume 13 | Art
SB, stem bark; R, roots; S, stem; WP, whole plant; B, bark; BC, branches; BT, black tea; Phosphodiesterase I, PDE-I; Phospholipase A2, PLA2.
FIGURE 7 | Chemical structures of snakebite treatment compounds 61-72.
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Terpene Compounds
The sesquiterpene ar-turmerone (73), isolated from the roots of
Curcuma longa (Zingiberaceae) from Brazil (state of Minas
Gerais), was able to neutralize the hemorrhagic activity present
in the venom of B. jararaca and reduced the lethal effect of the
venom of C. durissus in rats by 70% (108). Another study
performed with this compound and the venom of B. alternatus
found that, in the first treatment, the hemorrhagic activity
presented a reduction of the hemorrhagic halo of 3.82 mm by
0.31 mm, and also decreased edema. In addition, the necrosis
that had occurred was reversed in all animals in a period of 96 h
(137) (Figure 8 and Table 5).

In relation to the diterpenes, (E)-17-ethyliden-labd-12-ene-
15,16-dial (labdane dialdehyde) (74), isolated from the species C.
zedoaroides (Zingiberaceae) from Thailand, showed an increase
in the antagonistic antivenomous effects of (O. hannah) in a
dose-dependent manner up to 32 µg/mL in vitro, and, when pre-
incubated for 1 h, complete neutralization of the activity of the
venom (from O. hannah) occurred (106). In addition,
intraperitoneal injection of 74 at 100 mg/kg showed a
significant effect of > 80% on the survival rate. Lattmann et al.
(2010) showed that 74 was able to antagonize the action of snake
venom at the neuromuscular junction, protecting mice from the
lethal effects of raw venom (106). In this way, this compound
acted as a mold for molecular recognition that was able to guide
the dialdehyde irreversibly to the peptide target of the venom,
and the complex that was formed was unable to block the
nAChRs (Figure 8 and Table 5).

In a subsequent study, Salama et al. isolated the diterpenes 74,
labdane lactone (75) and labdane trialdehyde (76) from species of
Frontiers in Immunology | www.frontiersin.org 17
the genus Curcuma (Zingiberaceae), also in Thailand (105).
Compounds 75 and 76 (10 µg/mL), isolated from C. antinaia and
C. zedoaroides, showed 83% and 62% inhibition, respectively, against
O. hannah venom. Substance 76, obtained from C. contravenenum
extract, maintained diaphragmatic contraction almost in its entirety
with 99% protection, and is thus considered the best antivenom and
anti-neurotoxic agent, followed by 74 and 75 (105).

The compoundneo-clerodane (77), isolated fromtheaerialparts
of the plantBaccharis trimera (Asteraceae) fromBrazil (state of São
Paulo), significantly inhibited the hemorrhagic activity of venoms
from Bothrops spp. and of the isolated SVMP Bjussu-MP-I from B.
jararacussu venom (114). This compound was also able to inhibit
the proteolytic activity of crude venom (70%) and classes of P-I and
III SVMPs by over 80%, and also presented antimiotoxic and
antiedematogenic properties induced by the venom of B.
jararacussu (114) (Figure 8 and Table 5).

Within the subclass of triterpenes, lupeol acetate (78) is isolated
fromthe roots ofH. indicus (Asclepiadaceae) and is found in several
other plants that are studied regarding antivenom activity. This
compound significantly neutralized lethality, hemorrhagic,
defibrinogenation, edematogenic and PLA2s activities induced by
D. russelii venom. It also neutralized lethality, cardiotoxicity,
neurotoxicity and respiratory alterations caused by N. kaouthia
venom. Compound 77 induced greater protection against the
venoms of D. russelii and N. kaouthia when administered
together with the antivenom compared to the action of treatment
only with antivenom (155).

Two triterpenes were isolated from the roots of Clematis gouriana
(Ranunculaceae) located in India, namely 11-deoxoglycyrrhetinic
acid (79) and the new glycosidic terpene called SID 249494135
FIGURE 8 | Chemical structures of snakebite treatment compounds 73-97.
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(80), both of which showed efficacy in inhibiting the enzyme PLA2s
at the concentration of 1 µg/mL of the venom from N. naja in vitro.
In silico assays showed that both compounds were well inserted in the
active site of PLA2s (135).

Oleanolic acid (81) is the main metabolite found in several
medicinal plants used in the treatment of inflammatory
disorders. This metabolite was able to inhibit 20 µM PLA2s
(> 90% and 83%) of the venom of D. russeli and N. naja with an
IC50 of 3.08 and 7.78 µM, respectively (181). In addition, 81
inhibited indirect hemolytic activity and PLA2s-induced mouse
paw edema in vivo. Further studies were conducted with the
PLA2s of D. russelii venom and revealed that inhibition by 81 is
Frontiers in Immunology | www.frontiersin.org 18
not dependent on the substrate and calcium, and causes an
inhibition that is irreversible. Results presented by Dharmappa
et al. (181) also showed the inhibition of edema induction in a
dependent concentration, in which, at 15 µM, edema rates
decreased significantly, thus corroborating previous results and
suggesting a strong correlation between the lipolytic and pro-
inflammatory activity of 81 (181). This compound showed
inhibition of proteolytic activity induced by the Batx-I SVMP
from B. atrox venom, with an IC50 of 223.0 µM and hemorrhagic
activity with an IC50 of 1 µM (172). In this same study, 81
displayed reductions in the formation of edema induced by
metalloprotease at a dose-dependent concentration.
TABLE 5 | Terpenes (73-97) with antivenom properties.

N° Compound Plant Activity inhibited Venom
or toxin

Snake Reference

73 ar-turmerone Curcuma longaR hemorrhagic, lethality, edematogenous, necrosis Venom D. r. puchella,
B. jararaca, C. d.
terrificus

(108, 137)

74 (E)-17-ethyliden-labd-12-ene-
15,16-dial (labdane dialdehyde)

C. zedoaroidesRZ lethality Venom B. asper and
B. atrox

(106)

75 labdane lactone C. antinaiaRZ, C.
contravenenumRZ, C.
zedoaroidesRZ

lethality Venom O. hannah (105)

76 labdane trialdehyde C. antinaiaRZ, C.
contravenenumRZ, C.
zedoaroidesRZ

diaphragmatic, neurotoxic Venom O. hannah (105)

77 neo-clerodane B. trimeraA hemorrhagic Venom,
SVMP

O. hannah (114)

78 lupeol acetate H. indicusR lethality, hemorrhagic, desfibrogenation,
edematogenous, enzymatic, cardiotoxicity,
neurotoxicity

Venom,
PLA2

B. neuwiedi,
B. jararacussu

(155)

79 11-deoxoglycyrrhetinic acid Clematis gourianaR enzimatic PLA2 D. russelii,
N. kaouthia

(135)

80 SID 249494135 C. gourianaR enzimatic PLA2 D. russelii,
N. kaouthia

(135)

81 oleanolic acid B. uncinellaA enzimatic, proteolytic, hemorrhagic,
edematogenous

PLA2,
SVMP

D. russelii, N. naja,
B. atrox,
C. d.terrificus

(112, 172,
181)

82 betulinic acid - proteolytic Venom B. atrox (172)
83 ursolic acid B. uncinellaA proteolytic, enzimatic, edematogenous Venom,

PLA2

B. atrox, C. d.
terrificus

(112, 172)

84 quinovic acid Mitragyna stipulosaB enzimatic PDE-I - (183)
85 quinovin glycoside C M. stipulosaB enzimatic PDE-I - (183)
86 arjunolic acid Combretum leprosumR lethality, hemorrhagic, myotoxicity Venom B. jararacussu,

B. jararaca
(139)

87 friedelin E. ovalifoliumS hemorrhagic Venom L. muta (168)
88 lupeol E. subsessileS proteolytic, hemolytic, hemorrhagic Venom L. muta (168)
89 betulin Dipteryx alataB neuromuscular blocked Venom B. jararacussu (97)
90 lupenone D. alataB neuromuscular blocked Venom B. jararacussu (97)
91 28-OH-lupenona D. alataB neuromuscular blocked Venom B. jararacussu (97)
92 b-amyrin Apuleia leiocarpa lethality Venom B. jararaca (103)
93 ikshusterol 3-O-glucoside C. gourianaR enzimatic Venom,

PLA2

N. naja (136)

94 b-sitosterol Pluchea indicaR lethality, hemorrhagic, defibrogenation,
cardiotoxicity, neurotoxicity, edematogenous,
enzimatic

Venom,
PLA2

D. russelii,
N. kaouthia

(113)

95 stigmasterol P. indicaR lethality, hemorrhagic, defibrogenation,
cardiotoxicity, neurotoxicity, edematogenous,
enzimatic

Venom,
PLA2

D. russelii,
N. kaouthia

(113)

96 corticosterone - enzimatic PLA2 D. russelii (156)
97 bakuchiol Psoralea corylifolia enzimatic, coagulant Daboxin

(PLA2)
D. russelii (174)
May 202
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R, roots; S, stem; SS, semi-synthetic; P, purchased (synthetic); A, aerial; B, bark; RZ, rhizomes. Phosphodiesterase I: PDE-I; Phospholipase A2: PLA2; Metalloproteinase: SVMP.
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In addition, two other pentacyclic triterpenoids, betulinic acid
(82) and ursolic acid (83) of synthetic origin, also inhibited the
proteolytic activity of Batx-I with IC50 values of 115 and 357 µM,
respectively. Additionally, inhibition of hemorrhagic activity was
observed with an IC50 of 345 and 1.077 µM for 82 and 83 (172).
Zalewski et al. (2011) evaluated the fraction composed of substances
82 and 83, which were extracted from the aerial parts of the plant
Baccharis uncinella (Asteraceae), and demonstrated strong potential
for eliminating the PLA2s activity and PLA2s-induced edematogenic
activity of C. durissus venom (112). Compound 83was also effective
in inhibiting the PLA2s enzyme of D. russelii venom and presented
an IC50 of 12 µM and inhibition of hemolytic activity of 87%,
besides being effective against N. naja venom with an IC50 of 18 µM
and 73% in inhibiting the same activity for both at a concentration
of 15 µM. It was also able to antagonize the induction of edema
caused by D. russelii venom at a concentration of 12 µM (182)
(Figure 8 and Table 5).

The compounds quinovic acid (84) and quinovin glycoside C
(85), isolated from the stem of the plant Mitragyna stipulosa
(Rubiaceae), from Cameroon, showed significant inhibitory
activity against PDE-I of snake venom with IC50 values of
0.166 and 0.374 mM, respectively (183).

Another compound was effective in neutralizing the venoms of
Bothrops species; arjunolic acid (86), isolated from the roots of
Combretum leprosum (Combretaceae) from Brazil (state of Ceará),
was able to reduce lethality by more than 80% in the oral
pretreatment performed, and it neutralized the myotoxic effect of
the venom of B. jararacussu. Pre-incubation and pre-treatment with
30 mg/kg of 86 reduced the hemorrhagic activity of B. jararaca
venom to 12% and 58%, respectively. In addition, at some
concentrations, 86 inhibited some enzymatic activities, such as
PLA2s, collagenase, proteolytic and hyaluronidase, of B. jararacussu
and B. jararaca venoms at a dose-dependent concentration (139).

Isolated from the stem of the species of E. ovalifolium and E.
subsessile (Erythroxylaceae) from Brazil (state of Rio de Janeiro),
the compound friedelin (87) inhibited the hemorrhagic activity
of the venom by 20%, and lupeol (88) inhibited the proteolytic
and hemolytic activity of the venom of L. muta to 5% and was
also able to inhibit the hemorrhagic activity by 28%, which are all
modest activities (168).

The study by Ferraz et al. showed the efficacy of triterpenoids
isolated from D. alata (Fabaceae) from Brazil (state of Tocantins),
which were tested (0.2 mg/mL) against the irreversible
neuromuscular blockade caused by B. jararacussu venom: 88
(70%), betuline (89) (68%), lupenone (90) (45%) and 28-OH-
lupenone (91) (54%) (97). In addition, compounds 89 (39%) and
90 (49%) showed significant protection against C. durissus
envenomations of the neuromuscular junction. In addition to
these, the compound b-amyrin (92), isolated from Apuleia
leiocarpa (Fabaceae) from Brazil (state of Rio de Janeiro),
resulted in the survival of 60% of the animals that were tested
48 h after being given the venom of B. jararaca (103).

Within the subclass of the steroids, ikshusterol 3-O-glucoside
(93), isolated from C. gouriana (Ranunculaceae) from India,
showed a moderate inhibitory activity (30%) that was capable of
neutralizing the action of N. naja venom at a concentration of
Frontiers in Immunology | www.frontiersin.org 19
1,000 µg/mL. In addition, in vitro assays showed a good ability to
inhibit the PLA2s (136). In in vitro studies, the mixtures of the
compounds b-sitosterol (94) and stigmasterol (95), extracted
from the roots (100 µg) of Pluchea indica (Asteraceae) in India,
showed protection against lethality, hemorrhagic activity,
defibrinogenation, cardiotoxicity, neurotoxicity, respiratory
changes, and inhibition of the activity of PLA2s and the edema
induced by the venom of D. russelii and N. kaouthia (113).

The synthetically obtained corticosteroid corticosterone (96)
showed effective inhibitory activity of the enzyme PLA2s present
in the venom of D. russelii with an IC50 of 30.4 µM (156).
Bakuchiol (97), a synthetic meroterpenoid, inhibited the activity
of the main PLA2s enzyme, daboxin P, with an IC50 of 744 µM
(174) (Figure 8 and Table 5).

Saponins
Some saponins have also been reported as snake venom inhibitors.
The triterpene saponin bredemeyeroside B (98), isolated from the
roots ofBredemeyerafloribunda (Polygalaceae) fromBrazil (state of
Ceará), showed inhibitory action against the lethality of the venom
of B. jararaca at a dose of 100 mg/kg (orally), resulting in the
survival of 90% of the animals tested (148). From this same species,
bredemeyroside D (99) was isolated, which was also able to show
inhibitory action of the lethality of the venom of B. jararaca (100%
of the mice after 6 h) under the same conditions carried out in the
previous study (184). Glycyrrhizin (100), extracted from the roots
of the plantGlycyrrhiza glabra (Fabaceae) from Brazil (state of São
Paulo), had an in vitro inhibitory effect on human fibrogen
coagulation induced by B. jararaca venom (IC50 1.2 mM),
hydrolytic activity in vitro (IC50 0.47 mM) and inhibitory activity
on platelet aggregation in vitro (IC50 0.33mM) (101). Additionally,
in in vivo assays, compound 98 exhibited significant inhibition of
86% of thrombus weight against venom doses and eliminated
venom-induced bleeding with co-administration of the substance
together with antivenom (148) (Figure 9 and Table 6).

The compounds macrolobin A (101) and macrolobin B (102)
were isolated from the bark of Pentaclethra macroloba
(Fabaceae) from Brazil (state of Amapá), and significantly
inhibited the hemorrhagic and the fibrogenolytic activities of
Bothrops venoms and the SVMP Bjussu-MP-I from B.
jararacussu venom, and were shown to be dose dependent
(100). Compound 101 was more promising, with proteolytic
activity of raw venom and fibrin SVMPs; classes I and III were
inhibited by up to 90% and 80%, respectively. Regarding
coagulation activity, 101 was able to completely inhibit B.
jararacussu venom and the thrombin-like enzyme Bjussu-SP-I
afterincubation periods of 1 h and 30 min, respectively (100).

The glycosidic derivatives of quinovic acid, first isolated from
the bark of Bridelia ndellensis (Euphorbiaceae) collected in
Cameroon (Ngaoundre), showed inhibitory activities against
the enzyme PDE-I (phosphodiesterase-I). The compounds of
quinovic acid-3-O-a-L-rhamnopyranoside (103), quinovic acid-
3-O-b-D-fucopyranoside (104) and quinovic acid-3-O-b-D-
glucopyranosyl (1 ! 4)-b-D-fucopyranoside (105) were able
to significantly inhibit the enzyme with an IC50 of 85 µM, 85 µM,
and 75 µM, respectively (185) (Figure 9 and Table 6).
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Other Compounds
Fozing et al. (186) demonstrated the inhibition of the enzyme
phosphodiesterase I (of commercial origin) by compounds obtained
from the leaves of Morus mesozygia (Moraceae). The compounds
Frontiers in Immunology | www.frontiersin.org 20
mesozygin B (106) and artonine I (107) showed the most potent
activity, with an IC50 of 8.9 µM and 15.4 µM, respectively (186).

Other compounds have also shown effective inhibitory
activity of enzymes present in snake venom. Stilbene
TABLE 6 | Saponins (98-105) and other compounds (106-114) with antivenom properties.

N° Compound Plant Activity inhibited Venom or
toxin

Snake Reference

98 bredemeyeroside B Bredemeyera
floribundaR

lethality Venom B. jararaca (148)

99 bredemeyeroside D B. floribundaR lethality Venom B. jararaca (184)
100 glycyrrhizin Glycyrrhiza glabraR coagulation, hidrolytic, platelet

aggregation
Venom B. jararaca (101)

101 macrolobin A Pentaclethra
macrolobaB

hemorrhagic, fibrogenolytic Venom,
SVMP

B. neuwiedi, B.
jararacussu

(100)

102 macrolobin B P. macrolobaB hemorrhagic, fibrogenolytic Venom,
SVMP

B. neuwiedi, B.
jararacussu

(100)

103 quinovic acid-3-O-a-L-rhamnopyranoside Bridelia ndellensisB enzimatic PDE-I - (185)
104 quinovic acid-3-O-b-D-fucopyranoside B. ndellensisB enzimatic PDE-I - (185)
105 quinovic acid-3-O-b-D-glucopyranosyl (1 ! 4)-b-D-

fucopyranoside
B. ndellensisB enzimatic PDE-I - (185)

106 mesozygin B M. mesozygiaL enzimatic PDE-I - (186)
107 artonin I M. mesozygiaL enzimatic PDE-I - (186)
108 resveratrol - enzimatic PLA2 D. r. puchella (156)
109 gramine - enzimatic PLA2 D. r. puchella (156)
110 mimosine - enzimatic, myotoxicity Venom,

HAase
D. russelii (174)

111 2-Methylpropyl phthalate Emblica officinalisR myotoxicity Venom N. kaouthia, V.
russelii

(188)

112 curcumine - enzimatic HAase N. naja (171)
113 4-nerolidylcatechol Piper

umbellatumBC,
P. peltatumBC

enzimatic PLA2, SVSP B. asper (189)
B. jararacussu

114 1-hydroxytetratriacontan-4-one Leucas asperaL venom action Venom N. n. naja (138)
May 2
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L, leaves; R, roots; B, bark; BC, branches. Hyaluronidase, HAase; Phosphodiesterase I, PDE-I; Phospholipase A2, PLA2; Metalloproteinase, SVMP; Serine protease, SVSP.
FIGURE 9 | Chemical structures of snakebite treatment compounds 98-114.
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resveratrol (108) and an aliphatic derivative polyamine gramine
{3-[3-(dimethylaminomethyl)-1H-indol-7-YL] propan-1-ol}
(109) were tested for the inhibition capacity of the PLA2s
enzyme of D. russelii venom and presented an IC50 of 43.4 µM
and 50.4 µm, respectively (156). In this same work, studies were
carried out to verify the interactions of PLA2s with the
compounds, in addition to determining the structures of PLA2s
complexes with these compounds.

In in vitro experiments, the amino acid mimosine [b-3-(3-
hydroxy-4-oxopyridyl) alpha-amino-propionic acid] (110)
inhibited HAases (DRHyal-II) in a dose-dependent manner, and
its activitywithcomplete inhibitionat 24µMandan IC50 value of12
µM. In addition, 110 also neutralized the same activity ofD. russelii
venom in a dose-dependent manner. The hyaluronidase activity of
the venomwas eliminated at 1000µMwith an IC50 value of 500µM.
In in vivo experiments, 110 inhibited DRHyal-II-potentiated
myotoxicity of the myotoxin VRV-PL-VIII (myotoxic PLA2s)
(187). In the study by Devi et al., this substance, which was
obtained as a synthetic product, inhibited the in vitro activity of
thePLA2s enzymeof the rawvenom(5µg/ml) ofN.naja (47.0%),E.
carinatus (47.0%) and D. russelii (27%) at a concentration of 1,200
µM. Additionally, compound 110 inhibited the PLA2s activity of
daboxin P with an IC50 value of 674.3 µM, thus indicating its
anticoagulant property (174).

Another study confirmed the phytomedicinal value of
diisobutyl pthalate, 2-methylpropyl phthalate (111), present in
the root of Emblica officinalis (Phyllanthaceae) from India, which
antagonized the myotoxicity induced by the venom of D. russelii,
shown by the decreased levels of the myotoxicity marker
enzymes CPK and LDH (188). The inhibitory effect of the
bioactive polyphenol curcumin (112) on the activity of the
enzyme HAases purified from the venom of N. naja showed
91% inhibition of hyaluronidase (171).

In addition, plant extracts used in folk medicine were evaluated
for inhibition of the enzymatic activity of myotoxin I and a PLA2s
from B. asper venom. The compound 4-nerolidylcatechol (113),
isolated from Piper umbellatum and P. peltatum (Piperaceae) from
Costa Rica (Upala and Guapiles), inhibited the PLA2s activity of
myotoxin I of B. asper and B. atrox at a time-and concentration-
dependent dose (IC50 of 1 mM). This compound was also able to
inhibit PLA2ss activity of group I of pseudexin and Micrurus
mipartitus venom, and of group II as Bothrops toxins (189). Pre-
incubation of 113 with the myotoxins of the two snakes showed a
reduction in myotoxic activity by approximately 50% and the
inflammatory response was significantly reduced in both (189).
Additionally, when pre-treatedwith 0.4mg of 113 up to 1 h prior to
toxin administration, edema reduction by approximately one third
was observed in in vivo studies. ForNúñez et al., this compoundalso
showed the ability to inhibit the proteolytic activity of trypsin on
casein by 75%, in addition to eliminating in in vitro tests the pro-
coagulant actionofone SVSP thatwas isolated fromthe venomofB.
jararacussu (189) (Figure 9 and Table 6).

The fatty alcohol 1-hydroxytetratriacontan-4-one (114),
isolated from the leaves of Leucas aspera (Lamiaceae), showed
strong activity against the venom of N. naja in in vivo tests, with a
mean effective dose (ED50) of 34.47 mg and full effective dose
Frontiers in Immunology | www.frontiersin.org 21
(ED100) of 68.93 mg per animal. A 100% survival rate was also
proven when envenomed mice were treated at the same time with
114, at the dosage of 75 mg per animal, in addition to significantly
attenuating the antioxidant activity induced by the venom and the
activity of lipid peroxidase in different organs (138).

Proteins and Peptides
An acid glycoprotein, isolated from the speciesWithania somnifera
(Solanaceae) from India and namedWSG, has been identified as a
possible inhibitor of snake venoms. In experiments with N. naja
venom, the compoundwas able to inhibit PLA2s in vitro (ratio 1:2),
and inhibited edema induction (concentration 1:2), and also
neutralized the phospholipase-induced myotoxicity of Indian
snake venom (N. naja) at the molar ratio of 1:2 (PLA2s:WSG)
(153). In other studies, the same compound also inhibited the
catalytic activity of different PLA2s isoforms of N. naja venom,
increased the survival time of mice (152) and inhibited the activity
of the HAases enzyme of the venoms ofN. naja andD. russeliiwith
an IC50 of 52.0 µg and 36.0 µg, respectively (151).

Turmerin, a protein of the Indian species C. longa
(Zingiberaceae) (common name: turmeric) was effective in the
inhibition of cytotoxicity in a dose-dependent manner, and also
effectively inhibited the edema induced by phospholipase, which
is a toxic venom of N. naja (PLA2s), in a molar ratio of 1:2.5
PLA2s:turmerin, also in a dose-dependent manner (107).

A study with different snake species showed that the protein
concanavalin-A inhibited the 5’AMPenzymeof the speciesN.naja,
N. kauthia, N. melanoleuca, A. halys, B. asper, B. orientis and
Oxyuranus scutellatus with an IC50 of 0.2-1.2 µM (61).
PERSPECTIVES FOR THE
BIOPROSPECTION OF ANTIVENOM
NATURAL PRODUCTS

Historically, natural products have played a key role in drug
discovery and are invaluable resources that can contribute,
especially as adjuvant inhibitors, to neutralizing the action of
snake venom toxins. However, difficulties are still encountered
with natural products in the process of developing new drugs,
despite numerous examples of successful applications throughout
history. These difficulties, which are centered on low yields,
difficulties in purification, as well as high rates of rediscovery, are
a recurring problem in research with natural products.

Recently, new tools for the study of natural products have
been introduced, especially molecular biology techniques, which
allow access to silenced or orphaned biosynthetic gene clusters;
however, such applications have been mostly applied in
microbial chemistry. Solutions for this type of study with
plants have also been implemented, particularly based on
transcriptomics (190). In addition, more sensitive analytical
methods have been developed, which permit more
comprehensive metabolomic analysis, which can be combined
with new data analysis tools such as GNPS (Global Natural
Products Social Molecular Networking) (190).
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Although the vast majority of inhibitors of snake toxins
originate in plants, given the lack of information on the natural
products of these organisms against snake venom, microbial
chemistry still represents a potential area to be explored.
Another untapped potential target is marine organisms (also
including microorganisms), which have already proven to be
valuable sources of new lead compounds (191).

It is worth noting that natural products are still in second
place, when compared to synthetic compounds, especially those
that are easily obtained and have proven human safety via
clinical trials. In particular, the repositioning of drugs emerges
as a valuable strategy, especially nowadays due to the SARS-
COV-2019 pandemic, which has forced us to search for new
treatments. In the field of SBEs, much of the efforts focusing on
the auxillary treatment relies on drugs of synthetic origin or
those that have lower production costs. With this, the time
interval between the identification of a potentially useful
molecule and the approval for human use is lower due to the
availability of safety data. Small molecules already provide an p-
talternative application via the reuse of drugs in SBEs. Promising
drug candidates such as batimastat, marimastat and varespladib
have already advanced to phase II and phase III in preclinical
trials (10, 192, 193). In this sense, several natural products and/or
derivatives that have already been approved for human use, and/
or molecules for which the safety is known, but somehow did not
reach the final stages of the drug development, may be good
candidates for future prospecting of toxin inhibitors that can
serve as complementary treatments.

Combined with chemical methods, there is an increasing
demand for methodologies that are capable of adequately
simulating more complex biological conditions in order to better
evaluate the effects of extracts and isolated natural products. Efforts
such as the development of models with zebrafish, and other
organisms, have met both the demands of researchers and the
demands of more ethical laboratory practices. As such, knowledge
regarding the chemical composition of the venom of the snake of
origin is fundamental, since it allows the rationalization of studies
aimed at the isolation of toxins. With the purified toxins, there is the
possibility of their use in assays, as well as the information on
crystalline structures, which aids studies on their mechanism of
action, and also encourages computational research on
structure-activity.
CONCLUDING REMARKS

Discovering and developing molecules as new drug candidates is a
complex long-term task with many obstacles, and this process
involves a high cost. However, history has shown that research on
natural products still hasmuch to contribute to the advancement of
knowledge for solving public health problems, especially those that
are often neglected such as SBEs. Plants have served as important
sources of medicine for snakebite complications, and this is
attributed to the presence of several chemical compounds that are
Frontiers in Immunology | www.frontiersin.org 22
capable of inhibiting venom toxins. In this sense, this review sought
to provide a more comprehensive knowledge of natural inhibitors
isolated fromplants for use against venoms and toxins and, in some
way, contribute to the knowledge of potential options for auxillary
treatment of SBEs.According to the papers analyzed, it was possible
to identify 117 natural inhibitors from around the world that are
commonly used as snake venom inhibitors. These findings deserve
further attention and further studies in pre-clinical trials involving
animals to direct future clinical applications in humans. It is
important to use natural compounds as a combined therapy with
the use of antivenoms to complement and/or improve serum
therapy, thus enabling better neutralization of venom toxins and
a reduction of human suffering caused by SBEs.
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94. Salazar M, Chérigo L, Acosta H, Otero R, Luis SM. Evaluation of Anti-
Bothrops asper Venom Activity of Ethanolic Extract of Brownea
rosademonte Leaves. Acta Pharm (2014) 64:475–84. doi: 10.2478/acph-
2014-0033

95. Ximenes RM, Alves RS, Pereira TP, Araújo RM, Silveira ER, Rabello MM,
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172. Preciado LM, Rey-Suárez P, Henao IC, Pereañez JA. Betulinic, Oleanolic and
Ursolic Acids Inhibit the Enzymatic and Biological Effects Induced by a PI
Snake Venom Metalloproteinase. Chemico-Biological Interact (2018)
279:219–26. doi: 10.1016/j.cbi.2017.12.001

173. Gopi K, Anbarasu K, Renu K, Jayanthi S, Vishwanath BS, Jayaraman G.
Quercetin-3-O-Rhamnoside From Euphorbia hirta Protects Against Snake
Venom Induced Toxicity. Biochim Biophys Acta (BBA)-General Subj (2016)
1860:1528–40. doi: 10.1016/j.bbagen.2016.03.031

174. Devi A, Namsa ND, Doley R. In silico and In Vitro Neutralization of PLA2

Activity of Daboxin P by Butein, Mimosine and Bakuchiol. Int J Biol
Macromolecules (2020) 165:1066–78. doi: 10.1016/j.ijbiomac.2020.09.223

175. Silva AJ, Coelho AL, Simas AB, Moraes RA, Pinheiro DA, Fernandes FF,
et al. Synthesis and Pharmacological Evaluation of Prenylated and
Benzylated Pterocarpans Against Snake Venom. Bioorganic Medicinal
Chem Lett (2004) 14:431–5. doi: 10.1016/j.bmcl.2003.10.044

176. Nakagawa M, Nakanishi K, Darko LL, Vick JA. Structures of Cabenegrins AI
and A-II, Potent Anti-Snake Venoms. Tetrahedron Lett (1982) 23:3855–8.
doi: 10.1016/S0040-4039(00)87726-6

177. Diogo LC, Fernandes RS, Marcussi S, Menaldo DL, Roberto PG, Matrangulo
PV, et al. Inhibition of Snake Venoms and Phospholipases A2 by Extracts
From Native and Genetically Modified Eclipta alba: Isolation of Active
Coumestans. Basic Clin Pharmacol Toxicol (2009) 104:293–9. doi: 10.1111/
j.1742-7843.2008.00350.x

178. Silva NJ, Aird SD. Prey Specificity, Comparative Lethality and Compositional
Differences of Coral Snake Venoms. Comp Biochem Physiol Part C: Toxicol
Pharmacol (2001) 128:425–56. doi: 10.1016/s1532-0456(00)00215-5

179. Abbasi MA, Ahmad VU, Zubair M, Fatima N, Farooq U, Hussain S, et al.
Phosphodiesterase and Thymidine Phosphorylase-Inhibiting Salirepin
Derivatives From Symplocos racemosa. Planta Med (2004) 70:1189–94.
doi: 10.1055/s-2004-835850

180. Strauch MA, Tomaz MA, Monteiro-Machado M, Cons BL, Patrão-Neto FC,
Teixeira-Cruz JDM, et al. Lapachol and Synthetic Derivatives: In Vitro and In
Vivo Activities Against Bothrops Snake Venoms. PloS One (2019) 14:1–18.
doi: 10.1371/journal.pone.0211229

181. Dharmappa KK, Kumar RV, Nataraju A, Mohamed R, Shivaprasad HV,
Vishwanath BS. Anti-Inflammatory Activity of Oleanolic Acid by Inhibition
of Secretory Phospholipase A2. Planta Med (2008) 75:211–5. doi: 10.1055/s-
0028-1088374

182. Nataraju A, Raghavendra Gowda CD, Rajesh R, Vishwanath BS. Group IIA
Secretory PLA2 Inhibition by Ursolic Acid: A Potent Anti-Inflammatory
Molecule. Curr Topics Med Chem (2007) 7:801–9. doi: 10.2174/
156802607780487696
May 2022 | Volume 13 | Article 842576

https://doi.org/10.1016/s0031-9422(03)00075-x
https://doi.org/10.1016/s0031-9422(03)00075-x
https://doi.org/10.1055/s-2006-957962
https://doi.org/10.1016/j.cbpc.2021.109028
https://doi.org/10.1016/j.cbpc.2021.109028
https://doi.org/10.1016/j.lfs.2003.09.048
https://doi.org/10.1016/j.biochi.2005.12.006
https://doi.org/10.1016/j.cbpc.2006.01.006
https://doi.org/10.1016/s0003-9861(02)00527-1
https://doi.org/10.1016/j.toxicon.2006.06.017
https://doi.org/10.1016/j.jep.2005.11.031
https://doi.org/10.1016/j.bbapap.2014.12.017
https://doi.org/10.1371/journal.pone.0133370
https://doi.org/10.1371/journal.pone.0133370
https://doi.org/10.1021/bi0258593
https://doi.org/10.1016/j.toxcx.2020.100049
https://doi.org/10.1016/j.toxcx.2020.100049
https://doi.org/10.1016/s0041-0101(99)00228-7
https://doi.org/10.2174/156802611797633447
https://doi.org/10.2174/156802611797633447
https://doi.org/10.1016/j.toxicon.2011.02.024
https://doi.org/10.1016/j.toxicon.2011.02.024
https://doi.org/10.1023/a:1027306118026
https://doi.org/10.1016/j.toxicon.2021.04.016
https://doi.org/10.1016/j.toxicon.2021.05.004
https://doi.org/10.1016/j.cbi.2014.06.015
https://doi.org/10.3390/molecules21101350
https://doi.org/10.1007/BF00914195
https://doi.org/10.1016/j.cbi.2010.10.016
https://doi.org/10.1007/s10541-005-0207-z
https://doi.org/10.1016/j.cbi.2017.12.001
https://doi.org/10.1016/j.bbagen.2016.03.031
https://doi.org/10.1016/j.ijbiomac.2020.09.223
https://doi.org/10.1016/j.bmcl.2003.10.044
https://doi.org/10.1016/S0040-4039(00)87726-6
https://doi.org/10.1111/j.1742-7843.2008.00350.x
https://doi.org/10.1111/j.1742-7843.2008.00350.x
https://doi.org/10.1016/s1532-0456(00)00215-5
https://doi.org/10.1055/s-2004-835850
https://doi.org/10.1371/journal.pone.0211229
https://doi.org/10.1055/s-0028-1088374
https://doi.org/10.1055/s-0028-1088374
https://doi.org/10.2174/156802607780487696
https://doi.org/10.2174/156802607780487696
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Adrião et al. Plant Inhibitors of Snakebite Toxins: A Review
183. Fatima N, Tapondjou LA, Lontsi D, Sondengam BL, Rahman AU,
Choudhary MI. Quinovic Acid Glycosides From Mitragyna stipulosa-First
Examples of Natural Inhibitors of Snake Venom Phosphodiesterase I. Nat
Prod Lett (2002) 16:389–93.

184. Pereira BMR, Daros MR, Parente JP, Matos FJA, Bredemeyeroside D. A
Novel Triterpenoid Saponin From Bredemeyera floribunda: A Potent Snake
Venom Antidote Activity on Mice. Phytotherapy Res (1996) 10:666–9.
doi: 10.1002/(SICI)1099-1573(199612)10:8<666::AID-PTR937>30.CO;2-H

185. Mostafa M, Nahar N, MosihuzzamanM, Sokeng SD, Fatima N, Rahman AU,
et al. Phosphodiesterase-I Inhibitor Quinovic Acid Glycosides From Bridelia
ndellensis. Nat Prod Res (2006) 20:686–92. doi: 10.1080/14786410600661658

186. Fozing CD, Ali Z, Ngadjui BT, Choudhary MI, Kapche GD, Abegaz BM,
et al. Phosphodiesterase I-Inhibiting Diels-Alder Adducts From the Leaves of
Morus mesozygia. Planta Med (2012) 78:154–9. doi: 10.1055/s-0031-1280338

187. Mahadeswaraswamy YH, Manjula B, Devaraja S, Girish KS, Kemparaju K.
Daboia russelli Venom Hyaluronidase: Purification, Characterization and
Inhibition by b-3-(3-Hydroxy-4-Oxopyridyl) a-Amino-Propionic Acid. Curr
Topics Medicinal Chem (2011) 11:2556–65. doi: 10.2174/156802611797633410

188. Sarkhel S, Chakravarty AK, Das R, Gomes A, Gomes A. Snake Venom
Neutralising Factor From the Root Extract of Emblica Officinalis Linn.
Oriental Pharm Exp Med (2011) 11:25–33. doi: 10.1007/s13596-011-0008-4

189. Núñez V, Castro V, Murillo R, Ponce-Soto LA, Merfort I, Lomonte B.
Inhibitory Effects of Piper umbellatum and Piper peltatum Extracts Towards
Myotoxic Phospholipases A2 From Bothrops Snake Venoms: Isolation of 4-
Nerolidylcatechol as Active Principle. Phytochemistry (2005) 66:1017–25.
doi: 10.1016/j.phytochem.2005.03.026

190. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing
and Community Curation of Mass Spectrometry Data With Global Natural
Products Social Molecular Networking. Nat Biotechnol (2016) 34:828–37.
doi: 10.1038/nbt.3597
Frontiers in Immunology | www.frontiersin.org 28
191. Demain AL. Importance of Microbial Natural Products and the Need to
Revitalize Their Discovery. J Ind Microbiol Biotechnol (2014) 41:185–201.
doi: 10.1007/s10295-013-1325-z

192. Albulescu LO, Hale MS, Ainsworth S, Alsolaiss J, Crittenden E, Calvete JJ,
et al. Preclinical Validation of a Repurposed Metal Chelator as an Early-
Intervention Therapeutic for Hemotoxic Snakebite. Sci Transl Med (2020)
12:8314. doi: 10.1126/scitranslmed.aay8314

193. Albulescu LO, Xie C, Ainsworth S, Alsolaiss J, Crittenden E, Dawson CA,
et al. A Therapeutic Combination of Two Small Molecule Toxin Inhibitors
Provides Broad Preclinical Efficacy Against Viper Snakebite. Nat Commun
(2020) 11:1–14. doi: 10.1038/s41467-020-19981-6

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Adrião, dos Santos, de Lima, Maciel, Paz, da Silva, Pucca,
Moura-da-Silva, Monteiro, Sartim and Koolen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.
May 2022 | Volume 13 | Article 842576

https://doi.org/10.1002/(SICI)1099-1573(199612)10:8%3C666::AID-PTR937%3E30.CO;2-H
https://doi.org/10.1080/14786410600661658
https://doi.org/10.1055/s-0031-1280338
https://doi.org/10.2174/156802611797633410
https://doi.org/10.1007/s13596-011-0008-4
https://doi.org/10.1016/j.phytochem.2005.03.026
https://doi.org/10.1038/nbt.3597
https://doi.org/10.1007/s10295-013-1325-z
https://doi.org/10.1126/scitranslmed.aay8314
https://doi.org/10.1038/s41467-020-19981-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Plant-Derived Toxin Inhibitors as Potential Candidates to Complement Antivenom Treatment in Snakebite Envenomations
	Snakebite Envenomings
	Venom Toxins
	Phospholipases A2 (PLA2s)
	Snake Venom Metalloproteases (SVMPs)
	Snake Venom Serine Proteases (SVSPs)
	Three-Finger Toxins (3-FTxs)
	Other Toxins

	Antivenoms for Snakebite Treatment and Their Limitations
	Ethnopharmacology for Snakebite Treatment
	Plant Products as Antivenom Agents
	Alkaloids
	Benzenoids
	Hydroxycinnamic Acids and Derivatives
	Tannins
	Coumarins
	Flavonoids
	Isoflavonoids and Derivatives
	Modified Glycosides
	Polyketides
	Terpene Compounds
	Saponins
	Other Compounds
	Proteins and Peptides

	Perspectives for the Bioprospection of Antivenom Natural Products
	Concluding Remarks
	Author Contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


