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Abstract

The target of rapamycin (TOR) is a high molecular weight protein kinase that regulates many processes in cells in response
to mitogens and variations in nutrient availability. Here we have shown that mTOR in human tissue culture cells plays a key
role in responses to proteotoxic stress and that reduction in mTOR levels by RNA interference leads to increase sensitivity to
heat shock. This effect was accompanied by a drastic reduction in ability to synthesize heat shock proteins (HSP), including
Hsp70, Hsp90 and Hsp110. As HSP transcription is regulated by heat shock transcription factor 1 (HSF1), we examined
whether mTOR could directly phosphorylate this factor. Indeed, we determined that mTOR could directly phosphorylate
HSF1 on serine 326, a key residue in transcriptional activation. HSF1 was phosphorylated on S326 immediately after heat
shock and was triggered by other cell stressors including proteasome inhibitors and sodium arsenite. Null mutation of S326
to alanine led to loss of ability to activate an HSF1-regulated promoter-reporter construct, indicating a direct role for mTOR
and S326 in transcriptional regulation of HSP genes during stress. As mTOR is known to exist in at least two intracellular
complexes, mTORC1 and mTOR2 we examined which complex might interact with HSF1. Indeed mTORC1 inhibitor
rapamycin prevented HSF1-S326 phosphorylation, suggesting that this complex is involved in HSF1 regulation in stress. Our
experiments therefore suggest a key role for mTORC1 in transcriptional responses to proteotoxic stress.
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Introduction

The heat shock response is a cellular reaction to proteotoxic

stress that permits cell survival and repair of protein damage [1].

This response involves a number of complementary and compet-

ing interactions. Protein stress may lead to transcriptional

induction of molecular chaperones known as heat shock proteins

(HSPs), may lead to the proteolysis of damaged proteins through

targeting to the proteasome or may trigger autophagy and protein

degradation by lysosomal enzymes [2]. The heat shock response is

highly significant in human pathology, as HSP levels increase in

cancer and promote tumorigenesis and decline in protein

aggregation disorders such as Alzheimer’s disease, a lesion that

permits accumulation of lethal protein inclusion bodies [3–6].

These effects seem to involve age-dependant deregulation of heat

shock factor 1 (HSF1), the transcription factor that controls HSP

expression. Further knowledge of the mechanisms of HSF1regula-

tion during protein stress is thus highly desirable for developing an

understanding the etiology of these disorders. We have examined

the role of phosphorylation in regulating HSF1and showed that

the factor is multiply phosphorylated on serine residues [7]. Some

of these modifications are inhibitory for transcription, when HSF1

is phosphorylated on serines 121, 303, 307 or 363, or may be

activating when HSF1 is phosphorylated on serine 320 by protein

kinase A [8–12]. In this study, we have examined the role of the

kinase mTOR in regulating the stress response and HSF1

phosphorylation and HSP mRNA and protein expression.

mTOR (Mammalian target of rapamycin) plays important roles in a

responses to stress, including activation of the autophagy response

in nutrient stress [13]. mTOR is a serine/threonine kinase

distributed within two protein complexes in the cell [14]. One of

these is the mTORC1 complex, containing mTOR and the

adapter protein RAPTOR essential for phosphorylation of

substrates [14]. mTORC1 is activated by signals from cell surface

receptors that induce the kinase Akt [15–16]. Akt then phosphor-

ylates the inhibitory factor TSC2, permitting mTORC1 activation

[14–16]. mTORC1 is the target of rapamycin due to its

interaction with/requirement for the rapamycin target molecule

- immunophilin FKBP12 [14,17,18]. In addition, a second

complex, mTORC2 has been discovered that is independent of

upstream Akt signaling and in fact may function independently of

the growth factors upstream of mTORC1 [14]. mTORC2 does

not contain RAPTOR, but instead has a protein of homologous

function, RICTOR [14]. mTORC1 plays an essential role in

metabolism, strongly promoting mRNA translation and growth in

cell size when nutrients are abundant and inhibiting macro-

autophagy under these conditions. Nutritional deprivation inhibits

mTORC1 and promotes autophagy [15,16]. It may be significant

that HSF1 requires glutamine for activity (essential for mTORC1),

promotes translation, one of the earliest findings in study of HSP
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expression [19–20]. HSF12/2 cells are significantly reduced in

size, consistent with a role for HSF1 in cell size and perhaps

mTORC1 function [21,22].

Materials and Methods

Cells, Culture Condition and Reagents
HeLa cells were purchased from The American Type Culture

Collection and cultured in DMEM (Invitrogen) supplemented with

10% heat inactivated fetal bovine serum (Invitrogen) and 1000 U

of penicillin/streptomycin (Invitrogen) and maintained at 37uC in

a 5% CO2 humidified incubator. Cells were treated with

rapamycin (EMD Chemicals), KU0063794 (Selleck), Staurospor-

ine (Selleck), 17-AAG (Sigma-Aldrich), MG132 (Sigma- Aldrich),

Cadmium Chloride (Sigma-Aldrich) and Sodium Arsenite (Sigma-

Aldrich) for 2 hours prior to treatment with heat at 43uC for

30 min.

Plasmids and Transfection
All transfections were carried out with Fugene HD transfection

reagent (Roche) according to manufacturer’s instructions. pGL3-

Hsp70-LUC reporter construct, the GST-HSF1 expression

plasmid (Murshid et. al., 2010) and the EGFP-HSF1 WT and

EGFP-HSF1 S326A were both produced in the Calderwood lab

and described in previous publications. Lentiviral short hairpin

RNA (shRNA) expression vector for mTOR and the control

pLKO.1 plasmid were purchased from Addgene and the myc-

tagged mTOR expression plasmid was a kind gift from Dr. David

Sabatini (Whitehead Institute).

Lentiviral Production and Generation of mTOR
Knockdown Cells

To generate the lentiviruses, envelope plasmid, packaging

plasmid (Open Biosystems) and shRNA expressing plasmid were

co-transfected into HEK293FT cells (Invitrogen). Virus-containing

medium was collected 48 and 72 hr after transfection. HeLa and

cells were infected by incubation with the lentivirus-containing

medium and cells were treated with puromycin for selection of

mTOR knockdown cells.

Western Blot Analysis of Protein Expression
Cells were lysed with RIPA buffer containing protease inhibitor

cocktail (Roche) and phosphatase inhibitor (Roche). Protein

concentration was quantified with BCA protein assay kit (Pierce)

and samples were subjected to SDS-PAGE followed by standard

Western blot procedure. The following antibodies were used for

analysis of protein expression: anti-Hsp70 (Enzo Life Sciences),

anti-Hsp90 (Enzo Life Sciences), anti-Hsp110 (Enzo Life Scienc-

es), anti-HSF1 (Enzo Life Sciences), HSF1 phospho-Serine 326

(Abcam), HSF1 phospho-Serine 303 (Abcam), HSF1 phospho-

Serine 320 (Abcam), mTOR, p70 S6 Kinase (Cell Signaling),

phospho-S6K Threonine 389 (Abcam), b-actin (Sigma-Aldrich)

and GAPDH (Abcam). Secondary antibodies used were HRP-goat

anti-at IgG, HRP-goat anti-mouse IgG, HRP-goat anti-rabbit IgG

(Santa Cruz) and goat anti-rabbit IR Dye 680 (Licor).

In Vitro Kinase Assay and Mass Spectrometric Analysis of
Tryptic Peptides

Recombinant GST-HSF1 grown in E. coli was isolated and

eluted with a glutathione column (Pierce) according to the

manufacturer’s instructions. Recombinant GST-HSF1 was incu-

bated with (100, 250 ng) or without recombinant mTOR (EMD

Chemicals) in reaction mixture containing 10 mM ATP (Sigma-

Aldrich), 2 mM DTT (Promega), 16 mTOR kinase buffer

(Invitrogen) and protease inhibitor cocktail. Reaction mixture

was incubated at 37uC for 30 min. To terminate the reaction, SDS

sample buffer was added to the mixture and boiled at 95uC for

5 min. Reaction mixture was then subjected to SDS-PAGE and

Western blot performed for detection of HSF1 Serine 326

phosphorylation. Reaction mixture resolved by SDS-PAGE was

also stained by Coomassie blue to visualize GST-HSF1 and

mTOR. The stained band corresponding to the GST-HSF1 was

excised along with a blank band from another lane for Mass

Spectrometric analysis by the Taplin Mass Spectrometry Facility

(Harvard Medical School).

Luciferase Assay
Transfection of the pGL3-Hsp70.1-LUC reporter construct was

performed as described above. A b-galactosidase expression

plasmid (pCMV-LacZ) was co-transfected with the reporter

constructs as a control for transfection efficiency. Cell extracts

were prepared in passive lysis buffer (Promega) and incubated on

ice for 15 min followed by centrifugation. Protein concentration

was determined by BCA protein assay. Both b-galactosidase and

luciferase assays were performed according to standard procedures

provided by the manufacturer (Promega). Luciferase activity was

based on normalization to the b-galactosidase activity.

RNA Harvesting, cDNA Preparation and Real-time
Quantitative PCR

RNA was harvested with the RNeasy mini Kit (Qiagen) and

reverse transfection carried out with a High capacity cDNA Reverse

Transcription Kits (Applied Biosystems) following instructions

provided by the manufacturers. For analysis of HSP expression,

real-time quantitative PCR was performed using FastStart Univer-

sal SYBR green (ROX) master mix and primer pairs specific for the

amplification of target genes. All reaction was performed on ABI

7300 Real-time PCR System. Thermocycling condition includes a

15 min hot start at 95uC followed by 40 cycles of 15 sec denaturation

at 95uC and 1 min of annealing and extension at 60uC. Hsp70B

primers (forward 59-ACCTTCCCCGCATTTCTTTCAGCA, re-

verse 59-CCGCGGTAGCATACGCGCA); Hsp90 primers (for-

ward 59-TGGTAGACACAGGCATTGGCATGA, reverse 59-

AGCCAACACCAAACTGCCCAATCA); Hsp110 primers (for-

ward 59-ACTGCTTGTTCAAGAGGGCTGTGA, reverse 59-

AACATCCACACCCACACACATGCT). Sample for each treat-

ment group were performed in triplicates and experiments repeated

three times. Data analysis was done by using the comparative Ct

method with b-actin [9] as normalization control.

Detection of Cell Viability by Crystal Violet
Cells (103 cells/plate) suspended in DMEM medium with 10%

FBS were added to 6 cm flat-bottomed plate. Cells were treated

with or without heat and incubated at 37uC for nine days for

recovery. The supernatants were discarded and the remaining

viable adherent cells were fixed with methanol for 10 min then

stained with 0.5% crystal violet in 25% methanol for 10 min. Cells

were then rinsed with water and allow to dry overnight.

Results

Role of mTOR in Cellular Resistance to Proteotoxic Stress
We first investigated the role of mTOR in cellular responses to

proteotoxic stress after heat shock. Activation of the heat shock

response leads to the synthesis of HSPs that regulate resistance to

an array of stresses, including heat itself [1]. We examined the

ability of mTOR to regulate the sensitivity to heat shock of HeLa

Effect of mTOR on Heat Shock Response
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cells, as assayed by clonogenic cell survival (Fig. 1). The HeLa cell

strain used in these studies was approximately 25% clonogenic

prior to stress. Exposure to heat shock for 1 hr at 43uC led to mild

levels of cell inactivation as indicated by a reduction in colony

formation and killing was increased by decreasing mTOR levels

with shRNA treatment (Fig. 1). Exposure to 2 hr at 43uC led to

pronounced cell inactivation and survival was further decreased by

mTOR knockdown. However, pretreatment of cells with a

priming heat shock (1 hr at 43uC) made them resistant to cell

killing by a second heat shock 2 hr at 43uC (Fig. 1). Such stress

Figure 1. The role of mTOR in cellular resistance to proteotoxic stress. Control and mTOR knockdown HeLa cells were either untreated or
treated with heat shock at 43uC for 1 hr and 2 hr. For thermal tolerance experiment, cells were treated with heat shock at 43uC for 1 hr and recovered
at 37uC overnight. Cells were then treated with a second heat shock at 43uC for 2 hr followed by 37uC recovery. Nine days post-treatment, colonies
were visualized by crystal violet staining. Colony counts were the averages calculated from three individual plates. Percentage of colonies formed was
determined by comparison to the number of cells initially seeded in each treatment. Experiments were carried out three times, with reproducible
findings.
doi:10.1371/journal.pone.0039679.g001

Effect of mTOR on Heat Shock Response
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resistance was antagonized by mTOR knockdown using shRNA

and a marked reduction in colony formation was observed.
Effects of mTOR Silencing on HSP Synthesis

As temperature sensitivity has been shown to be tightly

regulated by HSP expression, we therefore next examined the

effects of mTOR knockdown on expression of three key HSPs-

Hsp70, Hsp90 and Hsp110 (Fig. 2) [23]. Heat shock led to the

Figure 2. mTOR regulates transcriptional and translational expression of heat shock proteins. Control and mTOR knockdown HeLa cells
were treated with or without heat. (A) Real time quantitative RT-PCR analysis was performed for analysis of the expression levels of Hsp70, Hsp90 and
Hsp110 mRNA. Fold change was calculated by normalization to b-actin levels, followed by comparison with the control untreated sample. (B)
Expression levels of Hsp70, Hsp90 and Hsp110 were then determined 24 hr after recovery from heat shock, at 37uC by western blotting using anti-
Hsp70, anti-Hsp90 and anti-Hsp110 antibodies. Levels of GAPDH expression were also measured as loading controls. Experiments were carried out
three times with consistent results.
doi:10.1371/journal.pone.0039679.g002
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abundant expression of Hsp70, Hsp90 and Hsp110 mRNA species

as determined by realtime quantitative PCR (Fig. 2A). mTOR

knockdown, abolished the induction of each mRNA species while

not affecting basal expression of the HSP mRNAs in control cells

maintained at 37uC (Fig. 2A). In addition, mTOR knockdown

decreased the expression of each of the proteins as indicated by

immunoblot assay (Fig. 2B). Part of this decrease in protein

synthesis may however be attributed to a decline in general

translation that accompanies reduced mTOR levels and levels of

housekeeping proteins such as GAPDH (Fig2B) and b-actin (not

shown) are also decreased when mTOR levels are reduced.

HSF1 as a Substrate for the Phosphotransferase Activity
of mTOR

Expression of HSPs and enhanced heat resistance are regulated

by the transcriptional activity of HSF1 in heat shocked cells and

we therefore examined whether this factor is a potential target for

mTOR in the stress response. We first examined the ability of

mTOR to phosphorylate HSF1 in vitro. Inspection of the HSF1

sequence for potential mTOR phosphorylation sites indicated the

amino acid motif surrounding serine 326 bears a sequence

resemblance to AGC kinase substrates of mTOR [17,24].

Although a consensus phosphorylation motif has not been derived

for mTOR, this kinase frequently phosphorylates threonine or

serine residues flanked by a proline residue in the +1 position and

a hydrophobic residue at 21. The S326 residue has proline at +1

and the highly hydrophobic leucine at 21 (Fig. 3). Indeed,

incubating purified GST-HSF1 in vitro with increasing concentra-

tions of purified mTOR and ATP led to kinase dose-dependent

phosphorylation of HSF1 on serine 326 as determined by an

antibody specific for HSF1-phospho S326 (Fig. 3 A). Proteins

incubated with recombinant mTOR were then isolated, subjected

to protease digestion and analyzed by mass spectrometry using an

LTQ-Orbitrap (Thermo Electron). Two main peptide species

contained phosphorylated residues after exposure to mTOR and

these were: VEEASPGRPSSVDTLLS#PTALIDSILR (V25R),

containing S326 and VKEEPPSPPQSPR (V11R) containing the

previously characterized phosphoserine 303 [7]. However as

subsequent studies shown later in the manuscript indicate that

HSF1-S303 phosphorylation is not altered in vivo by inhibition of

mTOR activity, we pursued a role for mTOR in regulating the

stress response through phosphorylation of S326 in HSF1. A

previous phosphorylation screen of HSF1 suggested the impor-

tance of this residue in transcriptional regulation during stress

[25].

Regulation of HSF1 Phosphorylation on Serine 326 by
Heat Shock

We next investigated HSF1-S326 phosphorylation in vivo in

HeLa cells subjected to stress (Fig. 4A). Cells were exposed to heat

shock at 43uC for 30 min and then assayed for HSF1-S326

phosphorylation using the antibodies specific for this phosphory-

lated residue. Phosphorylation on S326 was detected immediately

after heat shock and persisted for approximately 1 hr of recovery

at 37uC, the approximate period of HSP gene transcription. While

the overall levels of HSF1 protein were unaffected, HSF1

Figure 3. Purified GST-tagged HSF1 was phosphorylated in vitro by mTOR. (A) In vitro phosphorylation was performed by mixing GST-
tagged HSF1 with various concentrations of recombinant mTOR. Samples were then fractionated by 10% SDS-PAGE and western analysis performed
to examine the levels of HSF1-phosphoserine 326 and total HSF1. The identities of the phosphopeptides were determined by isolating the mTOR
phosphorylated GST-HSF1 with 10% SDS-PAGE, trypsin digestion of the GST-HSF1 band and identification of peptides by mass spectrometry and
database analysis. (B) Protein sequence of HSF1 from amino acids 300–330. The mTOR phosphorylation site, serine 326 is marked in bold and nearby
serine phosphorylation sites that have been characterized (serines 303, 307, 320 and 326) are underlined.
doi:10.1371/journal.pone.0039679.g003
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Figure 4. Regulation of HSF1 serine 326 phosphorylation during stress. (A) Levels of HSF1-phosphoserine 326, total HSF1 and b-actin in
HeLa cells treated with heat at 43uC for 30 min and recovered at 37uC for up to 24hr. (B) Levels of HSF1-phosphoserine 326, HSF1-phosphoserine 303,
HSF1-phosphoserine 320, total HSF1, mTOR and b-actin in control and mTOR knockdown HeLa cells with or without heat shock at 43uC for 30 min.
(C) Intracellular concentration of HSF1-phosphoserine 326, total HSF1, S6 kinase-phosphothreonine-389, total S6 kinase and b-actin, without or with
heat shock in HeLa cells pretreated with mTOR inhibitors rapamycin (30 nM) and KU0063794 (2 mM) and kinase inhibitor staurosporine (100 nM) for
2 hr. Relative levels of HSF1-phosphoserine 326 in cells after the various treatments were determined by densitometric analysis of X-ray films,
normalized to untreated cells (lane 1), and are indicated below the representation of the immunoblots. (D) HeLa cells were treated for 2 hr with stress
inducers MG132 (5 mM), 17-AAG (2 mM), CdCl2 (200 mM) and sodium arsenite (1 mM) prior to assay for HSF1-phosphoserine 326, total HSF1 and b-

Effect of mTOR on Heat Shock Response
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phosphorylation after stress in vivo appeared to be dependent on

mTOR activity as knockdown of the kinase by shRNA led to the

inhibition of stress-induced HSF1-S326 phosphorylation, while

exposure to control oligonucleotides did not affect activity (Fig. 4B).

This effect of stress appears to have some specificity for S326

phosphorylation as phosphorylation of HSF1 at two adjacent sites-

S303 and S320, that can each regulate HSF1 activity - was not

affected significantly by mTOR knockdown (Fig. 4B) [8,9]. We

also detected basal levels of HSF1-S326 phosphorylation in

unstressed HeLa cells that were not affected by mTOR

knockdown suggesting that this site may be a target for other

protein kinases in non-heat shock conditions. We next examined

the effect on HSF1-S326 phosphorylation of drugs that have been

shown to inhibit mTOR activity, including rapamycin,

actin. Relative levels of HSF1-phosphoserine 326 in cells were determined by densitometric analysis as above, normalized to levels in untreated cells
(lane 1), and are indicated below the representation of the immunoblots. Experiments were performed on at least three occasions with reproducible
findings.
doi:10.1371/journal.pone.0039679.g004

Figure 5. mTOR activity and serine 326 phosphorylation are required for the heat induced activation of the hsp70.1 promoter. (A)
Effects of 43uC heat shock on hsp70.1 activity in HeLa cells without and with rapamycin treatment. Cells transfected with the pGL3-Hsp70-LUC
reporter construct were treated with 30 nM rapamycin for 2 hr prior to receiving heat shock and luciferase activity was assayed at 24 hr. Data are
means of triplicate assays +/2 SD. (B) Effects of mTOR knockdown on activation of the hsp70.1 promoter by heat shock. HeLa cells either stably
expressing shRNA targeted to mTOR or control hairpin were transfected with the pGL3-Hsp70-LUC reporter construct followed by heat shock
(effectiveness of mTOR knockdown is indicated in Fig. 4B). Luciferase activity in cells after 48 hr recovery at 37uC is the mean of triplicate assay and is
plotted +/2 SD (C) HeLa cells depleted of HSF1 by stable expression of shRNA targeting the factor were co-transfected with the pGL3-Hsp70-LUC
reporter construct and expression plasmids encoding either wild type HSF1 or HSF1-S326A. Cells lysates were collected from cells that were either
heat shocked or used as control, 48 hr post-heating and luciferase assays were then performed in triplicate and activity plotted as mean +/2
standard deviation. Experiments were carried out in duplicate, reproducibly.
doi:10.1371/journal.pone.0039679.g005

Effect of mTOR on Heat Shock Response
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KUOO6379 and staurosporine. Heat shock led to phosphoryla-

tion of HSF1 on S326 (Fig. 4C). Each of the drugs inhibited the

stress-induced activation of HSF1-S326 phosphorylation while

abolishing the phosphorylation on T389 of ribosomal S6 kinase, a

well-characterized substrate for mTOR (Fig. 4C). Inhibition of

HSF1 phosphorylation on S326 by rapamycin suggests that this

site in HSF1 is a target for the TORC1 complex (Fig. 4C). Other

stresses including exposure to proteasome inhibitor MG132 or

sodium arsenite increased the levels of HSF1-S326, although some

other HSP inducers such as heavy metal ion Cd++ or the Hsp90

inhibitor 17-AAG did not significantly activate phosphorylation

(Fig. 4D). Heat shock appeared to be the most potent activator of

HSF1-S326 phosphorylation (Fig. 4C). We also investigated

whether HSF1 could bind stably to mTOR, as HSF1 has been

shown to associate with a number of protein kinases [9,26].

However we failed to observe mTOR binding to HSF1 in

immunoprecipitation with the anti-HSF1 antibodies, suggesting a

transient interaction of HSF1 with mTOR (S-D Chou & SK

Calderwood, data not shown).

HSF1 Phosphorylation by Heat Shock Regulates the
HSP70 Promoter

HSF1 is a powerful inducer of HSP promoters after stress. We

therefore examined the effects of mTOR inhibition on the

promoter of the heat shock-inducible hsp70.1 gene using an

hsp70.1 promoter-luciferase reporter construct (Fig. 5). Heat shock

strongly activated the hsp70.1 promoter and this activity was

inhibited by exposure to rapamycin, indicating a role for the

TORC1 complex in activating the transcriptional activity of HSF1

(Fig. 5A). In addition, knockdown of mTOR with shRNA also

reduced hsp70.1 promoter activation by heat shock (Fig. 5B). A

role for TORC1 in these effects is also indicated by the fact that

stress-induced hsp70.1 activity is inhibited by shRNA targeted to

TORC1 complex component raptor but not by similar inhibition of

rictor, a protein essential for the TORC2 complex (unpublished

data). Finally we investigated the role of modification of HSF-S326

by alanine substitution on ability to activate transcription of the

hsp70.1 promoter (Fig. 5C). In the HSF1 knockdown HeLa cells,

ectopic expression of the wild type HSF1 allows the activation of

the hsp70.1 promoter in response to heat as expected, however,

expression of the mutant S326A HSF1 failed to activate the heat

shock response.

Discussion

Although some of the features of heat shock factor regulation

have been known since the early days of study of transcription, a

complete picture has been slow in coming [26]. It was long

suspected that complete HSF1 activation requires stress-induced

posttranslational modifications including phosphorylation [26–

28]. Our current studies indicate that the TORC1 complex may

play a critical role in HSF1 activation at least partially through

direct phosphorylation of HSF1 on a residue required for

transcription- serine 326. We show that HSF1 activation may be

dependent on TORC1 activation during stress (Fig. 3). The

mechanism whereby TORC1 triggers the trans-activating activity

of HSF1 is not revealed here. However, phosphorylation of AGC

kinases by mTOR on a consensus site that resembles the motif

surrounding S326 leads to their independence from Hsp90

chaperoning [24]. HSF1 is known to be released from Hsp90

chaperone complexes during activation by heat shock, and this

mechanism may require phosphorylation by mTOR [29]. We

have recently shown that a serine residue closely adjacent to the

mTOR target site -serine 320 is also important in HSF1 activation

by proteotoxic stresses and when phosphorylated promotes

nuclear localization of HSF1 and recruits an activating complex

containing the histone acetylase p300 as well as pTEF-b to HSP

promoters. This mechanism appears to be largely independent of

mTOR and S326 phosphorylation, as mTOR inhibition does not

affect the levels of S320 phosphorylation (Fig. 4B) and did not alter

stress-induced nuclear localization of the HSF1 after heat shock

(data not shown). Furthermore S320 phosphorylation depends on

the activity of protein kinase A [9,10]. The region of HSF1 from

residue 300 to 330 contains at least six residues shown to be

phosphorylated in vivo (S303, S307, S314, S320, T323 and S326;

Fig. 3B) [7,9,10,12,30,31]. Phospho-S303 and phospho-S307 each

inhibit HSP gene transcription, phospho-S320 and phospho-S326

activate transcription while the potential roles of phospho-S314

and phospho-T323 are unknown. HSF1 activation in stress

appears to be a multi-step process, involving a series of

phosphorylation events, largely clustered in the 300–330 amino

acid region, which lead to rapid and efficient regulation of stress

genes and guardianship of the proteome (Fig. 3B).

As mTOR is a highly pleiotropic kinase it is possible that it plays

other roles in the proteotoxic stress response. For instance,

TORC1 activation by mitogens amplifies mRNA translation by a

complex pathway involving downstream activation of ribosomal

S6 kinase [32]. However, heat shock appears to have the opposite

effect on translation and strongly inhibits protein synthesis as it can

inactivate S6 kinase [33] (data not shown). Inhibition of translation

during heating appears instead to involve other effects on cell

signaling such as the activation of eIF2 alpha kinases by

phosphorylation. Phosphorylated eIF2 alpha is a dominant

inhibitor of translation and results in sequestration of mRNAs

into cytoplasmic stress granules [34]. In addition, activation of

TORC1 has been shown to inhibit the autophagy pathway [35].

This is again counter-intuitive in light of our findings, as most

studies indicate activation of autophagy by heat shock [36].

However, our unpublished observations indicate that transcrip-

tional activation of autophagy during stress is a complex process

involving mechanisms independent of TORC1 signaling (Y Zhang

& SK Calderwood, in preparation).
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