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a b s t r a c t

Objective: To develop a deep convolutional neural network (DCNN) that can automatically detect laryn-

geal cancer (LCA) in laryngoscopic images.

Methods: A DCNN-based diagnostic system was constructed and trained using 13,721 laryngoscopic im-

ages of LCA, precancerous laryngeal lesions (PRELCA), benign laryngeal tumors (BLT) and normal tissues

(NORM) from 2 tertiary hospitals in China, including 2293 from 206 LCA subjects, 1807 from 203 PRELCA

subjects, 6448 from 774 BLT subjects and 3191 from 633 NORM subjects. An independent test set of 1176

laryngoscopic images from other 3 tertiary hospitals in China, including 132 from 44 LCA subjects, 129

from 43 PRELCA subjects, 504 from 168 BLT subjects and 411 from 137 NORM subjects, was applied to

the constructed DCNN to evaluate its performance against experienced endoscopists.

Results: The DCCN achieved a sensitivity of 0.731, a specificity of 0.922, an AUC of 0.922, and the overall

accuracy of 0.867 for detecting LCA and PRELCA among all lesions and normal tissues. When compared

to human experts in an independent test set, the DCCN’ s performance on detection of LCA and PRELCA

achieved a sensitivity of 0.720, a specificity of 0.948, an AUC of 0.953, and the overall accuracy of 0.897,

which was comparable to that of an experienced human expert with 10–20 years of work experience.

Moreover, the overall accuracy of DCNN for detection of LCA was 0.773, which was also comparable to

that of an experienced human expert with 10–20 years of work experience and exceeded the experts with

less than 10 years of work experience.

Conclusions: The DCNN has high sensitivity and specificity for automated detection of LCA and PRELCA

from BLT and NORM in laryngoscopic images. This novel and effective approach facilitates earlier diagno-

sis of early LCA, resulting in improved clinical outcomes and reducing the burden of endoscopists.
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esearch in context

vidence before this study

Laryngeal cancer (LCA) is the most common form of malignant

umor of the head and neck region. The prognosis of patients with

CA depends on the cancer stage at diagnosis. Although endoscopy

s the standard procedure for diagnosis of LCA, detection of LCA at

n early stage depends on the experience of the endoscopists with

outine white-light endoscopy. Recently, endoscopic systems with

arrow band imaging (NBI), which enhances the visualization of

pithelial and subepithelial microvascular patterns, achieves both

high sensitivity and specificity in early detection of LCA. How-

ver, advanced magnifying endoscopes, specific training time and

ell-trained endoscopists limits the clinical application of NBI en-

oscopy, especially in low-income areas and countries.

dded value of this study

In the present study, we developed and validated a deep con-

olutional neural network (DCNN) that can automatically detect

CA in laryngoscopic images. To the best of our knowledge, this

s the first study that uses a deep learning algorithm to detect LCA

ith laryngoscopic images. The well-trained DCNN’s performance

n diagnosing LCA was comparable to that of a human expert with

ignificant clinical experience (20 years of experience) in laryngeal

iseases.

mplications of the available evidence

This novel and effective approach has great potential for rais-

ng the diagnosis rates of early LCA, reducing the burden of

ndoscopists, and telemedicine in regions and countries where

here are shortage of advanced endoscopes and experienced en-

oscopists.

. Introduction

Laryngeal cancer (LCA) is the most frequent and predominant

alignant tumor of the head and neck region. Treatment outcomes

f LCA at an early stage are favorable, by which 5-year-survival rate

f patients with Tis, T1, T2 LCA ranges from 80 to 90% [1]. Although

ndoscopy is the primary tool for detection of LCA in clinical prac-

ice, endoscopy with conventional white light is limited in both

esolution and contrast, which may results in overlook or misdiag-

osis of superficial mucosal cancer and its precursor lesions, even

y experienced endoscopists [2]. On the contrary, false cancer de-

ection and unnecessary biopsy are other major problems in clin-

cal practice, which is due to a natural anxiety of endoscopists to

void overlooking early cancer [3]. Therefore, most patients receive

heir diagnoses at an advanced stage and often suffer loss of vocal

unction causing deterioration of the quality of life.

Recently, endoscopic systems with narrow band imaging (NBI),

hich enhances the visualization of epithelial and subepithelial

icrovascular patterns, play a critical role in early detection of LCA

ith a high sensitivity of 88.9–97.0% at a high specificity of 84.6–

6.0% [4–8]. Nevertheless, the use of NBI for diagnosis requires ad-

anced magnifying endoscopes, specific training time and experi-

nced endoscopists, which limits the clinical application of NBI en-

oscopy in many developing countries, including China. Therefore,

he use of traditional white light and non-magnifying images for

CA diagnosis is practically meaningful and even crucial for less

eveloped regions or countries which are faced with a shortage of

dvanced imaging endoscopes and experienced endoscopists.
Due to the particular physiological structures and character-

stics, it is usually difficult for human eyes to capture insignifi-

ant laryngeal cancer lesions from non-magnified endoscopy. For-

unately, deep convolutional neural network (DCNN) based ma-

hine learning (or called deep learning) techniques have recently

emonstrated remarkable abilities in diagnosing a variety of dis-

ases, such as skin cancers and diabetic retinopathy [9,10]. Fed

ith a large number of manually-labeled images of the target dis-

ases for training, a DCNN model is learned via certain optimiza-

ion algorithms, which, at the testing stage, can automatically pre-

ict the category label of a given test image [11,12]. Benefitted

rom the strong feature representation capability of DCNN as well

s the use of large datasets for training, the learned DCNN model

an be generalized well to unseen testing images, achieving com-

arable or even higher classification accuracy than experienced hu-

an experts.

Inspired by the success of previous works that detection and

lassification of skin and retinal diseases was performed by image

ecognition through DCNN [9,13,14], in the present study, we as-

umed the clinical diagnosis of LCA could also benefit from deep

earning techniques. Towards this end, we acquired a large collec-

ion of laryngoscopic images to build a DCNN model and assessed

ts performance.

. Materials and methods

.1. Data preparation

Our raw laryngoscopic images were collected from the clin-

cal cases at five tertiary hospitals in China, including Sun Yat-

en Memorial Hospital of Sun Yat-sen University, the Third Affil-

ated Hospital of Sun Yat-sen University, Peking University Shen-

hen Hospital, Puning People’s Hospital and Taizhou First People‘s

ospital. These images were captured using standard endoscopes

ENF-V2, Olympus Medical Systems Corp., Tokyo, Japan) and endo-

copic video systems (OTV-S7Pro; Olympus Medical Systems Corp.,

okyo, Japan) with white light source (CLV-S40Pro; Olympus Med-

cal Systems Corp., Tokyo, Japan). We considered the diagnosis of

our classes of human subjects in this study, including LCA, precan-

erous laryngeal lesions (PRELCA), benign laryngeal tumors (BLT)

nd normal tissues (NORM). PRELCA were defined as keratosis

ith various degrees of dysplasia based on histological diagnoses.

n experienced endoscopist from Sun Yat-sen Memorial Hospital

anually scanned the raw images to exclude the ones out of focus

r of low quality, and selected 5 to 10 images captured from dif-

erent perspectives for each human subject. After the manual scan,

e finally retained three independent sets of images, referred to as

S1, DS2 and DS3 for the clarity of presentation. DS1 had 10,892

mages from 1451 subjects at Sun Yat-sen Memorial Hospital, in-

luding 1776 from 164 LCA subjects, 1476 from 162 PRELCA sub-

ects, 5127 from 619 BLT subjects and 2513 from 506 NORM sub-

ects. DS2 had 2829 images from 365 subjects at the Third Affili-

ted Hospital of Sun Yat-sen University, including 517 from 42 LCA

ubjects, 331 from 41 PRELCA subjects, 1321 from 155 BLT subjects

nd 660 from 127 NORM subjects. DS3 was another smaller set

f 1200 laryngoscopic images from 407 subjects (132 from 51 LCA

ubjects, 153 from 51 PRELCA subjects, 504 from 168 BLT subjects

nd 411 from 137 NORM subjects) at other 3 hospitals (Peking Uni-

ersity Shenzhen Hospital, Puning People’s Hospital and Taizhou

irst People‘s Hospital). A summary of the image sets was provided

n Table 1. We used these three image sets to construct and eval-

ate our DCNN, and compare the performance against experienced

ndoscopitsts with various work years (see Section 2.2.4 for details

f evaluation protocols). It was noted that all the images in our

https://onlinelibrary.wiley.com/doi/10.1002/hed.25487
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Table 1

Details of the image sets used for experiments.

Image sets LCA PRELCA BLT NORM Total

DS1 1776 (164) 1476 (162) 5127 (619) 2513 (506) 10,892 (1451)

DS2 517 (42) 331 (41) 1321 (155) 660 (127) 2829 (365)

DS1 + DS2 2293 (206) 1807 (203) 6448 (774) 3191 (633) 13,721 (1816)

DS3 132 (44) 129 (43) 504 (168) 411 (137) 1176 (392)

Total 2425 (250) 1936 (246) 6952 (942) 3602 (770) 14,897 (2208)

Fig. 1. Overview of the deep learning architecture. Parameters pre-trained on the external ImageNet dataset are used to initialize the deep convolutional neural network,

which is then fine-tuned on the target dataset.
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dataset were biopsy-proven and thereby had highly reliable class

labels, which was crucial to our study.

2.2. Methods

2.2.1. Deep learning architecture

Despite the availability of a large number of laryngoscopic im-

ages, these images were still insufficient to train a high-quality

DCNN model from scratch. In such a case, an effective scheme is

the so-called transfer learning, which resorts to external data for

boosting the model training over the target data. More specifically,

as illustrated in Fig. 1, we adopt a DCNN model pre-trained on the

ImageNet dataset, which consists of over one million natural im-

ages belonging to 1000 visual object categories, to initialize the

DCNN model to be learned. Since we were dealing with a four-

class problem (instead of 1000 classes), we needed firstly to adapt

the pre-trained network by modifying the last softmax layer to be

one with four output nodes. Then, during the training, we used

our own laryngoscopic image dataset to fine-tune the pre-trained

DCNN model.

2.2.2. Training details

We adopt the GoogLeNet Inception v3 network as the back-

bone network. Data augmentation was performed at the factor of

720, and the cross-entropy loss was used as the loss function.

We used the SGD optimizer with the following parameter set-

tings: batch_size = 64, learning_rate = 0.001, decay = 0.9, momen-

tum = 0, epillon = 1e-10. During the fine-tuning, we progressively

unfroze the parameters from back to front layers. All the experi-

ments throughout this study were carried out on a deep learning

workstation with 4 Titan XP 12 GB GPU.

2.2.3. Attention map generation

To interpret the learned model intuitively, we calculated

saliency maps for the test images using the method. The pixel-

wise values in a saliency map reflected the contributions of the

corresponding image pixels to the classification for a specific class,

which was quantified by the gradients of the class-specific loss
ith respect to the input pixels. We visualized a saliency map

y using a heat map overlaid upon the input image to observe

hether the salient regions in the saliency maps indeed corre-

pond to the ROI for decision making.

.2.4. Evaluation protocols

We carried out two experiments to evaluate our DCNN model

n the three image sets DS1, DS2 and DS3. First, we took DS1 as

he training set to construct the DCNN model and generally eval-

ated its performance on DS2. Second, we took DS1 and DS2 to-

ether as the training set to train the DCNN model, and compare

ts performance against human endoscopitsts as DS3. Note that

uch settings can guarantee the independency between the train-

ng set and the testing set. For each setting, we were concerned

ith the ability of the model in making both 4-class and binary

redictions. Here by binary prediction we meant the judgment be-

ween Urgent versus Non-urgent cases, which the former included

CA and PRELCA, and the latter included BLT and NORM. Binary

lassification scores were generated by combining the scores of

CA and PRELCA into Urgent cases and those of BLT and NORM

nto Non-urgent cases.

.2.5. Performance metrics

We evaluated the effectiveness of our model by using several

ifferent metrics.

.2.5.1. Sensitivity-specificity curve. For a particular category, when

testing image is fed into a learned DCNN network, it can output

he probability of the image belonging to this categoryp, and one

an make a hard binary classification by thresholding this probabil-

typ ≥ twheretis a threshold value. Over the whole testing set, one

an calculate a population-level sensitivity and specificity defined

y

ensitivity = TP

TP + FN

pecificity = TN

TN + FP
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Fig. 2. Illustration of the changes of the loss function value (A) and the classification accuracy (B) over the training and testing sets.
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Fig. 3. The sensitivity-specificity curve for Urgent versus Non-urgent binary classi-

fication.
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here TP,TN, FP and FN are the numbers of true positives, true

egatives, false positives and false negatives. By varying the thresh-

ld valuet, a sensitivity-specificity curve can be generated.

.2.6. Confusion matrix

A confusion matrix can be simply obtained by comparing the

redicted results with the ground truth labels, and counting the

orrect and incorrect predictions in each class.

.2.7. Overall accuracy

The overall accuracy is the ratio between the number of cor-

ectly categorized images and the total number of testing images,

hat is,

verall Accuracy = #correctly classified images

#testing images

.3. Ethics

The study was approved by the ethical review board of Sun Yat-

en Memorial Hospital, Sun Yat-sen University.

. Results

.1. Performance of model

We first took DS1 as the training set and DS2 as the testing set

o evaluate the DCNN model. As previously stated, our model was

rained on the training set following a transfer learning scheme. An

xample demonstrating the changes of the loss function value and

he classification accuracy over the training and testing sets respec-

ively were depicted in Fig. 2. As can be observed, the model can

onverge after running the optimization for a number of epochs.

We assessed the model in terms of its ability in making binary

redictions on Urgent versus Non-urgent subjects. Clinically, such

binary classification task makes great sense because urgent cases

emand immediate treatment, and any delay, caused by misclassi-

cation for instance, will increase the risk of death. The Urgent ver-

us Non-urgent performance in terms of the sensitivity-specificity

urve was plotted in Fig. 3. Our model overall can achieve a sen-

itivity of 0.731, a specificity of 0.922, an AUC of 0.922, and the

verall accuracy of 0.867. We also reported the confusion matrix of

he original four-class classifiers in Fig. 4, where the overall accu-

acy was 0.745.

.2. Comparison with human experts

To further validate the effectiveness of our algorithm, we com-

ared its performance against human experts. Towards this end,
e took DS1 and DS2 together as the training set to train the

CNN model and DS3 as the testing set. We chose three endo-

copists with different work experience levels (~3, 3–10 and 10–

0 years of experience, respectively) in laryngeal diseases diagnosis

rom Sun Yat-sen Memorial Hospital, who were given the laryn-

oscopic images in the testing set and instructed to independently

lassify these images into the four classes aforementioned, without

sing any other additional information.

We first compared the performance of our algorithm and hu-

an experts in making Urgent versus Non-urgent binary predic-

ions. Similar to the evaluation protocol in Section 2.2.4, for human

xperts we also combined the 4-class decisions into two classes by

ounting Urgent cases for LCA or PRELCA, and Non-urgent cases

or BTL or NORM. The results were shown in Fig. 5, which demon-

trated that our algorithm can perform significantly better than

wo (~3 and 3–10 years of experience) out of the three experts

nd comparably to the other expert with 10–20 years of experi-

nce. More precisely, the DCNN model can achieve a sensitivity of

.720, a specificity of 0.948, an AUC of 0.953, and the overall accu-

acy of 0.897.

We also compared our algorithm against the human experts

n terms of the confusion matrices of four-class classification as

hown in Fig. 6, where the overall accuracy of the model was 0.773

hile that of experts was 0.750 (10–20 years of experience), 0.647

~3 years of experience) and 0.704 (3–10 years of experience) re-

pectively.
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Fig. 4. Confusion matrix for 4-class categorization.

Fig. 5. Comparison between the deep learning algorithm and three human experts

in Urgent versus Non-urgent binary classification. Expert 1: expert with 10–20 years

of experience. Expert 2: expert with ~3 years of experience. Expert 3: expert with

3–10 years of experience.
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3.3. Comparison with existing works

To our knowledge, this is the first study which deploys deep

learning methods to the task of laryngoscopic image classification.

Therefore, we chose the representative traditional method pre-

sented by Verikas and his colleagues [15] for comparison. This ap-

proach adopts multiple hand-crafted features, including color, tex-

ture, frequency-domain characteristics, et al., and exploits the SVM

classifier for classification. Identical to the setting above, i.e., tak-

ing DS1 and DS2 together as the training set and DS3 as the test-
ng set, the results were reported in Table 2, which demonstrated

CNN overwhelmingly outperformed the method that Verikas and

is colleagues utilized.

.4. Attention maps

Attention map is a common way to visualize the contribution

f each pixel in the image to the classification. Some typical at-

ention maps of the four classes were visualized in Fig. 7. Ideally,

f a DCNN model is reasonably trained, the attention map should

e localized to lesions or other key structures which contribute to

ecision-making, which was the case for our model as can be ob-

erved in Fig. 7.

. Discussion

In this study, we developed and validated a deep learning algo-

ithm through DCNN for the diagnosis of LCA. To the best of our

nowledge, this is the first study that uses a deep learning algo-

ithm to detect laryngeal cancer with laryngoscopic images. Our

esults indicate that a deep learning algorithm through DCNN can

e trained to differentiate LCA from multiple benign or nonneo-

lastic lesions in laryngoscopic images with high sensitivity and

igh specificity. Strikingly, our deep learning algorithm’s perfor-

ance in diagnosing LCA was comparable to that of a human ex-

ert with significant clinical experience (20 years of experience)

ith laryngeal diseases. Therefore, this deep-learning algorithm for

he detection of LCA offers many advantages, such as consistency

f interpretation, high sensitivity and specificity, and high rate of

peed.

Deep learning is a novel and promising avenue of machine

earning, which allows machines to analyze multiple images for

raining and extract specific features via a back-propagation algo-

ithm [16]. After training, machines could analyze and recognize

ewly acquired images prospectively, especially through DCNN.
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Fig. 6. Four-class confusion matrices obtained by our DCNN model (A) and the three human experts (B-D). Expert 1: expert with 10–20 years of experience. Expert 2: expert

with ~3 years of experience. Expert 3: expert with 3–10 years of experience.

Table 2

Summary of the quantitative experimental results.

Evaluation settings/Methods 2-Class 4-Class

Sensitivity Specificity Accuracy Accuracy

DS1 training, DS2 testing DCNN 0.731 0.922 0.867 0.745

DS1 + DS2 training, DS3 testing DCNN 0.720 0.948 0.897 0.773

Verikas et al. [20] 0.603 0.820 0.651 0.460

Expert 1 0.761 0.946 0.906 0.750

Expert 2 0.875 0.801 0.817 0.647

Expert 3 0.702 0.902 0.858 0.704
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CNN has been developed as an effective class of models for

nderstanding image content, giving advanced results on image

ecognition, segmentation, detection and retrieval [17,18]. The key

oints behind these results are techniques for scaling up the net-

orks to millions of parameters and big labeled datasets which can

upport the learning process. Under such conditions, DCNN learn

owerful and interpretable image features and have been widely

mployed as an excellent technology for image recognition and

lassification [19,20]. Recently, image recognition by deep learn-

ng through DCNN has been applied to detection and classifica-

ion of multiple diseases increasingly. Gulshan and his colleagues
eported a sensitivity of 97.5% and a specificity of 93.4% for detect-

ng referable diabetic retinopathy [13]. A study by Hirasawa and

is colleagues reported an overall sensitivity of 92.2% for detect-

ng gastric cancer lesions [16]. In a recent deep learning competi-

ion for classification of skin cancer, deep learning through DCNN

chieved performance on par with 21 board-certified dermatolo-

ists across tasks that differentiate keratinocyte carcinomas, seb-

rrheic keratoses, malignant melanomas and benign nevi [9]. The

resent study extends such work by using deep learning through

CNN to generate an algorithm with a sensitivity of 0.731 and

specificity of 0.922 for LCA and PRELCA detection. Even for
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Fig. 7. Representative attention maps obtained by the DCNN model on the classes of NORM, BLT, PRELCA and LCA from top to bottom respectively. Attention maps are

displayed as heat maps overlay upon the original images, where warmer colors indicate higher saliency, i.e., higher contribution to the classification decision.
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four-class classifiers, DCNN also achieved an overall accuracy of

0.745. Then, we compared the performance of this well-trained

DCNN with experienced endoscopists on detection of different

laryngeal lesions in laryngoscopic images. Strikingly, the DCNN

demonstrated an artificial intelligence capable of detecting laryn-

geal cancer with a level of competence comparable to an experi-

enced endoscopist with work experience of 10–20 years. Therefore,

we believe that such a well-trained DCNN has a great potential to

assist those less-experienced endoscopists from rural areas or de-

veloping countries in the earlier diagnosis of LCA.

There are limitations to this DCNN system. First, although the

DCNN achieved excellent overall performance comparable to the

experienced human expert with work experience of 10–20 years,

the prediction accuracy of the DCNN for LCA and PRELCA was

relatively low. In addition, LCA and PRELCA were also difficult

to be differentiated from each other by the DCNN according to

the relatively low sensitivity. Similarly, even experienced endo-

scopists were bothered by the low accuracy of early detection of

LCA and PRELCA in clinic practice as well through routine white-

light endoscopy, especially for those intraepithelial and submu-

cosal changes of the lesions [2,6]. Therefore, performance of cur-

rent trained DCNN is inferior to that of NBI in detection of LCA

and PRELCA, because the latter has a relatively high sensitivity and

specificity in early detection of LCA by highlighting microsurface

patterns and microvascular morphologies on the mucosal surface

[2,5,8]. However, NBI is not always available in most rural areas

of developing countries due to high costs of the equipments. Mo-

erover, LCA usually grade-increasing progresses gradually from a
ow-grade dysplasia to a high-grade intraepithelial neoplasia and

nally develops carcinoma in situ. The slow progression is con-

idered to last several years and those small LCA cases that were

issed at initial screening would be detected when performing an-

ual endoscopy. Therefore the clinical applicability of the DCNN in

etection of LCA and PRELCA might not be considerably compro-

ised. Furthermore, we believe the performance of DCNN in de-

ection of LCA or PRELCA can be further improved by simply in-

reasing training images numbers or using better algorithm design.

or instance, one can introduce an alignment module at the front

f the pipeline, or an attention mechanism into the deep network

or improvement. Second, the DCNN in the present study was only

rained to differentiate 4 classes of laryngeal lesions and normal

issues. In the future study, it is essential to evaluate the perfor-

ance in a real-world, clinical setting, for validating this technique

cross the full distribution and spectrum of laryngeal lesions en-

ountered in typical practice. Third, all tested laryngoscopic images

ere obtained by the same type of standard endoscopes and endo-

copic video systems. Further study should test the performance of

CNN in detection of lesions in laryngoscopic images of different

uality from various endoscopic devices.

. Conclusion

In summary, we developed an endoscopic image based-deep

earning algorithm through DCNN which had high sensitivity and

pecificity for automated detection of LCA. This novel and effec-

ive approach holds the potential for substantial clinical impact,
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ncluding improving the diagnosis rates of early LCA, reducing the

urden of endoscopists, and telemedicine in regions and countries

here there are shortage of advanced endoscopes and experienced

ndoscopists.
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