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High-continuity genome assembly of the jellyfish

Chrysaora quinquecirrha

DEAR EDITOR,
The Atlantic sea nettle (Chrysaora quinquecirrha) has an
important evolutionary position due to its high ecological
value. However, due to limited sequencing technologies and
complex jellyfish genomic sequences, the current C.
quinquecirrha genome assembly is highly fragmented. Here,
we used the most advanced high-throughput chromosome
conformation capture (Hi-C) technology to obtain high-
coverage sequencing data of the C. quinquecirrha genome.
We then anchored these data to the previously published
contig-level assembly to improve the genome. Finally, a high-
continuity genome sequence of C. quinquecirrha was
successfully assembled, which contained 1 882 scaffolds with
a N50 length of 3.83 Mb. The N50 length of the genome
assembly was 5.23 times longer than the previously released
one, and additional analysis revealed that it had a high degree
of genomic continuity and accuracy. Acquisition of the high-
continuity genome sequence of C. quinquecirrha not only
provides a basis for the study of jellyfish evolution through
comparative genomics but also provides an important
resource for studies on jellyfish growth and development.
Jellyfishes belong to the phylum Cnidaria, which are lower
invertebrate  umbrella-shaped  gelatinous  zooplankton.
Jellyfish, especially C. quinquecirrha, have substantial
ecological impact due to their wide distribution, ranging from
the southern coast of New England to tropical areas of the
eastern coast of North America (Decker et al., 2007). Atlantic
sea nettles are fertile in late spring and early summer, and
large populations can have a significant impact on fisheries
(Olesen et al., 1996). Additionally, continuous blooms of
gelatinous zooplankton can permanently disrupt natural food
webs (Oguz et al., 2012). This disruption is because jellyfish
consume eggs, larvae, and juveniles, and thus can have long-
term effects on commercially important fishery species
(Finenko et al., 2013).
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Acquisition of the genome sequence could help in C.
quinquecirrha research, including on their developmental
processes. Fortunately, the first reference genome of C.
quinquecirrha was assembled and released recently (Xia et
al., 2020). However, due to its complexity and high
heterozygosity, the assembled genome is very fragmented,
thereby hindering further study of this species. Several
sequencing technologies, such as Bionano optical mapping
(http://www.bionanogenomics.com), 10xgenomics (https://www.
10xgenomics.com), and Hi-C (Pal et al., 2019), have been
developed to help the assembly of high-continuity genomes
(Chen et al., 2020; Dudchenko et al., 2017; Ghurye et al.,
2019). The Hi-C technique has been widely used for the
assembly of high-quality genomes (Chen et al.,, 2020;
Dudchenko et al., 2017; Ghurye et al., 2019). With second-
generation sequencing, Hi-C can obtain high-throughput data
of the genomic loci and measure physical interactions.
Moreover, Hi-C can measure the frequency of interactions
within and between different chromosomes, including the
number of interactions between chromosome fragments (Pal
et al., 2019). Additionally, different chromosomes can be
distinguished by identifying differences in the frequency of
direct interactions between different regions, thereby
constructing a genome at the chromosome level (Pal et al.,
2019).

In this study, we generated high-coverage Hi-C sequencing
data of C. quinquecirrha, which we then anchored to the
previously published genome to generate a high-continuity
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assembly. Fresh muscle samples of C. quinquecirrha were
dissected and used for high-quality DNA extraction with a
Qiagen Blood & Cell Culture DNA Mini Kit (Germany). The Hi-
C library was then prepared via digestion of the Dpnll
restriction enzyme and polymerase chain reaction (PCR)
enrichment by Novogene (China) on the NovaSeq 6000
sequencing platform (lllumina, USA) with a read length of
150 bp. Raw Hi-C sequencing reads with more than 30% low-
quality bases or 10% unknown bases were filtered. Duplicate
reads, which may be produced during PCR, and adaptor
sequences were also removed as described in previous study
(Chen et al., 2020). All remaining sequencing reads were used
for further analysis.

The clean Hi-C sequencing reads were then used for high-
continuity genome assembly. We used Juicer (v1.5.6) (Durand
et al., 2016b) to align all clean Hi-C reads to the previously
published contig-level genome (Xia et al.,, 2020), with
obviously duplicated mapping regions removed. The default
parameters of Juicer were used, except —S was set to “early”.
We then anchored the contigs into long sequences using 3D
de novo assembly software (v170123) (Dudchenko et al.,
2017) with parameters “-m haploid -i 15000 -r 0”. We used
Juicebox (v1.9.8) (Durand et al.,, 2016a) to visualize the
chromosome assembly after raw genome construction.
According to the sequence interactions, we modified the
fragments with obvious assembly errors. We obtained the final
high-continuity genome after adjusting minor errors in
connection order.

The genome annotation workflow used was the same as in
the previous study (Xia et al., 2020), except additional de novo
prediction software were used. Specifically, we used SNAP
(v2006-07-28) (Korf, 2004) with the HMM library
(mam54.hmm) and default parameters. We next predicted the
coding-region using Genscan (v1.0) (Burge & Karlin, 1997)
with the Humanlso library. In addition, GlimmerHMM (v3.0.1)
(Majoros et al., 2004) was used in the prediction of the coding
regions. We analyzed genome synteny between C.
quinquecirrha and Aurelia aurita (GCA_004194415.1_ABSv1)
using LAST (v802) (Kietbasa et al., 2011) with parameters “-m
100 —-E 0.05". The one-to-one comparison areas in the

Table 1 Statistics of two genome versions

obtained maf file were selected for plotting, and the syntenic
blocks between genomes were plotted using Circos (v0.69-6)
(Krzywinski et al., 2009).

Although several jellyfish genome assemblies have been
published in recent years, most are highly fragmented (Jiang
et al., 2019; Leclere et al., 2019). For C. quinquecirrha, the
published genome contig N50 is 733 647 kb. To acquire a
high-continuity assembly for the C. quinquecirrha genome, we
sequenced high-coverage (~272 Gb) Hi-C data, which were
mapped to the previously published genome (Xia et al., 2020).
To obtain a more accurate genome assembly, we constructed
long sequences using 3D de novo assembly software,
allowing broken contig sequences. Finally, we identified 51
scaffolds with obvious edges, and ~67.18% of the total contig
length was assembled into super-scaffolds (Supplementary
Table 1; Supplementary Figures 1, 2). Results showed that
this assembly, with a N50 of 3.83 Mb (Table 1, Supplementary
Table 2), was 5.23 times longer than the earlier version (Xia et
al., 2020). In addition, the cumulative assembly length showed
by the L50 (smallest number of sequences that make up at
least 50% of the total assembly) statistics between the two
genome versions (contig and Hi-C) indicated substantial
improvement in connectivity degree of C. quinquecirrha
(Figure 1A). The BUSCO scores were also significantly
improved compared to the contig version (Supplementary
Table 3).

To obtain more accurate information about the distribution
of repetitive sequences (including interspersed nuclear
elements, tandem repeats (TRP), and DNA elements), coding
genes, and GC content of each assembled sequence, the
genome was cut with a 200 kb slide-window and plotted the
results with Circos (v0.69-6) (Figure 1B). Results revealed that
the GC content of each scaffold (scaf) exhibited little
difference, ranging from 37.37% (scaf35) to 41.48% (scaf54).
However, the ratio of repetitive sequences on different
scaffolds was highly variable, ranging from 17.40% (scaf51,
repeat length: 842 697 bp) to 61.94% (scaf44, repeat length:
1 888 601 bp). According to the Circos plot, the distribution of
GC content was the most uniform, followed by the distribution
of coding genes (Figure 1B). In some scaffolds, the repetitive

Statistical item Length (bp) Number Length (bp) Number
Version Contig-version (Xia et al., 2020) Hi-C version (this study)

N90 66 354 666 227 000 195
N80 205 342 365 582 500 109
N70 395 469 249 873 000 62
N60 555 468 178 2312428 36
N50 733 647 125 3825607 24
Average length (bp) 134 943 179 287

Max length (bp) 4015784 15 257 941

Total length (bp) 336 819 409 337 419 359

Total number 2496 1882

Number 21 000 (bp) 2496 1880
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A: Cumulative assembly length of sequences from two genome assemblies of C. quinquecirrha. Two versions, including previously published contig
version (Xia et al., 2020) and Hi-C version from this study, were used in statistical analysis. Dots above and below each line indicate L50 and L90
values, respectively. B: Scaffold-level genome assembly of C. quinquecirrha. Assembly results are shown in Circos diagram, with outer to inner
rings showing distribution of protein-coding genes, tandem repeats (TRP), long tandem repeats (LTR), short interspersed repetitive elements
(SINE), long interspersed repetitive elements (LINE), DNA elements, and GC content, respectively. C: Distribution of contigs and coding genes in
each scaffold. Plot shows gene density distribution, contig number, and coding gene number in each scaffold, from left to right. D: Synteny of
genomes between scaffold-level C. quinquecirrha and A. aurita. Syntenic blocks are linked between two genomes with a Circos plot.

sequence distribution was quite uneven, such as scaf29
(Figure 1B). The distribution ranges of short interspersed
repetitive elements (SINE, length: 138 bp, 0.0009% in length
of scaf29) and TRP (length: 1.32 Mb, 8.69% in length of
scaf29) are shown in different colors in the two circles in
Figure 1B. The distribution of TRP was relatively more
concentrated in scaf36 (SINE, length: 1 944 bp, 0.064% in
length of scaf36; TRP, length: 1.36 Mb, 44.65% in length of
scaf36), while the distribution of SINE was more concentrated
in scaf29 (Figure 1B).

We counted the coding gene number and contig number in
each scaffold to better understand the distribution of protein-
coding genes and contigs in the scaffolds of C. quinquecirrha.
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We identified the longest 51 scaffolds (=1 Mb), which showed
a maximum of nearly 15 Mb. The longest scaffold (scaf29)
was also comprised of the largest number (72) of contigs
(Figure 1C), implying that complex scaffold composition may
be the cause of the fragmented genome assembly in previous
research. The longest scaffold (scaf29) also contained the
most genes (1 170 genes), suggesting a positive relationship
between gene number and scaffold length (Figure 1C). This
was verified by the positive Pearson correlation coefficient
(r=0.982) between chromosome length and gene number.

To clarify the syntenic block relationship of C. quinquecirrha
with other jellyfish species, we performed a genome-wide
collinearity comparison between C. quinquecirrha and Aurelia



aurita using the whole genome sequences. The two regions
that showed similar sequences between the scaffolds of the
two species were connected in the resulting plot (Figure 1D).
As shown in Figure 1D (only sequences longer than 1 Mb are
shown), we found that the collinearity between these two
jellyfishes was good but was poor when we compared other
species groups with short divergence time (such as among
mammals). Among the C. quinquecirrha scaffolds, scaf26
(Figure 1D) had the longest collinearity with A. aurita, and the
length of the collinear region was 401.33 kb. After removing
several matched fragments with overlapping regions, the total
lengths of the collinear regions were 8.23 Mb (3.65% of the
whole genome) and 10.23 Mb (5.22% of the whole genome) in
C. quinquecirrha and A. aurita, respectively. Based on
comparison of their scaffold-level genomes, the two jellyfish
showed few collinear regions (Figure 1D), which may result
from differences in chromosome number and many genetic
variation sites in each evolutionary process with the long
divergence time of ~475 million years (Xia et al., 2020).
Through systematic investigation of the Animal Genome
Size Database (http://www.genomesize.com), we found that
the C-value of the groups, including hydrozoan and
scyphozoan, ranged from 0.26 to 1.49, indicating differences
in the size of their genomes. In addition, though there are
many extant species of jellyfish (likely more than 250), only a
few species’ genomes have been published and most are very
fragmented, suggesting complex genome composition or
karyotypes in jellyfish. The previously published genome of C.
quinquecirrha is very fragmented. Genome assembly can be
difficult, especially regarding differences in the assembly of
the genomes of Anura and Urodela species in Amphibia. The
C-values in Anura range from 0.95 to 1240 (Olmo &
Morescalchi, 2005), but range from 10.02 to 120.6 in Urodela
(Goin et al., 1968). In addition, the differences in published
genome papers between these two groups also reflect the
impact of genome size on assembly. To date, only one
Urodela genome has been published (Nowoshilow et al.,
2018) in comparison to the many genomes of Anura, e.g.,
Nanorana parkeri (Sun et al., 2015), Xenopus laevis (Session
et al.,, 2016), and Xenopus tropicalis (Hellsten et al., 2010).
Therefore, it may be that difficulty in genome assembly is
closely related to the content of repetitive sequences and
genome size. It remains a huge technological challenge to
analyze high-quality genomes of these complex species.
Sequencing technology has developed rapidly in recent
years. In particular, the emergence of Hi-C techniques has
been of considerable benefit for comparative genomics (Cali
et al.,, 2019) and provided unprecedented accuracy and
convenience for obtaining high-quality chromosome-level
genomes (Pal et al., 2019). For example, high-continuity
genomes have been obtained for many species using Hi-C
technology (Dudchenko et al., 2017). With Hi-C, more high-
continuity genomes of jellyfish species can be assembled in
the future. In this study, we successfully assembled a high-
continuity genome of C. quinquecirrha by generating high-
coverage Hi-C sequencing data. Compared to the previously
published version (Xia et al., 2020), the N50 length was

substantially improved (Figure 1A). Genome synteny analysis
showed a collinear relationship between C. quinquecirrha and
A. aurita. The assembled high-continuity C. quinquecirrha
genome could help improve our knowledge on the evolution of
genomes and have practical application in studies on
conservation biology and population genetics. It could also
improve our understanding of the genomes of jellyfish, which
should help in studies on the growth, development, and
reproduction of C. quinquecirrha.
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