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SUMMARY

Interleukin-27 (IL-27) is an immunoregulatory cytokine that suppresses inflammation through 

multiple mechanisms, including induction of IL-10, but the transcriptional network mediating its 

diverse functions remains unclear. Combining temporal RNA profiling with computational 

algorithms, we predict 79 transcription factors induced by IL-27 in T cells. We validate 11 known 

and discover 5 positive (Cebpb, Fosl2, Tbx21, Hlx, and Atf3) and 2 negative (Irf9 and Irf8) Il10 
regulators, generating an experimentally refined regulatory network for Il10. We report two central 

regulators, Prdm1 and Maf, that cooperatively drive the expression of signature genes induced by 

IL-27 in type 1 regulatory T cells, mediate IL-10 expression in all T helper cells, and determine 

the regulatory phenotype of colonic Foxp3+ regulatory T cells. Prdm1/Maf double-knockout mice 

develop spontaneous colitis, phenocopying ll10-deficient mice. Our work provides insights into 

IL-27-driven transcriptional networks and identifies two shared Il10 regulators that orchestrate 

immunoregulatory programs across T helper cell subsets.
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Zhang et al. construct a transcriptional network for IL-27-mediated Il10 production in CD4 T 

cells, characterize the function of 16 Il10 regulators, and uncover the role of two transcription 

factors, Prdm1 and Maf, in driving Il10 production in all T helper cells and in maintaining immune 

homeostasis in the colon.

INTRODUCTION

Interleukin-27 (IL-27) is an immunoregulatory cytokine that regulates immune responses by 

multiple mechanisms, including inhibition of differentiation of effector T cell subsets (Artis 

et al., 2004; Stumhofer et al., 2006; Villarino et al., 2006; Yoshida and Hunter, 2015), 

induction of a “co-inhibitory” gene module to promote T cell exhaustion (Chihara et al., 

2018; DeLong et al., 2019), and polarization of Foxp3+ regulatory T (Treg) cells to a T-bet+ 

subset that specializes in controlling Th1 immunity (Hall et al., 2012). In addition, we and 

others have described that IL-27 can differentiate naive T cells into type 1 regulatory T (Tr1) 

cells (Awasthi et al., 2007; Fitzgerald et al., 2007; Stumhofer et al., 2007; Wang et al., 2011), 

a Foxp3− IL-10-producing regulatory cell population identified in mouse and human, that 

suppresses tissue inflammation, autoimmune reactions, and graft versus host disease 

(GVHD) largely via IL-10 (Roncarolo et al., 1988). IL-27 has the unique capability to 

induce IL-10 production from a wide range of cell types, including Th1, Th2, Th17, and 

Treg cells (Awasthi et al., 2007; Fitzgerald et al., 2007; Hall et al., 2012; Stumhofer et al., 

2006, 2007). Consistent with these observations, Il27ra−/− T cells have defects in producing 

IL-10 in vitro and in vivo (Batten et al., 2008). Il27ra−/− mice suffer from lethal 

immunopathology in parasitic diseases, which is reminiscent of Il10−/− mice (Villarino et al., 

2003), and they are more susceptible to experimental autoimmune encephalomyelitis (Batten 

et al., 2006; Fitzgerald et al., 2007). The molecular mechanisms by which IL-27 induces 

these diverse regulatory functions in T cells are not fully understood.

The anti-inflammatory cytokine IL-10 has an indispensable role in maintaining immune 

tolerance and limiting immunopathology during homeostasis, inflammation, infection, and 

autoimmune diseases (Iyer and Cheng, 2012; Ouyang et al., 2011). Mutations in IL-10 or 

IL-10R lead to early-onset inflammatory bowel disease (IBD) in humans (Shim, 2019), and 

mice deficient in IL-10 or IL-10R develop spontaneous colitis (Kühn et al., 1993; Spencer et 

al., 1998). Importantly, all T helper cell subsets, including Th1, Th2, and Th17 cells, can 

produce IL-10 to mitigate hyperactive immune responses (Gabryšová et al., 2014). Several 

transcription factors (TFs) have been shown to regulate IL-10 (Gabryšová et al., 2014; 

Zhang and Kuchroo, 2019). However, a comprehensive model that systemically examines 

the dynamic transcriptional network that regulates Il10 in a temporal context of induction 

and maintenance is lacking.

Here we combined computational algorithms with high-resolution temporal transcriptional 

profiling to predict the TF network driven by IL-27 during Tr1 differentiation. Network 

analysis systematically identified regulators for Il10 and highlighted Prdm1 and Maf as two 

central nodes of the Il10 regulatory circuits that cooperatively promoted IL-10 production 

not only in Tr1 cells but also in Th1, Th2, Th17, and Treg cells. Genetic deletion of Prdm1 
and Maf in T cells (Prdm1/Maf DKO), but not either alone, led to spontaneous colitis in 
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mice that exhibits features of human IBD, underscoring the importance of Prdm1 and Maf 
crosstalk in regulating immune homeostasis in vivo. Single-cell RNA sequencing (scRNA-

seq) of colonic CD4+ T cells in DKO mice identified a unique cluster of Treg cells that lost 

Il10 expression and acquired proinflammatory signatures.

RESULTS

Building a Predictive Model for the IL-27-Driven Transcriptional Program in CD4 T Cells by 
High-Resolution Temporal Transcriptional Profiling

To understand the gene expression program induced by IL-27 in CD4 T cells, we activated 

naive CD4 T cells in vitro in the presence (Tr1) or absence (Th0) of IL-27 for 72 h and 

performed whole-genome microarrays at 17 time points. 790 genes were differentially 

expressed in Tr1 cells compared with Th0 cells, which partitioned into 24 co-expression 

clusters with distinct temporal profiles (Figure 1A). After activation with IL-27, the cells 

underwent several transcriptional waves before acquiring a stable phenotype (Figure 1B): an 

early phase from 0–4 h, when the global transcriptional profile changes dynamically; a 

stable early phase from 8–20 h; an intermediate phase from 25–42 h; and a late phase from 

48–72 h. The dynamic transcriptional changes during the first 4 h are a distinct feature of 

Tr1 cell differentiation compared with Th17 cells, which manifest a relatively stable profile 

during the early phase from 0–2 h (Yosef et al., 2013).

To identify TFs that drive the distinct transcriptional waves, we hypothesized that genes co-

expressed in a cluster (Figure 1A) are likely to share regulators that are active at the relevant 

time point. We predicted regulator-target associations in the IL-27-driven transcriptional 

programs based on significant overlap between genes in a specific cluster and a regulator’s 

putative targets in a regulator-target association database (Yosef et al., 2013). This generated 

a predictive network containing 79 TFs that were putative regulators of the gene clusters 

induced by IL-27 (Figure 1C). The 79 TFs fall into six major expression patterns, each 

containing both known and previously uncharacterized regulators, that are (1) highly 

expressed during the dynamic early phase (0–4 h), including Irf1 and Batf, which are the 

pioneer TFs of Tr1 cell differentiation (Karwacz et al., 2017), as well as Eomes (Zhang et 

al., 2017); (2) increased during the stable early phase (8–20 h), including Stat1 and Stat3, 

which mediate signaling downstream of the IL-27 receptor (Stumhofer et al., 2007) and 

IL-21 receptor (Leonard and Wan, 2016; Pot et al., 2009); (3) increased during the 

intermediate phase (25–42 h), including Ahr (Apetoh et al., 2010); (4) increased during the 

late phase (48–72 h), such as Prdm1 (Montes de Oca et al., 2016); (5) increased gradually 

over time, such as Maf (Pot et al., 2009) and Hif1a (Mascanfroni et al., 2015); and (6) 

decreased specifically during the stable early phase and may act as gate-keepers for the 

IL-27-induced gene program, which, interestingly, include a potent IL-10 inhibitor, Bhlhe40 
(Huynh et al., 2018; Lin et al., 2014; Yu et al., 2018). Our computational analysis identified 

almost all TFs known to be required for Tr1 cells, indicating a good predictive power, and 

predicted 69 TFs that were not implicated in Tr1 differentiation.
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Experimental Validation of the IL-27 Predicative Network Identifies TFs that Regulate IL-10 
In Vitro

Because IL-10 production is the most representative feature of IL-27-induced Tr1 cells, we 

used IL-10 expression as a readout to validate the predicative IL-27 network. We gathered 

24 available knockout mice, differentiated their naive CD4 T cells into Tr1 cells with IL-27, 

and compared their Il10 mRNA levels with the respective controls (Figure 2A). We validated 

11 known Il10 regulators in T cells: 8 positive regulators (Prdm1, Stat3, Ahr, Maf, Irf1, Batf, 
Hif1a, and Nfil3) and 3 negative regulators (Irf4, Bhlhe40, and Ets1) (Huynh et al., 2018; 

Karwacz et al., 2017; Lee et al., 2012; Lin et al., 2014; Yu et al., 2018). We found that 

Cebpb, a TF that induces ll10 in M2 macrophages (Liu et al., 2003), was also required for 

Il10 production in Tr1 cells. Importantly, among the 12 tested factors that were not known to 

regulate Il10, we discovered 4 positive (Atf3, Fosl2, Tbx21, and Hlx) and 2 negative (Irf9 
and Irf8) Il10 regulators. These TFs also regulated IL-10 at the protein level (Figure S1A). 

Of the 24 genetically perturbed TFs, we successfully validated 18 (75%) of our 

computational predictions.

We examined binding of the aforementioned Il10 regulators to the Il10 locus in public 

chromatin immunoprecipitation sequencing (ChIP-seq) data. ATF-3 (Garber et al., 2012), T-

bet (Nakayamada et al., 2011), Fosl2 (Ciofani et al., 2012), and IRF8 (Xu et al., 2015) have 

significant binding in the Il10 locus, some of which lies in chromatin-accessible regions in 

Tr1 cells (Figure 2B), indicating that they may directly regulate Il10 transcription in Tr1 

cells. To investigate whether these TFs can trans-activate or inhibit Il10, we performed 

luciferase reporter assays in 293T cells using reporters for the proximal Il10 promoter and 

the CNS-9, HSS+2.98, and HSS+6.45 enhancers (Hedrich and Bream, 2010; Figure 2C). 

Atf3, Fosl2, and Hlx transactivated the Il10 promoter and the three enhancers. 

Transactivation by Cebpb was more restricted to the promoter and CNS-9 region, and T-bet 

only transactivated the CNS-9 region. Irf8 inhibited the baseline activity of the Il10 
promoter, HSS+2.98, HSS+6.45, and, to a lesser extent, CNS-9. We found that 

transactivation of Il10 by the pioneer factor Irf1 (Karwacz et al., 2017) was completely 

blocked by Irf8 co-expression at the three enhancers but not the proximal promoter (Figure 

S1B). In contrast, the putative negative regulator Irf9 transactivated Il10 at all four cis-

regulatory sites, indicating that inhibition of Il10 by Irf9 in Tr1 cells may be mediated by 

indirect mechanisms (Figure 2C). In summary, we validated 11 known and discovered 7 

direct and indirect regulators of Il10 during IL-27-driven Tr1 differentiation.

Hlx Regulates Il10 Expression and Tr1 Function In Vivo

It has been shown previously that Hlx cooperates with T-bet to promote interferon (IFN)-

γexpression in Th1 cells in vitro (Mullen et al., 2002); however, whether it regulates T cell 

function in vivo and whether it has an immunoregulatory role has not been investigated. To 

address these questions, we first tested the role of Hlx in a model of self-limiting 

inflammation induced by intraperitoneal injection of an anti-CD3 antibody, which 

spontaneously resolves in a IL-10-dependent manner (Huber et al., 2011; Kamanaka et al., 

2006). Because Hlx deficiency is embryonically lethal (Hentsch et al., 1996), we compared 

Il10 expression in CD4 T cells from Hlx+/− and WT mice following anti-CD3 injection and 

observed less Il10 in Hlx+/− T cells (Figure 2D). We next investigated how Hlx regulates the 
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immunoregulatory function of Tr1 cells in a T cell transfer colitis model. Rag−/− mice 

receiving wild-type (WT) Tr1 cells were able to maintain their body weight because Tr1 

cells normally do not induce colitis. However, the recipients of Hlx+/− Tr1 cells lost weight 

over time, indicating that Tr1 cells haplodeficient for Hlx might lose the regulatory 

phenotype and become proinflammatory (Figure 2E).

A Comprehensive Transcriptional Network Focused on Regulation of IL-10 by IL-27

We identified causal genetic targets of the Il10-regulating TFs in the IL-27 network by 

performing RNA-seq on Tr1 cells genetically deficient in each of them, generating a 

comprehensive network showing the effect of the TFs on Il10 as well as on the expression of 

each other (Figure 3A). The network showed dense inter-connectedness between multiple 

negative and positive Il10 regulators, with substantial cross-regulation between them, 

explaining how indirect regulators affect Il10 expression through direct regulation of other 

regulators (Figure 3A). Besides direct inhibition of Il10 by Irf8, the negative regulators, 

including Irf8, Irf4, Ets1, and Irf9, may regulate Il10 by inhibiting the expression of positive 

regulators such as Prdm1, Maf, Ahr, and Batf. Except for inhibition of Irf4 by Stat1 and 

Bhlhe40 by Maf, very few positive regulators inhibited expression of the negative regulators; 

rather, they reinforced the expression of each other. Quantification of TF connectivity within 

the network by betweenness centrality score revealed Prdm1 and Maf as the most central 

positive regulators and Irf4 as the most central negative regulator, identifying these TFs as 

central hubs for regulation of Il10 in Tr1 cells (Figure 3B).

We observed three distinct phases of Il10 expression during Tr1 differentiation from the 

temporal microarray data (Figure 3C): a latency phase (0–20 h) with no detectable Il10, an 

induction phase (20–48 h), and a maintenance phase (48–72 h). To further understand the 

temporal dynamics of Il10 regulation, we divided the global network into three phase-

specific networks based on the regulator’s temporal expression pattern (Figure 3D). The 

IRFs and Atf3 were mainly increased during the latency phase; Hlx during the induction 

phase; Tbx21, which has been shown to cooperate with Hlx (Mullen et al., 2002), at the 

latency and induction phase; and Fosl2, during the late induction phase and the maintenance 

phase. Notably, Prdm1, Maf, and Cebpb were increased at all three phases. Multiple 

regulators that suppress Il10 were expressed at the latency phase and decreased at the 

induction and maintenance phases. This may be one of the reasons why Il10 induction is 

relatively late during Tr1 differentiation.

Prdm1 and Maf Have Complementary but Indispensable Roles in Regulating Tr1 Identity at 
the Transcriptional and Chromatin Level

Despite being the most central nodes in the Il10 regulatory network, Il10 expression in 

Prdm1 or Maf single-knockout (cKO) Tr1 cells is only partially reduced, suggesting a 

complementary relationship between the two TFs. We therefore generated mice that lack 

both Prdm1 and Maf (DKO) in T cells, using conditional deletion driven by Cd4-Cre. 

Prdm1/Maf double deficiency led to almost complete loss of Il10 in Tr1 cells (Figure 4A).

To investigate how loss of Prdm1 and Maf influences the Il10 regulatory network (Figure 

3A), we performed RNA-seq on single- and double-KO Tr1 cells at 72 h (Figure 4B). 
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Deficiency in Prdm1 and Maf led to a collapse in expression of several TFs important for 

Il10 expression, including Fosl2, Hif1a, Hlx, and Notch1 (Rutz et al., 2008), which was not 

observed in Prdm1 or Maf single KO. In addition, a number of other transcriptional 

regulators that are induced by IL-27 were also specifically decreased in DKO cells, such as 

Sp1, Ets2, Mbnl3, Klf10, Nfyb, Satb1, Crem, Nfkbia, Chd7, Trim25, Klf6, and Nfkb2, 

although their role in regulating Il10 remains to be investigated. Furthermore, Prdm1 and 

Maf transcriptionally regulated each other’s expression (Figure 4B). Bhlhe40, a potent Il10 
inhibitor, was increased dramatically in DKO mice, indicating that Prdm1 and Maf are 

critical not only for driving Il10 expression but also for antagonizing the expression of TFs 

that repress Il10. Although some positive regulators, such as Irf1 and Atf3, were increased in 

DKO cells, these early-stage Il10 inducers could not rescue the loss of Il10 in the absence of 

Prdm1 and Maf, perhaps because of their inability to overcome inhibition (Figure S1B).

To assess whether Prdm1 or Maf regulated the chromatin landscape of Tr1 cells, we profiled 

chromatin accessibility in single- and double-KO Tr1 cells using Assay for Transposase-

Accessible Chromatin with high-throughput sequencing (ATAC-seq). Although the 

chromatin landscape in the Il10 locus remains largely unchanged in Prdm1 or Maf single-

KO cells, we detected a reduction in accessibility at specific enhancer regions in the Il10 
locus in DKO cells (Figure 4C). In addition, we found that Fosl2 and Hlx, two other positive 

regulators of Il10, also became less accessible in DKO but not either single-KO cells (Figure 

4C), which is consistent with their gene expression profile. Moreover, DKO Tr1 cells 

showed a unique reduction in chromatin accessibility in co-inhibitory receptor gene loci 

such as Ctla4, Pdcd1 (PD-1), Tigit, Havcr2 (Tim-3) (Figure S2), another hallmark of Tr1 

cells that is transcriptionally regulated by Prdm1 and Maf (Chihara et al., 2018). In 

summary, these data suggest that Prdm1 and Maf have complementary but indispensable 

roles in regulating the hallmark genes for Tr1 identity at the transcriptional and chromatin 

levels.

IL-10 Regulators Are Induced in Diverse IL-10-Producing T Helper Cells

All T helper cells can produce IL-10, but the regulation of IL-10 expression in these contexts 

is unclear. We therefore examined whether the regulators we identified in the IL-27 network 

were also utilized for IL-10 regulation in other T helper cells. We differentiated naive CD4 T 

cells from IL-10Thy1.1 reporter mice (10BiT) (Maynard et al., 2007) into Th1, Th2, non-

pathogenic Th17 (Th17), pathogenic Th17 (pTh17), and Tr1 cells; sorted out the IL-10+ and 

IL-10− compartments; and performed RNA-seq. We also analyzed the RNA profiles of 

IL-10+ versus IL10− T cells purified from several other in vivo and in vitro conditions (Boks 

et al., 2016; Burton et al., 2014; Gagliani et al., 2015; Langenhorst et al., 2012; Neumann et 

al., 2014; Trandem et al., 2011; Table S1). We identified TFs whose expression was 

associated with IL-10 in each T cell subset or condition (Figures 5A and 5C) and ranked 

them based on the number of conditions where their expression is enriched in the IL-10-

producing compartment (Figures 5B and 5D). Many of the regulators identified in our IL-27 

network were also identified by this analysis, including Prdm1, Maf, Hlx, Tbx21, Batf, 
Nfil3, Ahr, Bhlhe40, and Irf8, indicating that they might also regulate IL-10 in other 

contexts (Figures 5A and 5C). Prdm1 and Maf, the two positive regulators with highest 

centrality in the IL-27 network (Figure 3B), were enriched in the IL-10-producing 
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compartment of all T helper cell subsets (Figure 5B) as well as under many other in vivo and 

in vitro conditions (Figure 5D), whereas the other TFs were more restricted to certain 

conditions. A combined ranking scheme of IL-10 regulators evaluating the centrality score 

in the IL-27 network and generalizability in other IL-10-producing T cell subsets derived 

from in vitro and in vitro contexts revealed Prdm1 and Maf as the two top TFs that regulate 

IL-10 production across T helper cells (Figure 5E).

Role of Prdm1 and Maf in Regulating IL-10 in Different T Helper Cells

We validated the association of Prdm1 and Maf expression with Il10 in various contexts by 

qPCR. The IL-10+ compartment of Th1, Th2, Th17, Tr1, and Treg cells expressed higher 

levels of Prdm1 and Maf than their IL-10− counterparts (Figure 6A). Moreover, analysis of 

public ChIP-seq datasets confirmed binding of Prdm1 and Maf at accessible chromatin 

regions in the Il10 locus (Figure 6B). These findings further support the hypothesis that 

Prdm1 and Maf may be critical regulators of IL-10 in multiple settings.

We tested the interaction between Prdm1 or Maf in regulating Il10 using luciferase assays. 

Although Prdm1 alone had very limited capability to transactivate Il10, it significantly 

enhanced transactivation of Il10 by Maf (Figure 6C), suggesting that cooperation between 

Prdm1 and Maf is required for optimal IL-10 production. Of note, the synergistic effect 

between Prdm1 and Maf is specific to enhancer regions (tested by the interaction term in the 

linear regression model; CNS-9, p = 0.00255; HSS+6.45, p = 0.000154) but not the 

promoter. We further studied the synergy between Prdm1 and Maf in regulating Il10 in 

primary CD4 T cells using a gain-of-function approach by transducing Th1, Th2, Th17, Tr1, 

and Treg cells with retroviruses encoding Prdm1 (MSCV-IRES-Thy1.1) and Maf (MSCV-

IRES-GFP). IL-10 production was enhanced dramatically when Prdm1 and Maf were co-

expressed (Figure 6D). Importantly, although Prdm1 and Maf cooperatively promoted IL-10 

production across all T helper cells, they did not inhibit production of signature cytokines of 

the T helper cell subsets (Figure S3). Thus, Prdm1 and Maf enabled expression of a gene 

module that induced IL-10 in all T helper cell subsets without disrupting their cell 

differentiation program.

Genetic Deficiency of Prdm1 and Maf, but Not Either Alone, in T Cells Leads to Human IBD-
like Spontaneous Colitis Driven by a Unique Cluster of Treg Cells

IL-10 has a critical role in maintaining intestinal homeostasis. Mutations in IL-10 or IL-10R 

are associated with human ulcerative colitis presenting in early childhood (Zhu et al., 2017). 

We therefore monitored Prdm1/Maf DKO mice for spontaneous development of colitis. 

Strikingly, loss of Prdm1 and Maf in T cells led to spontaneous weight loss over time 

(Figure 7A), similar to that observed in IL-10-deficient mice (Kühn et al., 1993). The 

presence of one copy of the Maf allele protected the mice from weight loss until 16 weeks of 

age, and one copy of Prdm1 protected the mice until at least 24 weeks of age (Figure S4A). 

DKO mice, but not single-KO mice, had shorter colons (Figure 7B), and histological 

analysis of the entire intestine confirmed the presence of active colitis in DKO mice (Figure 

7C; Figure S4B) with features reminiscent of human ulcerative colitis. Severe chronic active 

colitis with cryptitis, crypt abscess, and crypt loss with mucosal ulcers reminiscent of 

ulcerative colitis was the most prevalent pathology in DKO mice. DKO mice occasionally 
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showed flask-shaped aphthous erosions that are common in human Crohn’s disease, but 

other defining features of Crohn’s disease, such as transmural lymphoid aggregates, were 

absent in all mice (Figure 7C; Figure S4C). Although Cd4-Cre; Prdm1fl/fl mice have been 

reported to develop spontaneous colitis (Martins et al., 2006), we observed spontaneous 

intestinal disease very rarely only in male but not in any female mice. Moreover, the 

pathology in these mice was mainly located in the proximal end of the small intestine rather 

than the colon (Figures S4D and S4E).

To characterize the transcriptional changes in T cells that lead to spontaneous colitis in DKO 

mice, we performed scRNA-seq on CD4 T cells from the colonic lamina propria at 3 weeks 

of age before disease onset. We included two biological replicates for each genotype (Figure 

7D) and collected a total of 13,535 high-quality single-cell profiles that were partitioned into 

eight distinct clusters (Figure 7E). Cluster identity was designated based on bulk RNA-seq-

derived gene signatures (Immgen) and confirmed by expression of key marker genes 

(Figures S5A and S5B). Cells of the four genotypes distributed evenly within the naive T 

cell clusters (clusters 1–3), indicating negligible batch effects between samples and similar 

phenotypes of naive T cells in the absence of Prdm1 or Maf. However, Maf cKO and DKO 

cells formed distinct sub-clusters within the effector T cell cluster (cluster 4), and each of the 

Treg cell clusters (clusters 5–8) was dominated by a different genotype (Figures 7D-7F; 

Figure S5C).

The proportion of effector T cells was increased in both Maf cKO and DKO (Figure 7F), but 

these cells were qualitatively different (Figures 7G and 7H) in that DKO effector cells had 

dramatically increased expression of the Th1 gene signature, which is a major pathogenic 

cell population implicated in IBD (Ito and Fathman, 1997; Neurath et al., 2002). The Th17 

gene signature was also increased significantly in DKO but to a lesser extent (Figure 7G). A 

subset of effector cells in DKO mice acquired a signature that resembles CD4 T cells from 

inflamed intestinal lesions of humans with ulcerative colitis (Smillie et al., 2019). In 

addition, the differentially expressed genes in DKO effector T cells (compared with control 

cells) showed unique enrichment for IBD-associated genome-wide association study 

(GWAS) genes that are involved in adaptive immunity (Graham and Xavier, 2020; Figure 

7H). These data indicate that loss of Prdm1 and Maf leads to spontaneous colitis that 

resembles human IBD in terms of not only pathological features but also molecular 

signatures.

Consistent with previous reports (Maynard et al., 2007), Treg cells (clusters 7 and 8) were a 

major source of IL-10 in the colon (Figure 7I). We observed that the average expression 

level of Il10 was reduced in colonic Treg cells in the absence of Maf; the average expression 

level and percentage of Il10-positive cells were reduced in the absence of Prdm1, and Il10 
expression was barely detectable in the absence of both (Figure 7J). Therefore, Prdm1 and 

Maf were also required for Il10 expression in Treg cells in vivo.

Besides downregulation of Il10, DKO Treg cells, compared with single-KO or control Treg 

cells, exhibited a unique gene expression profile (cluster 5; Figures 7D-7F). DKO Treg cells 

lost immunoregulatory phenotypes, including expression of TFs critical for Treg cell 

stability and function (e.g., Ikzf2 and Gata3), co-stimulatory receptors (e.g., Cd28, Tnfrsf18, 
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and Tnfrsf4), and soluble immunosuppressive molecules (e.g., Areg and Apoe). On the other 

hand, DKO Treg cells acquired Th1- associated (e.g., Nkg7, Xcl1, Lta, and Cxcl10) and 

Cytotoxic T Lymphocytes (CTL)-associated (e.g., Cd160 and Gpr18) genes that are known 

to actively promote inflammation. Moreover, DKO Treg cells showed profound changes in 

their chemotaxis profile, turning off Ccr2 and Cxcr6 while dramatically upregulating Ccr7 
(Figure 7K). These data indicated that Prdm1 and Maf cooperatively regulate the identity 

and function of Treg cells and are indispensable for immune tolerance in vivo.

DISCUSSION

Computational inference of gene regulation from temporal profiling of gene expression has 

shown great potential to delineate the dynamic transcriptional circuits that regulate T cell 

differentiation. We and others have successfully built models of regulatory networks for 

Th17 cells (Wu et al., 2013; Yosef et al., 2013; Ciofani et al., 2012) and Th2 cells 

(Henriksson et al., 2019), discovering key regulators and revealing general principles 

governing T cell differentiation. Here we computed a transcriptional network induced by 

IL-27 in CD4 T cells that showed strong predicative power for identification of Il10 
regulators: 18 (75%) of the 24 predicted TFs we validated experimentally were confirmed to 

be regulating Il10 expression. In addition to IL-10, IL-27-induced Tr1 cells feature 

expression of IFN-γ (Awasthi et al., 2007; Pot et al., 2009) and co-inhibitory receptors 

(Chihara et al., 2018; DeLong et al., 2019). Therefore, the predicted TFs in the IL-27 

network presented here could also be utilized for defining the transcriptional regulation of 

these molecules in a manner similar to what is presented here for Il10.

By genetically perturbing the IL-27 network, we identified critical regulators of Il10, which 

may shed light on previously unappreciated roles of IL-10 in physiological processes and 

deepen our understanding of IL-10-related immune disorders such as IBD (Zhu et al., 2017). 

For example, Atf3 is a TF that is induced by endoplasmic reticulum stress (Schmitz et al., 

2018) with anti-inflammatory properties (De Nardo et al., 2014; Gilchrist et al., 2006); 

induction of IL-10 by Atf3 may provide a negative feedback loop to dampen endoplasmic 

reticulum (ER) stress (Hasnain et al., 2013; Shkoda et al., 2007) and suppress inflammation. 

Further, Fosl2 is a member of the AP1 family, which contains several members that were 

implicated in Il10 regulation (Hu et al., 2006; Kremer et al., 2007). Fosl2 has been shown 

previously to regulate the pathogenicity of Th17 cells (Ciofani et al., 2012), which play an 

important role in the pathogenesis of IBD. A single-nucleotide polymorphism (SNP) in 

Fosl2 (rs925255) has been linked genetically to IBD in a GWAS (Jostins et al., 2012). Our 

study raises the possibility that the SNP in Fosl2 may further influence susceptibility to IBD 

by regulating IL-10 expression. Last, we identified Hlx as a regulator of IL-10 and showed 

that its haplodeficiency is sufficient to convert Tr1 cells to proinflammatory cells that 

exacerbate T cell transfer colitis. Interestingly, the Hlx locus has been shown to be 

hypermethylated in epithelial cells in humans with IBD, and these data suggest that Hlx 
might have a role in regulating immune responses beyond T cells.

The lineage-defining TFs for Th2 (GATA-3) and Th17 (ROR-γt) have been shown to 

contribute to IL-10 expression (Shoemaker et al., 2006; Wang et al., 2015). However, the 

role of T-bet, the master TF for Th1 cells, in Il10 regulation has been controversial. One 
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study has reported that IL-10 production is increased in CD4 T cells in the absence of T-bet 

(Shin et al., 2014), which could be due to the indirect effect of a decrease in IFN-γ (Hu et 

al., 2006). Other studies have reported that T-bet can induce IL-10 production but under 

conditions where T-bet or other TFs are overexpressed (Rutz et al., 2008; Zhu et al., 2015). 

Here we show that genetic deficiency in T-bet leads to impaired IL-10 production in Tr1 

cells. Additionally, we show, by ChIP-seq and luciferase assays, that T-bet can directly bind 

and transactivate Il10. Thus, the master TFs for all T helper cell subsets can induce 

immunoregulatory genes to mitigate overexuberant responses. Eomes, another T-box TF that 

is highly homologous to T-bet in its DNA binding domain (Pearce et al., 2003), has been 

reported to regulate IL-10 in a GVHD model (Zhang et al., 2017). Our study suggests that 

the relative contribution of these two TFs to IL-10 regulation may be highly context 

dependent (Zhang et al., 2017).

Master TFs have been identified for other T cell subsets but not for Tr1 cells. Our network 

analysis in Tr1 cells highlighted Prdm1 and Maf as central hubs in regulating Il10. Not only 

are they heavily regulated, but, more importantly, they orchestrate a regulatory circuit 

composed of multiple other transcriptional modulators. Prdm1/Maf DKO Tr1 cells, but not 

either single KO Tr1 cells, exhibited complete loss of Il10 and collapse of the Il10 regulatory 

circuit, both accompanied by reduced chromatin accessibility, and a notable upregulation of 

the Il10 repressor Bhlhe40. Expression of co-inhibitory receptors, another hallmark of Tr1 

cells (Brockmann et al., 2018; Chihara et al., 2018; DeLong et al., 2019), are induced by 

IL-27 and controlled by Prdm1 and Maf transcriptionally and at the chromatin level. These 

data suggest that the key signature of Tr1 cells might be established through collaboration 

between two TFs with complementary roles.

We and others have shown that c-Maf is a universal regulator of IL-10 in Th1, Th2, Th17, 

Tr1, as well as Treg cells (Gabryšová et al., 2018). Further, we discovered that Maf needs to 

cooperate with other TFs, such as Ahr, to achieve robust Il10 transcription (Apetoh et al., 

2010). In this study, we identified Prdm1 as a critical partner of Maf and that together they 

synergistically transactivate Il10 in all CD4 T cell subsets, including IL-10-producing Tr1 

cells.

Commitment of T helper cells to specific subsets requires induction of master TFs that not 

only induce specific transcriptional programs that push T cell subsets in one direction but 

also initiate repressive programs that antagonize other fates (Sungnak et al., 2019). 

Interestingly, we observed that, although Prdm1 and Maf synergistically promote IL-10 

production, they do not inhibit production of signature cytokines of the different T helper 

cell subsets, enabling them to co-produce IL-10 while maintaining their original 

transcriptional program.

We found that Prdm1/Maf DKO mice, but not single KO mice, phenocopy Il10-deficient 

mice and develop spontaneous colitis that presents pathological and molecular features of 

human IBD. Prdm1 is a well-recognized GWAS gene associated with IBD (Ellinghaus et al., 

2013). It would therefore be interesting to investigate whether SNPs related to Maf can 

further enhance IBD susceptibility. With scRNA-seq analysis, we discovered a unique 

cluster of colonic Treg cells in Prdm1/Maf DKO mice that was not observed when Prdm1 
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(Cretney et al., 2011; Garg et al., 2019; Ogawa et al., 2018) or Maf (Neumann et al., 2019; 

Xu et al., 2018) was perturbed individually. These DKO Treg cells lose immunoregulatory 

phenotypes, including production of IL-10, and acquire strong Th1- and CTL-associated 

gene signatures, indicating potential to actively exacerbate inflammation. In addition, this 

DKO Treg cell cluster shows a profound shift in the use of chemokine receptors from those 

that drive T cells to tissue with active inflammation (e.g., Ccr2 and Cxc6) (Hamano et al., 

2014; Loyher et al., 2016; Mondini et al., 2019; Zhang et al., 2009) to Ccr7, which, together 

with two other markers highly expressed by DKO Treg cells, Lta (Upadhyay and Fu, 2013) 

and Itgae (Leithäuser et al., 2006), are associated with development of lymphoid-like 

structures. Therefore, it would be interesting to further study how Prdm1 and Maf regulate 

the migration and location of Treg cells.

We have shown that Prdm1 and Maf co-operatively induce the co-inhibitory receptor gene 

module on exhausted CD8 T cells (Chihara et al., 2018), which not only have a 

dysfunctional effector program but also co-produce IL-10 to actively suppress the immune 

responses in chronic viral infections and cancer. Further, Maf was also implicated in IL-10 

expression in B cells (Liu et al., 2018) and macrophages (Cao et al., 2005), and Prdm1 has a 

regulatory role in dendritic cells (Kim et al., 2011; Watchmaker et al., 2014). These data, 

together with our current study, emphasize the importance of cooperativity between Prdm1 
and Maf in regulating immunoregulatory gene programs across multiple immune cell types.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Vijay Kuchroo 

(vkuchroo@evergrande.hms.harvard.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—Data generated in this paper has been deposited in the 

Gene Expression Omnibus (GEO) under accession number GEO: GSE159208.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice and Ethics Statement—C57BL/6, BALB/cJ, dLckCre, Hlx+/− (Hentsch et al., 

1996), Tbx21−/− (Finotto et al., 2002), Irf8fl/fl (Feng et al., 2011), Prdm1fl/fl (Shapiro-Shelef 

et al., 2003), Nfe2l2−/− (Chan et al., 1996), Hif1afl/fl (Ryan et al., 2000), Ahr−/− (Schmidt et 

al., 1996), Batf3−/− (Hildner et al., 2008), Stat3fl/fl (Moh et al., 2007), Stat4−/− (Kaplan et al., 

1996), Irf1−/− (Matsuyama et al., 1993), Batf−/− (Schraml et al., 2009), Irf4fl/fl (Klein et al., 

2006), Bhlhe40−/− (Jiang et al., 2008) and 10BiT (Maynard et al., 2007) mice were 

purchased from Jackson Laboratory. Cd4Cre (Lee et al., 2001) mouse was purchased from 

Taconic. Maffl/fl (Wende et al., 2012), Nfil3fl/fl (Gascoyne et al., 2009), Id2fl/fl (Seillet et al., 

2013), Ets1−/− (Muthusamy et al., 1995) and Foxp3-GFP mouse (Bettelli et al., 2006) has 

been previously described. Other previously described mutant strains were kindly provided 

by the following researchers: Fosl2fl/fl (Karreth et al., 2004), D. Littman; Atf3fl/fl Actb-
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Cre(Taketani et al., 2012), H. Weiner; Cebpbfl/fl Lck-Cre+ (Sterneck et al., 2006), M. 

Rincon. In addition, spleens from Irf7−/−, Fli1+/−, Irf9−/− mice were obtained from Ian R. 

Rifkin, Maria Trojanowska, and Paul J. Utz, respectively. In vitro experiments were 

performed using 6-10 weeks old female and male mice.

All animals were housed and maintained in conventional pathogen-free facilities at the 

Harvard Institute of Medicine and Hale Building for Transformative Medicine in Boston 

(IUCAC protocols: 2016N000444 (V.K.K.)). All experiments were performed in accordance 

to guidelines outlined by Harvard Medical Area Standing Committee on Animals and the 

Brigham and Women’s Hospital Institutional Animal Care and Use Committee.

METHOD DETAILS

Experimental methods

T cell sorting and in-vitro T helper cell differentiation: For the generation of time-course 

microarray data of Tr1 cells and validation of Il10 regulators in Tr1 cells in vitro, 

CD4+CD44−CD62L+CD25− naive cells were sorted from WT B6 or indicated KO and their 

corresponding control mice with BD FACSAria sorter, and then activated with plate-bound 

anti-CD3 and anti-CD28 (both at 1ug/ml) in the presence of 25ng/ml rmIL-27 (R & D 

systems). 10ug/ml anti-TGFβ (Bioxcell, Clone# 1D11.16.8) was also added for the 

microarray experiment.

For RNA-seq and qPCR analysis of IL-10 producing and non-producing T helper cells, 

naive CD4+CD44−CD62L+GFP− cells were sorted from Foxp3-GFP; Il10-Thy1.1 double 

reporter mice using BD FACSAria sorter and were activated with irradiated splenocytes 

depleted of CD4 T cells (at the T: APC ratio of 1:6) and 2.5ug/ml soluble anti-CD3 in the 

presence of polarizing cytokines. Concentration of cytokines are as follows: 20ng/ml 

rmIL-12 (R & D systems) for Th1; 20ng/ml rmIL-4 (Miltenyi Biotec) for Th2; 2ng/ml of 

rhTGFb1 and 25ng/ml rmIL-6(both from Miltenyi Biotec) for non-pathogenic Th17; 

20ng/ml rmIL-1β(Miltenyi Biotec), 25ng/ml rmIL-6 (Miltenyi Biotec), and 20ng/ml 

rmIL-23 (R&D systems) for pathogenic Th17; 25ng/ml of rmIL-27 (R & D systems) for 

Tr1. IL-10 positive (Thy1.1+) and negative (Thy1.1+) 7-AAD−TCRβ+CD4+GFP− cells were 

re-sorted at 72 hours.

Isolation of lymphocytes from colonic lamina propria: To remove epithelial cells, colons 

were first washed for 20min in RPMI medium (GIBCO) with 3% FBS (Sigma-Aldrich), 

5mM EDTA (Invitrogen) and 1mM DTT (Sigma) in a shaking incubator at 400rpm at 37°C, 

followed by three other washes each for 30 s by vibrant vortexing in RPMI with 2mM 

EDTA. The tissue was then cut into little pieces and digested for 30min in RPMI with 

100ug/mL Liberase TL (Sigma) and 500ug/mL DNase I (Sigma) Digestion in a shaking 

incubator at 400rpm at 37°C. Digestion was terminated by addition of ice-cold RPMI with 

3% FCS. Cells were washed twice in RPMI with 3% FCS, passed through a 40μm cell 

strainer and resuspended in ice-cold RPMI with 3% FCS and 1mM EDTA for sorting.

RNA profiling by microarrays, population RNA-seq and single cell RNA-seq: The 

temporal gene expression profiling of Tr1 cells at 17 time points during in vitro 
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differentiation by IL-27 were measured by Affymetrix GeneChip Mouse Genome 430 2.0 

Arrays. For genetic validation of the 24 TFs, naive CD4+ T cells were isolated from spleen 

of knockout mice and matched controls and differentiated in vitro in Tr1 polarizing 

conditions for 72 hours. Cells were collected and processed using an adaptation of the 

SMART-Seq 2 protocol (Tirosh et al., 2016), using 5uL of lysate from bulk CD4+ T cells as 

the input for each sample during RNA cleanup via SPRI beads (~2,000 cells lysed on 

average in RLT). Libraries were prepared using the Nextera XT DNA Sample Prep Kit 

(Illumina), quantified, pooled, and then sequenced on the HiSeq 2500 (Illumnia) to an 

average depth of 20M reads.

For scRNA-seq profiling of colonic CD4 T cells in control, Prdm1 cKO, Maf cKO, and 

DKO mice, live (7-AAD−) TCRβ+CD4+ cells were sorted from colonic lamina propria of 

each mouse with two biological replicates for each genotype. Cells were processed using 

Chromium Single Cell 3′ Reagent Kits v2 according to manufacturer’s protocol (10X 

Genomics). For each biological replicate, an input of 7,000 single cells was added to an 

individual channel with a recovery rate of approximately 1,300~2100 cells. The generated 

scRNA-seq libraries were sequenced on HiSeq X Ten.

ATAC-seq: Control, Prdm1 cKO, Maf cKO, and DKO Tr1 cells were cultured as described 

above for 72h with IL-27. Three to five replicates were included for each genotype. 

Subsequently, 6,000 viable Tr1 cells were sorted and frozen in BambankerTM cell freezing 

media (LYMPHOTEC Inc.) at 80°C. For ATAC-seq library preparation, cells were thawed at 

37°C, washed once with PBS, and lysed and tagmented in 1X TD Buffer, 0.2ml TDE1 

(provided in Nextera® DNA Sample Preparation Kit from Illumina), 0.01% digitonin, and 

0.3X PBS in 40ml reaction volume following the protocol described by Corces et al. (2016). 

The DNA was purified immediately with the MinElute PCR purification kit (QIAGEN), and 

then PCR amplified and quantified as we previously described (Wallrapp et al., 2019). The 

library was sequenced on an Illumina NextSeq 550 system with paired-end reads of 37 base 

pairs in length.

Quantitative RT-PCR: RNA was extracted using RNeasy Plus Mini Kit (QIAGEN), cDNA 

was prepared using iScript Reverse Transcription Supermix (Bio-rad) and used as template 

for real-time qPCR run with TaqMan Fast Advanced Master Mix (Thermo Fisher Scientific) 

on the ViiA 7 Real-Time PCR System (Applied Biosystems). Expression was normalized to 

Actb. The following probes used for qPCR were purchased from Applied Biosystems: Il10 
(Mm01288386_m1), Maf (Mm02581355_s1), Prdm1 (Mm00476128_m1), Actb 
(Mm00607939_s1).

Flow Cytometry: Single cell suspensions were stained with antibodies against surface 

molecules. Fixable viability dye eF506 or 7-AAD was used to exclude dead cells. For intra-

cytoplasmic cytokine staining, cells were stimulated with 12-myristate 13-acetate (PMA) 

(50ng/ml, Sigma), ionomycin (1 μg/ml, Sigma) in the presence of Brefeldin A (Golgiplug, 

BD Biosciences) and Monensin (Golgistop, BD Biosciences) for 4-5 hours prior to staining 

with antibodies against surface proteins followed by fixation, permeabilization with 

Fixation/Permeabilization Solution Kit (BD Biosciences) and staining with antibodies 

against intracellular cytokines. Data was analyzed with Flowjo.
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Luciferase assays: 5x104 293T cells were seeded in 96 well plate one day before 

transfection and then transfected with Firefly luciferase reporter constructs for Il10, Renilla 

luciferase reporter (internal control) and plasmids expressing specific transcription factors 

using PolyJet In Vitro DNA Transfection Reagent (SignaGen Laboratories). Cells were 

analyzed 48h later with Dual-Luciferase Reporter Assay System (Promega). To construct 

reporters for Il10 enhancers, previously described enhancer regions, including the CNS-9, 

HSS+2.98, and HSS+6.45 (Lee et al., 2009), were cloned upstream of the Il10 minimal 

promoter. Fragments containing the proximal Il10 promoter (−1.5 kb including the 

HSS-0.12 site) or the aforementioned enhancers were cloned into pGL4.10 Luciferase 

reporter plasmid (Promega).

In-vivo treatment of anti-CD3: Mice were treated with 20 μg anti-CD3 monoclonal 

antibody (clone 145-2C11, Bio X Cell) or an isotype control (Bio X Cell) intraperitoneally 

every 3 days for a total of three times. Mice were sacrificed 4h after the last treatment. CD4 

T cells were purified from mesenteric lymph node by MACS® cell separation and Il10 
expression was measured by qPCR.

T cell transfer colitis: CD4+CD62L+ T cells were sorted from WT and Hlx+/− mice and 

cultured with plate-bound anti-CD3 and anti-CD28 antibody in the presence of 25ng IL-27. 

72 h later cells were detached from the plate and rested for 48h before transferred into 

Rag1−/− recipients. 5 × 105 WT or Hlx heterozygous Tr1 cells were transferred 

intraperitoneally into Rag1−/− animals and changes in body weight were monitored weekly.

Retroviral infection: T cells activated with plate-bound anti-CD3 and anti-CD28 antibody 

in the presence of polarizing cytokines were transduced with MSCV expressing Prdm1 

(marked by Thy1.1) and Maf (marked by GFP) at 24h after activation. IL-10 expression in 

control (Thy1.1−GFP−), Prdm1-overexpressing (Thy1.1+GFP−), Maf-overexpressing 

(Thy1.1−GFP+) and cells overexpressing both (Thy1.1+GFP+) was analyzed by flow 

cytometry. For preparation of retroviruses, Plat-E cells were transfected with MSCV vectors 

with PolyJet. Supernatant containing virus was harvested 48hr after transfection of Plat-E 

cells and then used for spin transduction of T cells with polybrene (8 μg/ml) at 2000rpm, 

32°C for 1hr.

Computational Methods

Microarray data pre-processing and analysis: Individual .CEL files were RMA 

normalized and merged to an expression matrix using the ExpressionFileCreator of 

GenePattern with default parameters (Reich et al., 2006). Gene-specific intensities were then 

computed by taking for each gene j and sample i the maximal probe value observed for that 

gene. Samples were then transferred to log-space by taking log2(intensity).

Differentially expressed genes (comparing to the Th0 control) were found using a method 

we previously described (Yosef et al., 2013). Briefly, genes that were detected in two of the 

four methods used were defined as differentially expressed: (1) Fold change. Requiring a 2-

fold change (up or down) during at least two time points. (2) Polynomial fit. We used the 

EDGE software (Leek et al., 2006; Storey et al., 2005), designed to identify differential 
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expression in time course data, with a threshold of q-value ≤ 0.01. (3) Sigmoidal fit. We used 

an algorithm similar to EDGE while replacing the polynomials with a sigmoid function, 

which is often more adequate for modeling time course gene expression data (Chechik and 

Koller, 2009). We used a threshold of q-value ≤ 0.01. (4) ANOVA. Gene expression was 

modeled by time (using only time points for which we have more than one replicate) and 

treatment. The model takes into account each variable independently, as well as their 

interaction. We report cases in which the P value assigned with the treatment parameter or 

the interaction parameter passed an FDR threshold of 0.01.

To associate the regulation activity of a differentially expressed transcription factor with the 

three phases of IL-10 expression (latency, induction and maintenance) we segmented our 

time course dataset into three corresponding time windows: 0-20h, 25-48h and 54-72h. TFs 

were assigned to specific phases if they were differential expressed (> 1.8 Fold change) 

anytime during this time window.

Prediction of TFs regulating the IL-27 network: Using approaches as we previously 

described (Yosef et al., 2013), we identified potential regulators of Tr1 differentiation by 

computing overlaps between their putative targets and sets of differentially expressed genes 

grouped by k-means clustering. For every TF in our database, we computed the statistical 

significance of the overlap between its putative targets and each of the groups defined above 

using Fisher’s exact test. We included cases where p < 5 × 10−5 and the fold enrichment > 

1.5.

Population RNA-seq data pre-processing and analysis: RNA-seq reads were aligned 

using Tophat (Trapnell et al., 2009) and RSEM-based quantification (Li and Dewey, 2011) 

using known transcripts (mm9), followed by further processing using the Bioconductor 

package DESeq2 in R (Anders and Huber, 2010). The data was normalized using TMM 

normalization. The TMM method estimates scale factors between samples that can be 

incorporated into currently used statistical methods for DE analysis. Post-processing and 

statistical analysis was carried out in R (Li and Dewey, 2011).

For the analysis of the effect of different regulator KOs, differentially expressed genes were 

defined as genes with abs (logFC between control and KO) > 1.

For comparison between IL-10+ and IL-10− cells, differentially expressed genes were 

defined based on the raw counts with a single call to the function DESeq2 (Love et al., 2014) 

(FDR-adjusted P value < 0.05). Heatmap figures were generated using pheatmap package 

(https://cran.r-project.org/web/packages/pheatmap/index.html).

ATAC-seq analysis: Generation and analysis of ATAC-seq data for in-vitro differentiated 

Tr1 cells at 24 h and 72 h were performed in our previously published study (Karwacz et al., 

2017). A publicly available ATAC-seq pipeline (Lee et al., 2016) was used for the processing 

of ATAC-seq on Prdm1 cKO, Maf cKO and DKO Tr1 cells. Briefly, reads were aligned to 

the mm10 genome using Bowtie2 and filtered to remove duplicates and mitochondrial reads. 

Biological replicate for each group were merged peaking-calling using MACS2 (Zhang et 
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al., 2008). Integrative Genomics Viewer (IGV) was used for visualization of ATAC-seq 

peaks.

Single cell RNA-seq analysis

Data preprocessing.: De-multiplexing, alignment to the mm10 mouse transcriptome and 

UMI-collapsing were performed using the Cellranger toolkit (version 2.1.0, 10X Genomics). 

Subsequent analysis was performed with R package Seurat v3 (Butler et al., 2018). For 

downstream processing we filtered out low quality cells that had (1) a low number (< 500) of 

unique detected genes, and (2) a high mitochondrial content (15%) determined by the ratio 

of reads mapping to the mitochondria. A small proportion of cells were identified as 

contamination by macrophages, innate lymphoid cells, intraepithelial lymphocytes and 

fibroblasts, and were excluded from downstream analysis. To account for differences in 

sequencing depth across cells, UMI counts were normalized by the total number of UMIs 

per cell and converted to transcripts-per-10,000 before being log transformed (henceforth 

“log(TP10K+1)”).

PCA and clustering: Highly variable genes were selected using the ‘mean.var.plot’ method 

in FindVariableFeatures function with default settings, resulting in 341 genes which are then 

used for PCA analysis by RunPCA function. We used the first 40 PCs for subsequent 

analyses as they capture the majority of signal in an elbow plot, but we also confirmed that 

the resulting analyses were not particularly sensitive to the above-mentioned choice of 

parameters. The cells were clustered via Seurat’s FindClusters function, which optimizes 

modularity on a K-nearest-neighbor (KNN) graph computed from the top eigenvectors using 

Louvain algorithm, with nn.eps at 0.5, resolution at 0.4, and n.start at 10. These parameters 

resulted in clusters that captured major genotype- related separations, known T cell 

subgroups, and statistically validated transcriptional distinct sections of interest while 

avoiding subdivisions of relatively uniform parts of the data. To visualize the data, UMAP 

plots were generated using Seurat’s RunUMAP function with min.dist at 0.75.

Cell type assignment: To identify which T cell subtype each cluster represents, we 

identified markers of each cluster using Seurat’s FindAllMarkers function with min.pct at 

0.25. The top 200 genes of each cluster were then used as input for My Geneset module of 

Immgen (immgen.org). We assigned identity to each cluster based on the cell population in 

the Immgen database that display highest expression of its marker genes and confirmed the 

designation by expression of known marker genes (Figure S5A).

Gene signatures: Scoring gene signature was performed using AddModuleScore function 

of Seurat based on strategies described by Tirosh et al. (2016). Markers of cell cycles 

including G2/M phase and S phase were provided by Tirosh et al. (2016). Th1 signature was 

manually curated based on literature. Th17 signature was generated by comparing 

microarrays of in vitro cultured Th17 cells to other T helper cells, including naive, Th1, Th2, 

iTreg and nTreg cells (Wei et al., 2009; Xiao et al., 2014). CD4 T cells signature from 

ulcerative colitis patients contains genes upregulated in CD4 T cells from biopsies of 

inflamed intestinal tissue in patients compared to those from healthy tissue in healthy 
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controls profiled by scRNA-seq (Smillie et al., 2019). IBD associated GWAS genes were 

compiled from literature (Graham and Xavier, 2020).

Differential expression analysis: Differentially expressed genes were tested using MAST 

(Finak et al., 2015) by calling FindMarkers function in Seurat. To find unique markers for 

Prdm1/Maf DKO Tregs, DKO Tregs were compared against Treg cells in both single KO 

and control groups.

QUANTIFICATION AND THE STATISTICAL ANALYSIS

Unless otherwise specified, all statistical analyses were performed using the two-tail 

Student’s t test using GraphPad Prism software. P value less than 0.05 is considered 

significant (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***, p < 0.0001 = ****. Data were 

represented as mean ± s.e.m. unless otherwise specified. For certain types of numeric 

computations for transcriptomic data, the smallest P value that R can report is < 2.2 × 10−16.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• IL-27-driven transcriptional network in CD4 T cells unravels key Il10 
regulators

• Systematic characterization of the function of 16 Il10 regulators by RNA-seq

• Identification of transcription factors associated with Il10 in multiple T cell 

subsets

• Prdm1 and Maf are critical for Il10 production and intestinal immune 

homeostasis
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Figure 1. Building a Predicative Model of the IL-27-Driven Transcriptional Program in CD4 T 
Cells by High-Resolution Temporal Transcriptional Profiling
Gene expression profiles during IL-27-driven in-vitro Tr1 differentiation were measured by 

microarray at 17 time points with the Th0 condition as a control.

(A) Relative expression (log2(Tr1/Th0)) of 790 differentially expressed genes (rows).

(B) Pearson correlation matrix of the transcriptome at every pair of time points.

(C) Relative expression (log2(Tr1/Th0)) of 79 TFs predicted to regulate gene clusters. 

Underlined are TFs known to regulate Tr1 differentiation.
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Figure 2. Experimental Validation of IL-27 Predicative Network Identifies TFs that Regulate 
Il10 In Vitro and In Vivo
(A) Log2 fold change of Il10 mRNA levels in WT versus KO Tr1 cells differentiated in vitro 
with IL-27 for 72 h, quantified by qPCR. Blue, positive regulator; red, negative regulator; 

gray, not statistically significant. Data are displayed as mean of 2–3 replicates.

(B) Statistically significant ChIP-seq binding sites of ATF-3 ATF-3, Fosl2, T-bet, and IRF8 

in the Il10 locus.

(C) Luciferase activity in 293T cells transfected with luciferase reporters for the indicated 

cis-regulatory elements of Il10 and plasmids encoding the depicted TFs. Firefly luciferase 

activity is normalized to constitutive Renilla luciferase activity.

(D) WT and Hlx+/− mice were injected intraperitoneally (i.p.) with anti-CD3. Il10 mRNA in 

CD4+ T cells MACS purified from mesenteric lymph nodes was measured by qPCR.

(E) 5 x 105 in vitro differentiated WT (diamonds) and Hlx+/−(squares) Tr1 cells were 

transferred i.p. into Rag1−/− recipients. Rag1−/− (circles) did not receive any cells. Changes 

in body weight were monitored weekly. n = 5.
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Figure 3. A Comprehensive Transcriptional Network Focused on Regulation of IL-10 by IL-27
(A) General network of Il10 regulation by TFs in Tr1 cells, visualized using Cytoscape. 

Edges indicate causal regulatory targets identified using genetic perturbation by RNA-seq or 

qPCR. Blue and red edges indicate positive and negative regulations, respectively. Nodes are 

colored by betweenness centrality score.

(B) Betweenness centrality scores of the regulators in (A). Blue, positive regulator; red, 

negative regulator.

(C) Temporal expression of Il10 in Tr1 versus Th0 cells measured by microarray.

(D) Temporal regulation of Il10 in Tr1 cells, divided into 3 main phases: latency (0–20 h), 

induction (25–48 h), and maintenance (54–72 h). Purple nodes, increased by IL-27; gray 

nodes, decreased by IL-27.
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Figure 4. Prdm1 and Maf Have Complementary but Indispensable Roles in Regulating Tr1 
Identity at the Transcriptional and Chromatin Level
(A) Naive CD4 T cells from the indicated mice were differentiated in vitro into Tr1 cells 

with IL-27. Il10 expression was measured by qPCR on day 3.

(B and C) Control, Prdm1 cKO, Maf cKO, and Prdm1/Maf DKO Tr1 cells generated as 

described in (A) were analyzed by RNA-seq (B) and ATAC-seq (C).

(B) Heatmap showing expression of 79 predicted regulators in the Tr1 network. “+” 

indicates statistically significant differential expression.

(C) Chromatin accessibility in the Il10, Fosl2, and Hlx loci in Tr1 cells of the indicated 

genotype. Red bars represent regions with differential chromatin accessibility in DKO cells.
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Figure 5. TFs Associated with IL-10 Production in Different T Helper Cells
(A and C) TFs enriched in the IL-10+ compartments compared with their IL-10− 

compartments in (A) in-vitro-generated T helper cell subsets, (C) 10 in vivo/ex vivo 
conditions where a direct comparison between the transcriptome of IL-10+ and IL-10− cells 

was made in public data (Table S1). TFs that are enriched under at least 3 conditions were 

magnified.

(B and D) A different display of same data in (A) and (C), respectively, showing TFs that are 

enriched under at least 3 conditions and the conditions where their expression is enriched in 

the IL-10+ compartment. SI, small intestine.
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(E) A ranking scheme (STAR Methods) for all potential regulators of IL-10, taking into 

account network centrality (Figure 3B), enrichment in in vitro conditions (Figure 5A), and 

enrichment in public datasets (Figure 5C).
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Figure 6. Prdm1 and Maf Synergistically Regulate IL-10 in All T Helper Cells
(A) Enrichment of Prdm1 and Maf mRNA in in-vitro-generated T helper cells validated by 

qPCR.

(B) ChIP-seq of Maf in Th17 cells and Prdm1 in tissue-resident memory T cells aligned with 

ATAC-seq data of Tr1 cells differentiated in vitro at 72 h.

(C) Luciferase activity in 293T cells transfected with Il10 luciferase reporters along with 

constructs encoding Prdm1, Maf, or both. n = 3.

(D) T helper cells differentiated in vitro were transduced with two retroviruses expressing 

Prdm1 and Maf, respectively. IL-10 expression in control cells, Prdm1-overexpressing cells, 

Maf-overexpressing cells, and cells overexpressing Prdm1 and Maf was measured by flow 

cytometry 48 h after transduction.
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Figure 7. Genetic Deficiency of Prdm1 and Maf, but Not Either Alone, in T Cells Leads to 
Human IBD-like Spontaneous Colitis Driven by a Unique Cluster of Treg Cells
(A) Weekly monitored body weights. Top: female mice. Bottom: male mice. n ≥ 8. Data are 

represented as mean ± SD.

(B) Colon length of the indicated mice, presented as seen by gross anatomy and 

measurement.

(C) Hematoxylin and eosin staining of colon Swiss rolls. Pictures are representative of 10 

control, 4 Prdm1 cKO, 6 Maf cKO, and 7 DKO mice. Scale bars represent 250 μm.

(D–K) CD4 T cells from colonic lamina propria were profiled by scRNA-seq.

(D and E) Uniform manifold approximation and projection (UMAP) plots show 13,535 cells 

(dots) colored by genotype (D) or cluster (E).

(F) Distribution of cells with different genotypes in clusters.

(G and H) Left: distribution of gene signature scores of Tconv cells (clusters 1–4) by 

genotype. “+” indicates median. (H) right: enrichment of IBD-associated GWAS genes that 
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are involved in adaptive immunity in differentially expressed genes of Prdm1 cKO, Maf 
cKO, and DKO Tconv cells, respectively, compared with the control. Significance of 

enrichment was tested by hypergeometric test.

(I-K) Gene expression level represented as log(TP10K+1).

(I) Il10 expression by control (WT) cells across clusters.

(J) Il10 expression by Treg cells (clusters 5–8) across genotypes.

(K) Representative differentially expressed genes of DKO Treg cells compared with all other 

genotypes. Dot size represents the fraction of cells in the cluster that express the gene; color 

indicates mean expression in expressing cells relative to other genotypes.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

InVivoMab anti-mouse CD3ε Bio X Cell Cat# BE0001-1

InVivomAb anti-mouse CD28 Bio X Cell Cat# BE0015-5

InVivomAb anti-mouse TGF-β Bio X Cell Cat# BE0057

InVivomAb polyclonal Armenian hamster IgG Bio X Cell Cat# BE0091

Chemicals, Peptides, and Recombinant Proteins

Recombinant Mouse IL-27 (NS0-expressed) Protein R&D SYSTEMS Cat# 2799-ML-010

Recombinant Mouse IL-12 Protein R&D SYSTEMS Cat# 419-ML-050

Mouse IL-4, research grade Miltenyi Biotec Cat# 130-097-757

Recombinant Mouse IL-1 beta/IL-1F2 Protein R&D SYSTEMS Cat# 419-ML-010

Recombinant Mouse IL-6 Protein R&D SYSTEMS Cat# 406-ML-025

Recombinant Mouse IL-23 Protein R&D SYSTEMS Cat# 1887-ML-010

Human TGF-β1, premium grade Miltenyi Biotec Cat# 130-095-067

Liberase TL Research Grade Sigma Cat# 5401020001

DNase I Sigma Cat# 10104159001

Fixable viability dye eFluor506 eBioscience Cat# 65-0866-14

7AAD BD Biosciences Cat# 559925

Digitonin Promega Cat# G9441

Critical Commercial Assays

RNeasy Plus Mini Kit QIAGEN Cat# 74134

iScript Reverse Transcription Supermix Bio-Rad Cat# 1708841

TaqMan Fast Advanced Master Mix Thermo Fisher Scientific Cat# 4444557

PolyJet In Vitro DNA Transfection Reagent SignaGen Laboratories Cat# SL100688

Dual-Luciferase® Reporter Assay System Promega Cat# E1960

GeneChip Mouse Genome 430 2.0 Array Affymetrix Cat# 900497

Nextera® DNA Sample Preparation Kit Illumina Cat# FC-121-1030

MinElute Reaction Cleanup kit QIAgen Cat# 28204

Chromium Single Cell 3′ Library & Gel Bead Kit v2 10x Genomics Cat# PN-120237

Chromium Single Cell A Chip Kit 10x Genomics Cat# PN-1000009

Deposited Data

Raw and analyzed data This paper GEO: GSE159208

Tr1 ATAC-seq (related to Figures 2B and 6B) Karwacz et al., 2017 GEO: GSE92993

Atf3 ChIP-seq (related to Figure 2B) Garber et al., 2012 GEO: GSE36104

Fosl2 ChIP-seq (related to Figure 2B) Ciofani et al., 2012 GEO: GSE40918

Tbx21 ChIP-seq (related to Figure 2B) Nakayamada et al., 2011 GEO: GSE33802

Irf8 ChIP-seq (related to Figure 2B) Xu et al., 2015 GEO: GSE70712

Experimental Models: Cell Lines

293T cells GenHunter Cat# Q401

Platinum-E (Plat-E) Retroviral Packaging Cell Line Cell Biolabs Cat# RV-101
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Mouse: C57BL/6J The Jackson Laboratory JAX: 000664

BALB/cJ The Jackson Laboratory JAX: 000651

Mouse: Foxp3-GFP Bettelli et al., 2006 N/A

Mouse: 10BiT Maynard et al., 2007 N/A

Mouse: Prdm1f/f Shapiro-Shelef et al., 2003 JAX: 008100

Mouse: Maff/f Wende et al., 2012 N/A

Mouse: Ahr KO Schmidt et al., 1996 JAX: 002831

Mouse: Atf3f/f Taketani et al., 2012 N/A

Mouse: Batf KO Schraml et al., 2009 JAX: 013758

Mouse: Cebpbf/f Sterneck et al., 2006 N/A

Mouse: Ets1 KO Muthusamy et al., 1995 N/A

Mouse: Fosl2f/f Karreth et al., 2004 N/A

Mouse: Hif1af/f Ryan et al., 2000 JAX:007561

Mouse: Irf1 KO Matsuyama et al., 1993 JAX: 002762

Mouse: Irf4 KO Klein et al., 2006 JAX: 009380

Mouse: Irf8f/f Feng et al., 2011 JAX:014175

Mouse: Irf9 KO Gift from Paul J. Utz RIKEN: RBRC00915

Mouse: Nfil3f/f Gascoyne et al., 2009 N/A

Mouse: Stat3f/f Moh et al., 2007 JAX: 016923

Mouse: Tbx21 KO Finotto et al., 2002 JAX: 004648

Mouse: Bhlhe40 KO Jiang et al., 2008 JAX: 029732

Mouse: Hlx+/− Hentsch et al., 1996 JAX: 008313

Mouse: Stat4 Kaplan et al., 1996 JAX: 002826

Mouse: Batf3 KO Hildner et al., 2008 JAX: 013755

Mouse: Nfe2l2 KO Chan et al., 1996 JAX: 017009

Mouse: Irf7 KO Gift from Ian Rifkin N/A

Mouse: Id2f/f Seillet et al., 2013 N/A

Mouse: Fli1+/− Gift from Maria Trojanowska N/A

Mouse: Cd4-Cre Lee et al., 2001 Taconic: 4196

Mouse: Actin-Cre Lewandoski et al., 1997 JAX: 033984

Mouse: Lck-Cre Hennet et al., 1995 JAX: 003802

Mouse: dLck-Cre Wang et al., 2001 JAX: 012837

Recombinant DNA

pGL4.10[luc2] Vector Promega Cat# E665A

pGL4.10-Il10 proximal promoter-luc2 This paper N/A

pGL4.10-Il10 CNS-9-luc2 This paper N/A

pGL4.10-Il10 HSS+2.98-luc2 This paper N/A

pGL4.10-Il10 HSS+6.45-luc2 This paper N/A

MSCV-IRES-GFP Gift from Tannishtha Reya Addgene #20672

MSCV-Maf-IRES-GFP This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

MSCV-IRES-Thy1.1 Gift from Philippa Marrack N/A

MSCV-Prdm1-IRES-Thy1.1 This paper N/A

Software and Algorithms

GenePattern Reich et al., 2006 https://www.genepattern.org/

EDGE Leek et al., 2006 https://www.bioconductor.org/

Tophat Trapnell et al., 2009 https://github.com/infphilo/tophat

RSEM Li and Dewey, 2011 http://deweylab.github.io/RSEM/

DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/bioc/html/
DESeq2.html

RStudio RStudio https://www.rstudio.com/

ATAC-seq pipeline Lee et al., 2016 https://zenodo.org/record/211733

Integrative Genomics Viewer Robinson et al., 2017 http://software.broadinstitute.org/software/igv/

R package Seurat v3 Butler et al., 2018 https://satijalab.org/seurat/

FlowJo FlowJo https://www.flowjo.com

Prism GraphPad https://www.graphpad.com
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