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ABSTRACT

Real-time PCR tomography is a novel, quantitative
method for measuring localized RNA expression
profiles within single cells. We demonstrate its
usefulness by dissecting an oocyte from Xenopus
laevis into slices along its animal–vegetal axis,
extracting its RNA and measuring the levels of 18
selected mRNAs by real-time RT-PCR. This identi-
fied two classes of mRNA, one preferentially located
towards the animal, the other towards the vegetal
pole. mRNAs within each group show comparable
intracellular gradients, suggesting they are pro-
duced by similar mechanisms. The polarization is
substantial, though not extreme, with around 5% of
vegetal gene mRNA molecules detected at the
animal pole, and around 50% of the molecules in
the far most vegetal section. Most animal pole
mRNAs were found in the second section from the
animal pole and in the central section, which is
where the nucleus is located. mRNA expression
profiles did not change following in vitro fertilization
and we conclude that the cortical rotation that
follows fertilization has no detectable effect on
intracellular mRNA gradients.

INTRODUCTION

A single egg contains all the information required for its
proliferation and differentiation into a complete organism
and accurate spatial distribution of maternal factors is a
critical issue for early development, cell determination,
differentiation and germ layers formation (1). All mRNAs

translated during the initial stages of development
originate from the mother as transcription of new zygotic
mRNA is initiated only after 12 cell divisions during what
is called the midblastula transition (MBT).
The cellular distribution of maternal factors and their

functions are usually studied in model organisms such as
Drosophila melanogaster, Caenorhabditis elegans and Mus
musculus. These studies are hampered by the very small
amounts of RNA (�pg of total RNA) in invertebrate and
mammalian cells. In contrast, the egg from the African
clawed frog Xenopus laevis contains a microgram of total
RNA. Furthermore, two differently coloured hemispheres
can easily be distinguished in Xenopus eggs. The coloura-
tion difference identifies the first developmental animal–
vegetal, A–V, axis, which is formed during mid- and late
stages of oogenesis. The dark pigmented animal hemi-
sphere derives its colour from the pigmented melanosomes
and contains the egg nucleus (2), whereas the opposite
light vegetal hemisphere contains yolk platelets. During
early development, the animal hemisphere is transformed
into ectodermal cells with epidermis and neural fate.
The vegetal hemisphere follows endodermal fate (gut) and
the marginal zone forms mesoderm layer with blood, bone
and muscle cell types.
Maternal factors are distributed along the A–V axis

during oogenesis and have many different roles in Xenopus
early development. Some are transcription factors, while
others are signalling factors or regulators of activity
of signalling molecules (3). Two groups of mRNA
molecules have been reported to localize in the vegetal
hemisphere during oogenesis. Germ cell determinants such
as Xcad2 (Nanos related, Zn finger protein), Xpat
(unknown function), DeadSouth (RNA helicase) and
mRNAs for the Wnt11 (Wnt family member) gene are
vegetally localized in early stages 1 and 2 by the METRO
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(messenger transport organizer) pathway (2–8). A second
group of vegetal genes includes VegT (T-box transcription
factor), Otx1 (a homeobox gene) and Vg1 (TGF-beta
family member). These localize vegetally by cytoskeletal-
based transportation during later stages of oogenesis (8,9).
Other genes, such as Oct60 (transcription factor, POU
family), An1 (Ubiquitin like fusion protein), An2
(Mitochondrial ATPase subunit), Ets1 and Ets2 (tran-
scription factors, ETS family members) and XPar-1
(serine/threonine kinase) have been found localized to
the animal pole (3,9–11). The mechanism behind this
specific localization is not well understood.
During fertilization, Xenopus sperm enters the egg

through the animal hemisphere and the point of entry
can be distinguished by a change in cortex cytoskeleton
structure that leads to a local change in pigmentation.
The process, called cortical rotation, occurs some 25min
after fertilization. The cortex rotates by about 308 and
alters A–V organization through cytoskeletal and cyto-
plasmic rearrangements (12,13). The cortex movement
induces local redistribution of b-catenin protein and the
b-catenin stabilizing agent to a site opposite to the sperm’s
entrance (14,15). Accumulated b-catenin proteins then
induce local gene expression of some zygotic factors
including siamois and Xnr3. These are important for the
formation of the organizer, which defines the future dorsal
site of the embryo.
We have previously shown that there is substantial

variation in gene expression among seemingly homoge-
neous cells (16). In this work we describe a novel approach
to study intracellular expression profiles by real-time PCR
tomography (17,18).

MATERIALS AND METHODS

Xenopus laevis females were stimulated by hCG (human
chorionic gonadotrophin) injection and in vitro fertilized
(IVF) eggs were incubated at 228C. The eggs were not
treated with cystein, which is common procedure, because
the treatment compromises manipulation of the eggs
and RNA stability after defrosting of the material. Only
eggs that turned round with the animal pole on the top
were harvested for sectioning. More than 90% of the
turned eggs divided within 90min following IVF.
Four types of eggs were collected: unfertilized eggs and
eggs collected at 25, 50 and 85min post- IVF. First cell
division occurs after 90min. The collected eggs were
frozen at –708C and stored.
For analysis the eggs were embedded in optimum

cutting temperature (OCT) compound and dissected into
35 slices (30 mm) across the A–V axis (Figure 1).
Consecutive slices were pooled into five groups with
seven slices in each. From each group, 200–500 ng of total
RNA was extracted using RNeasy Micro kit (Qiagen).
RNA concentrations were determined with the
Nanodrop� ND1000 quantification system (Nanodrop
Inc.) and RNA quality was assessed with the 2100
Bioanalyzer using the RNA Pico Chip (Agilent).
In general RNA quality was very high. Total RNA was
reverse transcribed (High Capacity cDNA Archive

Kit- Applied Biosystems) using 100 ng total RNA with
2.5 ml of random primers in water in a total volume of
16.5 ml. The mixture was incubated for 10min at 728C.
After cooling to room temperature, 1 ml of dNTPs (25�),
2.5 ml of 10� reverse transcription buffer and 2.5 ml of
MultiScribeReverse Transriptase (50U/ml) were added.
The mixture was incubated for 2 h at 378C. cDNA was
diluted to a final volume of 100 ml. Real-time PCR
assays had a final volume of 25 ml and contained 3 ml of
cDNA, 1U SureStart Taq DNA polymerase (Stratagene-
Europe), 2.5 ml of reaction buffer (10�), 3mM MgCl2,
0.4mM dNTP mix, 50 000-fold diluted SYBRGreen I
(Molecular Probes), 25 000-fold diluted ROX reference
dye and 0.3mM primers. PCR was run in a Mx3005P
(Stratagene) with cycling conditions: 958C for 12min,
45 cycles at 958C for 20 s, 608C for 25 s, 728C for 30 s.
After cycling the samples were heated to 958C for
1min, and melting curve was recorded between 65
and 958C.

Gene-expression data were analyzed using GenEx
software from MultiD Analysis (www.multid.se) and
Prism4 from Graphpad (www.graphpad.com). It was not
possible to use any internal reference genes for normal-
ization, since this is the first time intracellular mRNA
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Figure 1. Photographs showing the process of preparing material for
real-time PCR tomography. (A) The Xenopus laevis oocyte imbedded in
OCT is mounted in a cryostat. (B) The material is sliced for subsequent
analysis by real-time RT-PCR.
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levels are being quantitated and there is no information
on what mRNAs might be homogeneously distributed
within the cell. Consequently, we normalized individual
mRNAs against the total amount of RNA used for reverse
transcription, essentially measuring gene-expression levels
relative to the total amount of RNA in each section.
Since RNA yield is rather uniform, we assume that total
RNA is distributed homogenously in the cell.
Consequently, normalization is against the volume of
the segments, thus accounting for the differences in
segment sizes due to the spherical shape of the cell.
Although the data are perfectly comparable within each
section, there may be bias across sections due to variations
in the density of total RNA and in reverse transcription
yields. These are caused by the sample matrix, which
is quite different in the animal and the vegetal poles of the
oocyte. The real-time PCR CT values were converted to
relative quantities assuming 100% PCR efficiency, and
the amounts of transcripts in the five egg sections were
expressed as the fractions of the mRNA molecules
found in each of five segments along the A–V axis in the
Xenopus oocyte:

xj ¼
2�CTj

P5
i¼1 2

�CTi

CTj is the CT determined for section ‘j’ of the oocyte
and xj is the fraction of the mRNA found in this section.
Since the amounts of mRNAs in the five sections are
of the same order of magnitude, the assumption of 100%
PCR efficiency will have little effect on the calculated
intracellular mRNA profiles. The initial normalization
against total RNA ensures that the profiles reflect
true variations in the levels of the mRNAs along the
A–V axis of the cell.

The conventional real-time PCR results were confirmed
for selected genes with digital PCR using the BIOMARK
digital array from Fluidigm (www.fluidigm.com). The
array is designed to accept 12 sample mixtures, which each
is partitioned into a different 765-chamber grid. One step
RT–qPCR was performed directly on the chip. Ten-
microliter reaction mix was loaded onto the chip, contain-
ing 3.4ml of total RNA, 0.5ml SuperScript RT/Taq
(CellsDirect qPCR-RT kit, Invitrogen), 1 ml buffer con-
taining ROX, 1 ml of primers (9 mM) and FAM-labelled
TaqMan probe (2mM) and 0.1ml of Tween (10%). The
input amount of total RNA was tuned to produce less
cDNA molecules than the number of chambers. The
mixture was distributed into the 765 chambers, incubated
for 15min at 508C for reverse transcription and then
analyzed by PCR, starting with HotStart activation at
95C8 for 2min followed by 45 PCR cycles at 958C for 15 s
and 608C for 30 s. FAM/ROX fluorescence signal was
collected at the end of each cycle, and the number of
chambers that gave positive fluorescence signal after 40
cycles was registered. Assuming Poisson distribution
of the cDNA molecules in the chambers, the average
number of cDNA molecules per chambers is given by
In{[1�P(x�1)]�1}, where P(x�1) is the fraction of
positive PCR reactions. A sample distributed into

765 chambers thus contained a total of 765�
In{[1�P(x�1)]�1} cDNA molecules. The number of
mRNA molecules in the sample can then be grossly
estimated assuming 80% cDNA synthesis yield in the
reverse transcription reaction (19).

RESULTS

Expression levels of mRNAs specified by the Wnt11,
FoxH1, VegT, Vg1, Oct60, GSK-3b, dishevelled, elonga-
tion factor-1a (EF-1a), Xdazl, Xmam, Tcf-3, GAPDH,
b-catenin, Xcad2, Otx1, XPar-1, Deadsouth and Stat3
genes were all characterized by distinct and reproducible
intracellular gradients. As an example, Figure 2A and B
shows Vg1 and Oct60 intracellular mRNA gradients
measured on eggs from four different females. Oct60 is
predominantly found at the animal pool, while Vg1
is preferably found at the vegetal pool. Although there is
variation among individual cells, the intracellular gradi-
ents are clearly observed against the biological variation of
the females, as reflected by the standard errors of the
means. Figure 2C and D also shows mRNA intracellular
distributions for Vg1 and Oct60 prior to IVF, and at 20, 55
and 85min after IVF. Statistical analysis using two-way
ANOVA with Bonferroni post-test on a pairwise compar-
ison of the profile of the unfertilized oocyte with mRNA
profiles collected at different time points after fertilization
revealed that the correlation between segment and mRNA
level is extremely significant (P< 0.0001), but that there is
no effect of fertilization and time following fertilization
(P� 1).
The mRNA profiles of 15 genes characterized in at least

six eggs are shown in Figure 3A. The profiles fall into two
distinct classes, and are characteristic of animal and
vegetal locations, respectively. The mRNAs located
preferentially at the animal pole are FoxH1, Oct60,
GSK-3b, dishevelled, EF-1alpha, Xmam, Tcf-3,
GAPDH, b-catenin and XPar-1. Those located at the
vegetal pole are VegT, Vg1, Xdazl, Wnt11 and Otx1. In
addition, Stat3 was measured in four cells and found to be
located in the animal hemisphere, while Xcad2 (measured
in four cells) and Deadsouth (measured in three cells) were
vegetally located (data not shown). For Oct60 (animal)
and Wnt11 (vegetal), the intracellular expression profiles
measured by QPCR tomography were confirmed with
digital PCR (Figure 4). Oct60 shows highest expression in
Sections 2 and 3 from the animal pole, while Wnt11
expression is largest in Section 5, which is closest to the
vegetal pole. Qualitatively, this is in agreement with the
real-time PCR results in Figure 3. Assuming there are no
important differences, we calculated the average vegetal
and animal mRNA profiles also shown in Figure 3B. The
data are based on 117 measured vegetal profiles and 166
measured animal profiles. The error bars represent �1 SD,
within which 68% of the measured values should be
found. The standard errors of the means were insignifi-
cant, and the average values shown by the symbols have
negligible errors.
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DISCUSSION

This is the first report of sub-cellular expression profiling
and quantification of mRNA within a single cell. Using
real-time PCR, which is currently the most sensitive and
reliable technique for quantitative mRNA analysis, we
measured the intracellular profiles of selected develop-
mental mRNAs within the X. laevis oocyte. Our results
reveal the existence of characteristic expression gradients,
and demonstrate that real-time PCR tomography is highly
suitable for measuring them quantitatively. Out of the 18
genes studied, 11 were found preferentially located at the
animal pole (animal genes), while seven were preferentially
located at the vegetal pole (vegetal genes). The ‘animal
genes’ were FoxH1, Oct60, GSK-3b, dishevelled, EF-1a,
Xmam, Tcf-3, GAPDH, b-catenin, XPar-1 and Stat3.
Oct60 has previously been found located at the animal
pole by in situ hybridization (10). EF-1a and GAPDH
have been ascribed housekeeping functions and used as
reference genes (20). However, they show clear animal
location. Interestingly, APC, b-catenin, Fz7, GSK-3b,
dishevelled and Tcf-3, which specify components of the
Wnt pathway are animal genes, whereas Wnt11 itself
shows vegetal location. Xmam and FoxH1 have not been
localized previously. The genes found to have vegetal
location were VegT, Vg1, Xdazl, Wnt11, Otx1, Deadsouth
and Xcad2.

Within the resolution of our technique all genes
contained in each of the two groups had comparable
profiles. The animal genes were preferentially found in the

A
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Figure 2. Intracellular gradients (A!V) of mRNA levels in Xenopus laevis oocytes. Distribution of (A) Vg1 and (B) Oct60 expression density along
the oocyte animal–vegetal axis. The RNA was prepared from two to three individual eggs (standard error of the means indicated by error bars) from
four different females (indicated by regular bars). Effect of fertilization. Distribution of (C) Vg1 and (D) Oct60 along the animal–vegetal axis. RNA
was prepared from at least six eggs before IVF and at 20, 50 and 85min after fertilization. Error bars indicate standard error of the means.

A

B

Figure 3. (A) Averaged intracellular mRNA concentration profiles
(A!V) for genes studied in at least six eggs. Animal genes (FoxH1,
Oct60, GSK-3b, dishevelled, EF-1alpha, Xmam, Tcf-3, GAPDH,
b-catenin and XPar-1) are shown in red and vegetal genes (VegT,
Vg1, Xdazl, Wnt11 and Otx1) are shown in blue. (B) Average
expression profiles of all vegetal (red) and all animal (blue) genes.
The error bars indicate 1 SD.
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second and third (central) sections of the oocytes, while
the vegetal genes were found preferentially in the fourth
and fifth sections. However, although the polarization of
the vegetal genes is much stronger than the (opposite)
polarization of the animal genes, that polarization is not
total. About 5% of mRNA molecules of the vegetal genes
were found in the first section taken from the opposite
pole and another 10% in the second section (Figure 3B).
Hence, the extreme polarization of both animal and
vegetal genes seen by in situ hybridization techniques,
where virtually all genes are located at either pole (9),
is not supported by our observations. Instead our
data suggest that although there is a distinct bias to the
location of the mRNA, it is distributed more evenly.
The reason for this discrepancy is unclear; however, we
note that the cell nucleus is expected to be located in
sections two and three, which is where we find the animal
genes to be most abundant. Perhaps most of the animal
mRNAs are still located within the nucleus and are held
there until their translation is required. Interestingly,
fertilization of the oocytes and the cortical rotation that
follows has no detectable effect on the intracellular
mRNA gradients.

In summary, real-time PCR tomography can measure
intracellular mRNA gradients more sensitively and with
greater resolution than traditional in situ hybridization. In
the present work, each cell was cut into 35 30 mm slices,
yielding up to 75 ng of RNA per slice. This is not close to
any limit, since a regular cryostat can easily cut slices of
10 mm, yielding some 100 slices from a single X. laevis
oocyte. This would allow the generation of mRNA

profiles with much higher resolution, the only potential
constraint being the amount of RNA extracted from each
slice. However, the use of appropriate multiplexing and/or
pre-amplification techniques should help overcome this
limitation. Other applications of real-time PCR tomogra-
phy are readily envisaged: the localization of nuclei
through genomic DNA, of mitochondria through mito-
chondrial DNA and of translationally active sites through
ribosomal RNA. The techniques can also be used to
localize viruses and bacteria in tissue sections.
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