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Post-translational modifications (PTMs) of proteins are 
essential to increase the functional diversity of the prote-
ome. By adding chemical groups to proteins, or degrading 
entire proteins by phosphorylation, glycosylation, ubiqui-
tination, neddylation, acetylation, lipidation, and proteoly-
sis, the complexity of the proteome increases, and this 
then influences most biological processes. Although small 
RNAs are crucial regulatory elements for gene expression 
in most eukaryotes, PTMs of small RNA microprocessor 
and RNA silencing components have not been extensively 
investigated in plants. To date, several studies have shown 
that the proteolytic regulation of AGOs is important for 
host-pathogen interactions. DRB4 is regulated by the 
ubiquitin-proteasome system, and the degradation of HYL1 
is modulated by a de-etiolation repressor, COP1, and an 
unknown cytoplasmic protease. Here, we discuss current 
findings on the PTMs of microprocessor and RNA silenc-
ing components in plants. 
 
 
INTRODUCTION 
1 
MicroRNAs (miRNAs) are a class of regulatory small RNAs that 
control diverse biological events in plants, animals, and many 
single-cell eukaryotes (Baulcombe, 2004; Brodersen and Voin-
net, 2009). By degrading or blocking the translation of target 
messenger RNAs, miRNAs modulate the expression of genes 
for development, differentiation, metabolism, and defense (Bar-
tel, 2004; Voinnet, 2005; 2009). Because of the important roles 
of miRNAs in biological events, extensive researches have 
been performed to delineate the precise mechanisms of miRNA 
processing (Kim, 2005; Kurihara et al., 2006; Parizotto et al., 
2004; Ren and Yu, 2012). In general, miRNAs are processed 
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from long transcripts, called primary miRNAs (pri-miRNAs), 
which are generated from their own genes or from introns 
(Okamura et al., 2007). A single pri-miRNA contains one or 
more imperfect hairpin-loop structure with miRNA sequences 
(Bielewicz et al., 2013; Meng et al., 2013). In animals, the apical 
element and stem of a pri-miRNA is recognized by DiGeorge 
Syndrome Critical Region 8 (DGCR8) through its double-
stranded RNA domain and RNA-binding heme domain, respec-
tively (Landthaler et al., 2004; Nguyen et al., 2015). Drosha, a 
type III RNAse, forms a heterotrimeric complex, known as a 
microprocessor, with two molecules of DGCR8 in order to pro-
cess pri-miRNA into precursor-miRNA (pre-mRNA) (Gu et al., 
2012; Kwon et al., 2016). The processed product is subse-
quently exported to the cytoplasm where it is further cleaved by 
another RNase type III enzyme, Dicer. Dicer recognizes 5′ and 
3′ ends of the pre-miRNA and excises the loop to release ma-
ture miRNA (Denli et al., 2004; Saito et al., 2005; Zeng et al., 
2005). In plants, the two-step cleavage of pri-miRNA is performed 
by a Dicer homolog, Dicer-like1 (DCL1). Two DCL1-binding pro-
teins, HYPONASTIC LEAVES 1 (HYL1) and SERRATE (SE) are 
essential for the accuracy of pri-miRNA processing (Dong et al., 
2008; Kurihara et al., 2006; Yang et al., 2010). HUA 
ENHANCER 1 (HEN1) adds a methyl group to the 3′ end of 
miRNAs prior to their transport out of the nucleus (Park et al., 
2002). In addition to these core proteins, more than 20 compo-
nents are directly or indirectly involved in plant pri-miRNA pro-
cessing (Ben Chaabane et al., 2013; Zhang et al., 2013; 2014). 
For instance, TOUGH (TGH) is a G-patch domain protein, 
which directly binds to the DCL1, SE, and HYL1 complex to 
assist in the recruitment of pri-miRNAs (Rogers and Chen, 
2013). RECEPTOR FOR ACTIVATED C KINASE 1 (RACK1) is 
a scaffold protein required for protein-protein interactions, which 
interacts with SE to modulate pri-miRNA processing (Speth et 
al., 2013). SICKLE (SIC), a proline-rich protein, is involved in 
the maturation of miRNAs (Zhan et al., 2012). STABILIZED 1 
(STA1), a pre-mRNA processing factor 6 homolog protein, 
regulates the splicing of pri-miRNAs (Ben Chaabane et al., 
2013). The final step in both plants and animals involves ma-
ture miRNAs being selectively loaded to ARGONAUTE 1 
(AGO1) protein, which is one of the essential catalytic compo-
nents of the RNA-induced silencing complex (RISC) in the cy-
toplasm (Rogers and Chen, 2013). 

Since the discovery of miRNAs and their roles in gene ex-
pression, most studies on miRNAs have focused on improving 
understanding of processing and functional mechanisms. In 
contrast to the post-translational modifications of proteins in 
many regulatory pathways, such as light signaling, hormone 
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regulation, and stress responses, which have been widely stud-
ied in plants, knowledge on post-translational modifications of 
the miRNA processing and silencing machinery is still rudimen-
tary. Recently, several pioneering studies on the post-
translational regulation of RNA silencing machinery have been 
performed in both animals and plants. This review focuses on 
published studies on the post-translational regulation of the 
silencing machinery, focusing on HYL1, DRB4, and AGO1 in 
plants. The biological impacts of proteolytic regulation will be 
discussed along with several perspectives on the current find-
ings in this field. 
 
POST-TRANSLATIONAL REGULATION OF AGO1  
 
AGO1 plays key roles in both miRNA- and siRNA-mediated 
gene silencing either by destabilization of target mRNAs or by 
translational repression (Valencia-Sanchez et al., 2006). Con-
sidering the important functions of AGO1 in plant growth, de-
velopment, and defense, it is not surprising that the expression 
of AGO1 is tightly regulated by highly programmed regulatory 
consoles (Bohmert et al., 1998). AGO1 is negatively regulated 
by miR168 and by itself, in a process known as AGO1-
catalyzed mRNA cleavage. In the self-regulation pathway, the 
transcriptional co-regulation of MIR168 and AGO1, and post-
transcriptional stabilization of miR168 by AGO1, are important 
to modulate the efficiency of assembling RISC complexes 
(Vaucheret et al., 2004; 2006). In addition to post-transcriptional 
regulation, post-translational regulation of AGO1 protein has 
been reported in the context of plant-virus interactions (Al-
varado and Scholthof, 2011).  

Since the P0 protein of beet western yellows virus (BWYV) 
was shown to suppress the plant’s RNA silencing defense 
mechanism. Many P0 proteins from members of the genera 
Polerovirus and Enamovirus have also been identified as sup-
pressors (Pfeffer et al., 2002). Because of the F-box like central 
region, the P0 proteins of these viruses are considered to be F-
box like proteins. In general, F-box proteins are part of the SCF 
SKp1-Cullin-F-box protein (SCF) E3 ubiquitin ligase complexes, 
which tether poly-ubiquitin to a target protein and subsequently 
mediate the modified protein for proteasome-mediated degra-
dation (Callis, 2014; Cardozo and Pagano, 2004; von Arnim, 
2001). In plants, the assembling of multiple F-box proteins into 
the same SCF complex permits the recognition of a broad 
range of target proteins (Hare et al., 2003). Therefore, it was 
suggested that the viral F-box protein (P0) proteins could 
snatch the host SCF ubiquitin-protein ligase (E3) system by 
mimicking the host F-box protein and subsequently incapacitat-
ing the host defense system. The hijacking ability of P0s has 
been reported in two poleroviruses, BWYV and Cucurbit aphid-
borne yellows virus (CABYV), which directly interact with S-phase 
kinase related protein 2 (SKP2), a component of the SCF family 
of ubiquitin E3 ligases (Pazhouhandeh et al., 2006; Pfeffer et al., 
2002). However, this is insufficient to explain the exact mode of 
action of P0 in impeding the host RNA silencing system.  

In 2007, using the tobacco transient-expression system, 
Baumberger et al. showed that the P0 of Polerovirus targets the 
PAZ domain of AGO1 and leads to the destabilization of AGO1 
(Baumberger et al., 2007). At the same time, Bortolamiol et al. 
(2007) also demonstrated that the ectopic expression of P0 in 
Arabidopsis triggers AGO1 degradation. Those authors further 
showed that P0 is incapable of promoting the destabilization of 
pre-loaded AGO1. However, there is no clear evidence of a 
direct association between P0 and AGO1. This strategy, utiliz-
ing viral suppressor proteins to neutralize the AGO1-dependent 

defense system, is found widely in other viruses. P25 is the 
silencing suppressor of Potato virus X, which directly interacts 
with AGO1 (Chiu et al., 2010). Pea enation mosaic virus-1 
(PEMV-1) is able to inhibit local and systemic RNA silencing 
systems by destabilizing AGO1 (Fusaro et al., 2012). Cucum-
ber mosaic virus (CMV)-encoded 2b protein directly interacts 
with AGO1 and inhibits the RNA silencing system, but is not 
associated with the destabilization of AGO1 (Chiu et al., 2010; 
Zhang et al., 2006).  

Several studies have further demonstrated the detailed 
mechanism of AGO1 destabilization in both viral- and non-viral 
contexts. P0 of Polerovirus is known to deceive the host SCF-
type complexes, resulting in the proteasomal degradation of 
their target proteins. Contrary to the relationship between P0 
and SCF-complexes, the degradation of AGO1 by P0 was sur-
prisingly unaffected by inhibition of the 26S proteasome (Derri-
en et al., 2012). AGO1 was also negatively modulated by a 
host F-box protein, F-box, and WD-repeat domain-containing 
protein 2 (FBW2), which is known to mediate the ubiquitination 
of interacting targets. The deficiency of FBW2 increased the 
abundance of AGO1. In contrast, overexpression of FBW2 
significantly decreased the protein level of AGO1, demonstrat-
ing the negative function of FBW2 in AGO1 stability. However, 
the reduced level of AGO1 in the transgenic plants was not fully 
restored following MG132 treatment (Earley et al., 2010). The-
se results indicated that AGO1 destabilization by either P0 or 
FBW2 is not subjected to the Ubiquitin-proteasome system 
(UPS) pathway. Indeed, AGO1 degradation was mediated by 
autophagy, which initiates the orderly degradation and recycling 
of cellular components. AGO1 protein dramatically accumulat-
ed in response to treatment with 3-MA, an autophagy flux inhib-
itor or E64, an autophagic protease inhibitor. Furthermore, 
AGO1 co-localized with autophagosomal membrane protein 
ATG8, strongly indicating that AGO1 was associated with the 
autophagosome (Derrien et al., 2012). Although autophagy has 
been considered to represent a random method of degradation, 
many recent studies have shown that specific ubiquitin E3 lig-
ases and substrate ubiquitination are tightly linked to the au-
tophagy pathway to remove aggregated proteins (Kraft et al., 
2010; Myeku and Figueiredo-Pereira, 2011). In this context, 
autophagy-dependent degradation of ubiquitinated AGO1 in 
connection with endogenous SCF E3 ligase complexes can be 
understood (Fig. 1). However, this autophagy-dependent path-
way may not always occur in other viral suppressors. For in-
stance, when MG132 was infiltrated into N. benthamiana 
leaves 2 h before co-infiltration with Agrobacterium strains to 
express P25 and AGO1, the accumulation of AGO1 increase 
~10-fold even in the presence of the P25 suppressor, implying 
the indirect or direct involvement of the UPS system in AGO1 
destabilization (Chiu et al., 2010). 

In fact, two pathways for AGO1 destabilization, autophagic 
and UPS pathways, could function independently in plants. For 
instance, if two viral F-box proteins, P0 and P25, target different 
negative regulators of AGO1, assuming that at least two nega-
tive regulators of AGO1 exist, the different mechanisms could 
be understood. However, the presence of two independent and 
pathogen-specific pathways for AGO1 degradation should be 
further demonstrated experimentally using specific pathway 
inhibitors and mutants (Fig. 1). 
 
POST-TRANSLATIONAL REGULATION OF HYL1 AND 
DRB4  
 
There are four DCLs in Arabidopsis. DCL1 processes pri- 
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Fig. 1. A model for the proteolytic regu-
lation of AGO1. (A) Viral P0 or endog-
enous F-box protein FBW2 mediate 
AGO1 destabilization. P0 protein hi-
jacks the host SCF-complex to modify 
AGO1 and is then subjected to au-
tophagic degradation following de-
ubiquitination. FBW2 may perform a 
similar process through the SCF com-
plex. (B) Viral P25 suppressor mediat-
ed AGO1 destabilization. In contrast to 
the role of P0, P25 seems to guide the 
ubiquitinated AGO1 into the 26S pro-
teasome. (C) AGO1 is specifically 
cleaved into a ~45-kDa polypeptide 
with or without viral suppressors. Thus, 
an unknown cleavage pathway may 
exist to turn over AGO1 activity. 
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miRNA into miRNAs, DCL2 processes double-stranded RNA 
into 22-nucleotide small interfering RNAs and is redundantly 
involved in miRNA processing. DCL3 produces endogenous 
RDR2-dependent siRNAs for DNA methylation. DCL4 is re-
sponsible for the production of endogenous RDR6-dependent 
trans-acting siRNAs (tasiRNAs) (Gasciolli et al., 2005; Mois-
siard and Voinnet, 2006; Xie et al., 2004). Arabidopsis encodes 
five double-stranded RNA binding (DRB) proteins (Eamens et 
al., 2012). By assisting DCL1, DRB1 and DRB2 are involved in 
miRNA biogenesis. As a partner of DCL4, DRB4 functions in 
small interfering RNA (siRNA) pathways (Curtin et al., 2008). 
Together with DCL4, DRB4 is responsible for the production of 
TAS3 trans-acting siRNAs and in the generation of antiviral 
responses (Adenot et al., 2006; Fukudome et al., 2011; Hiraguri 
et al., 2005; Jakubiec et al., 2012; Nakazawa et al., 2007). 
DRB3 is involved in methylation-mediated antiviral defense with 
DCL3 and AGO4 (Raja et al., 2014). Despite their important 
roles in gene expression, epigenetic control, and defense, the 
post-translational regulation of these DCL proteins and their 
associated proteins have not been reported until recently, ex-
cept DRB1, which is also known as HYL1, and DRB4. 

HYL1 is a double-stranded RNA-binding protein. hyl1-2 mu-
tants displayed pleiotropic developmental disorders, including 
shorter stature, delayed flowering, leaf upward curling, partial 
infertility, defective apical shoot, and root growth (Lu and Fedo-
roff, 2000). HYL1 forms a complex with DCL1 and SERRATE to 
increase the accuracy of pri-miRNA processing into mature 
miRNAs. Structural analysis demonstrated that RNA-binding 
domain 1 recognizes the miRNA/miRNA* region of the precur-
sor as a dimer, mediated by RNA-binding domain 2 (Yang et al., 
2010). Furthermore, the homo-dimerization of HYL1 is very 
important for adjusting the cleavage site in pri-miRNAs. The 
activity of HYL1 is also crucial to select the guide strand of 
miRNAs upon AGO1 loading (Wu et al., 2013). HYL1 requires 
C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1), which 
dephosphorylates HYL1 proteins, for optimal activity (Manavel-

la et al., 2012). That study showed, for the first time, that the 
post-translational modification of HYL1, involving the removal of 
a phosphate group, is important for miRNA processing accura-
cy and strand selection. 

Recently, using a DNA/silver nanocluster sensor-based 
screening method, Cho et al. (2014) identified a new compo-
nent in miRNA biogenesis (Shah et al., 2012; 2014; 2015; Yang 
and Vosch, 2011). Interestingly, the isolated component was 
defined as constitutive photomorphogenic 1 (COP1), which 
plays a central role in photomorphogenesis. miRNA analyses 
have shown that COP1 also has an essential role in miRNA 
biogenesis. COP1 led to the reduction of HYL1 and subse-
quently compromised miRNA biogenesis. The role of COP1 in 
maintaining HYL1 expression was shown to be tightly associat-
ed with post-translational regulation. Levels of HYL1 were 
clearly increased by MG132 but not by the other specific pro-
teasome inhibitors, clasto-lactacystin β-lactone and epoxomicin. 
Furthermore, HYL1 destabilization was not blocked by PRY-41, 
an inhibitor of E1 enzyme for the ubiquitin-conjugating process, 
implying that UPS is not responsible for HYL1 degradation. On 
the other hand, the possible involvement of autophagy was 
investigated using an autophagy inhibitor, 3-MA, and an activa-
tor, BTH. As a result, HYL1 abundance was also shown as not 
modulated by autophagy. Taken together, these results showed 
that neither the UPS pathway nor autophagy is responsible for 
the degradation of HYL1. Interestingly, HYL1 was specifically 
cleaved into a ~26-kDa N-terminal fragment by a crude cyto-
plasmic extract in vitro. HYL1 cleavage was efficiently blocked 
by either MG132 or E64 in vitro. Consistently, the cytoplasmic 
accumulation of HYL1 has been clearly demonstrated following 
the treatment of HYL1-CFP transgenic seedlings with MG132. 
Based on those results, it was suggested that HYL1 may be 
cleaved by an as yet unknown protease existing in the cyto-
plasm. More interestingly, Cho et al. showed that HYL1 degra-
dation is regulated by the light-to-dark transition. During the 
daytime, COP1 moves to the cytoplasm stabilizing HYL1, 
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Fig. 2. A model of the proteolytic regulation of HYL1 for miRNA 
homeostasis. During the day, COP1 moves to the cytoplasm and 
suppresses the cleavage of HYL1 by protease X. COP1 remobiliz-
es into the nucleus liberating the protease X at night. Non-canonical 
role of COP1, which is unrelated to the UPS pathway, may be re-
sponsible for the suppression of protease X. 
 
 
 
possibly by inhibiting the protease. In addition, during the night, 
COP1 migrates into the nucleus and removes the protease 
activity required for HYL1 degradation. Those results indicated 
that light signaling is integrated into miRNA biogenesis. Alt-
hough the protease involved in HYL1 cleavage was not clarified, 
the study primarily showed that the presence of a third proteo-
lytic regulatory console, distinct to both the UPS pathway and 
autophagy (Fig. 2). 

Marrocco et al. (2012). found that DRB4 protein directly in-
teracts with APC10/DCO1, a subunit of anaphase promoting 
complex (APC/C), or cyclosome, a cell cycle-regulated ubiquitin 
ligase that controls progression of the cell cycle. The dsRNA 
binding domain 2 of DRB4 was required for its homodimeriza-
tion and for the interactions with APC10 and DCL4. Moreover, 
the level of DRB4 was dramatically increased in response to 
MG132 treatment and in APC10 RNAi knockdown mutants, 
implying that DRB4 might be a target of the APC complex-
mediated UPS pathway. However, to confirm the involvement 
of UPS in the proteolytic regulation of DRB4, further detailed 
investigations are needed. These should aim to 1) investigate 
the ubiquitination of DRB4 in vivo and in vitro by the APC com-
plex, 2) test specific proteasome inhibitors such as clasto-
lactacystin β-lactone and epoxomicin, and 3) test the possible 
involvement of autophagy. 
 
DISCUSSION  
 
In plants, several studies have shed light on the proteolytic 
regulation of microprocessor components and RNA silencing 
complexes. In the context of virus-host interactions, the destabi-
lization of AGO proteins has been discussed. AGO1 protein 
seems to be regulated either by SCF complex-mediated au-
tophagy or by the UPS pathway according to the type of infect-
ing viruses (Baumberger et al., 2007; Bortolamiol et al., 2007; 
Chiu et al., 2010; Derrien et al., 2012; Fusaro et al., 2012). Alt-
hough the degradations of AGO2, AGO4, AGO5, AGO6, and 
AGO9 have also been monitored using transient expression 
systems, the mechanism of degradation has not been fully 
elucidated. Notably, the level of AGO1 protein was significantly 
diminished in all mutants in which the miRNA biogenesis was 
affected (Derrien et al., 2012). Reduced levels of AGO1 protein 
in hen1-1 seedlings were restored by E64d treatment, implying 
the involvement of autophagy. When GFP-AGO1 was co-
expressed with RFP-ATG8a fusion protein in tobacco cells, 

GFP-AGO1 associated with RFP-ATG8a within small intracellu-
lar structures like acid vascular organelles (AVO). The co-
localization was further recapitulated by a co-immunopreci- 
pitation assay in planta, strongly suggesting that AGO1 associ-
ates with ATG8 in the autophagosome. Based on those results, 
Derrian et al. (2012) suggested that the proteolytic regulation of 
AGO1 in the context of non-viral infection may also be attribut-
ed to SCF complex-mediated autophagy. However, the detailed 
mechanism of AGO1 destabilization needs to be further estab-
lished considering the possible involvement of an unknown 
pathway for AGO1 degradation. We propose this hypothesis 
based in the analysis of P0-induced AGO1 degradation 
(Baumberger et al., 2007). Regardless of whether P0 was ex-
pressed, AGO1 was cleaved into a 45-kDa polypeptide corre-
sponding to the N-terminal of AGO1, and that fragment was 
increased when treated with MG132. Hence, Baumberger et al. 
(2007) suggested that the ~45-kDa protein is evidence of an 
AGO1 degradation pathway that is not strictly dependent on P0. 
If AGO1 is solely degraded by autophagy or the 26S pro-
teasome, the specific cleavage pattern of AGO1 could not be 
monitored, indicating that an unknown pathway may exist. Au-
tophagy involves the digestion of target proteins and the disas-
sembly of polyubiquitinated proteins into short peptide frag-
ments by the 26S proteasome. Although in some cases, the 
26S proteasome produces biologically active and functional 
molecules such as antigenic or signaling polypeptides (Rock 
and Goldberg, 1999), the 45-kDa polypeptide is too large to 
consider it a product of the 26S proteasome. Likewise, HYL1 is 
specifically cleaved into a ~25-kDa polypeptide at the N-
terminal region by an as yet unknown cytoplasmic protease, 
which seems to be be not included in the acid compartments 
because the catalytic activity of the protease is maintained even 
under neutral pH (Cho et al., 2014). Therefore, we suggest that 
the cleavage of AGO1 by non-AVO cytoplasmic proteases can-
not be ruled out, at least in plants. Even though AGO1 and 
HYL1 might be targets of the unidentified cytoplasmic protease 
or class of proteases, the detailed mechanisms underlying their 
degradation could be distinct. Because the protein levels of 
HYL1 and AGO1 are differentially modulated by chemical in-
hibitors such as MG132 and 3-MA, and the half-life of HYL1 
(less than 2 h) is much shorter than that of AGO1 (more than 
one day) (Baumberger et al., 2007; Cho et al., 2014; Derrien et 
al., 2012). The pathogen-induced degradation of AGO1 is very 
important for studying plant defense systems. By blocking the 
major RNA-silencing mechanism, viruses are able to escape 
from the RNA interference-based plant defense system and 
efficiently spread within host plants. Therefore, by obtaining 
detailed knowledge on the proteolytic regulation of AGO1, plant 
defense systems can be manipulated to confer high viral re-
sistance.  

Furthermore, the proteolytic regulation of HYL1 by the light–
dark transition must be further investigated in relation to the 
light signaling pathway. The developmental transition between 
skotomorphogenesis and photomorphogenesis is essential in 
the early development of plants, and this has been widely stud-
ied in terms of the proteolytic regulation of light receptors and 
transcription factors. The integration of light signaling into miR-
NA biogenesis, per se, has been scarcely addressed. Thus, 
future studies investigating the crosstalk between two major 
regulatory pathways, light signaling and miRNA biogenesis, 
could be essential to fully delineate the early development of 
plants. Moreover, to date, the proteolytic regulation of the core 
microprocessor, DCL1 and SE, has not been addressed in 
plants. Hence, to fully understand miRNA biogenesis in plants, 
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investigations on the proteolytic pathways of DCL1 and SE are 
envisaged as future challenges. 
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