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PURPOSE. We investigated the relationship between inflammation, neuronal loss, and expression
of indoleamine 2, 3-dioxygenase (IDO) and quinolinic acid (QUIN) in the retina of subjects with
type 1 diabetes (T1D) and type 2 diabetes (T2D) and in the retina of rats with T1D.

METHODS. Retinas from T1D (n ¼ 7), T2D (n ¼ 13), and 20 age-matched nondiabetic human
donors and from T1D (n ¼ 3) and control rats (n ¼ 3) were examined using
immunohistochemistry for IDO, QUIN, cluster of differentiation 39 (CD39), ionized
calcium-binding adaptor molecule (Iba-1, for macrophages and microglia), Vimentin (VIM;
for Müller cells), neuronal nuclei (NeuN; for neurons), and UEA1 lectin (for blood vessels).

RESULTS. Based on morphologic criteria, CD39þ/ionized calcium binding adaptor molecule
1(Iba-1þ) resident microglia and CD39�/Iba-1þ bone marrow–derived macrophages were
present at higher density in T1D (13% increase) and T2D (26% increase) human retinas when
compared with controls. The density and brightness of IDOþ microglia were increased in
both T1D and T2D human retinas. The intensity of QUINþ expression on CD39þ microglia
and VIMþ Müller cells was greatly increased in both human T1D and T2D retinas. T1D retinas
showed a 63% loss of NeuNþ neurons and T2D retinas lost approximately 43% when
compared with nondiabetic human retinas. Few QUINþ microglia-like cells were seen in
nondiabetic retinas, but the numbers increased 18-fold in T1D and 7-fold in T2D in the central
retina. In T1D rat retinas, the density of IDOþ microglia increased 2.8-fold and brightness
increased 2.1-fold when compared with controls.

CONCLUSIONS. Our findings suggest that IDO and QUIN expression in the retinas of diabetic rats
and humans could contribute to the neuronal degeneration that is characteristic of diabetic
retinopathy.
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Indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting
enzyme of tryptophan catabolism via the kynurenine pathway

(KP).1 The KP represents the major catabolic route of tryptophan
(TRP), an essential amino acid that has various important
biological functions. TRP is a source of nicotinamide adenine
nucleotide (NADþ), a cofactor in cellular respiration and energy
production that plays an important role in DNA repair and
transcriptional regulation.2 IDO has immunologic functions. In the
initial stage of some infectious diseases it can, by depleting TRP,
inhibit the growth of the pathogens3 and thereby disease
progression. In the later stages, IDO may be involved in regulating
immune responses and creating immune tolerance, acting as a

protective feedback mechanism against an overzealous T-cell
response.4 IDO consists of IDO-1 and IDO-2, proteins that have
similar enzymatic actions in the human and mouse.5,6 IDO
expression is low in the normal central nervous system (CNS), but
increases greatly in inflammatory conditions such as cerebral
malaria.7 The increase in IDO expression is due to proinflamma-
tory cytokines, especially interferon gamma (IFN-c).8,9 With
increased IDO expression, tissue levels of KP downstream
products such as quinolinic acid (QUIN) typically rise.

QUIN is an agonist of the N-methyl-D-aspartate receptor.
Under normal physiological conditions, QUIN may modulate
some local CNS events. However, under pathologic conditions,
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FIGURE 1. Retinal flat mounts from nondiabetic (A, B), T1D (C, D), and T2D (E, F) human retinas, double stained with CD39 (red) and Iba-1
(green). A, C, and E show only CD39 labeling, whereas B, D, and F show both Iba-1 and CD39 staining. The images show that the density of Iba-1þ

microglia was increased, whereas bright CD39þmicroglia and CD39 expression on blood vessels decreased in human T1D and T2D retinas, which
suggests that inflammation is occurring in human T1D and T2D retinas. Arrows indicate the presence of some CD39�/Iba-1þ bone marrow–derived
macrophages (CD39 is only expressed on resident microglia, suggesting a bone marrow origin of these cells). (G) Quantitative analysis shows Iba-1þ
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increased QUIN can lead to neuronal dysfunction and death via
several processes. The main mechanism in the CNS is via
overactivation of N-methyl-D-aspartate receptors, leading to
increased intracellular calcium concentration and glutamate
release, followed by mitochondrial dysfunction and adenosine
triphosphate (ATP) exhaustion (energy depletion), and free
radical formation and oxidative damage (reviewed in Ref. 10).
Astrocyte dysfunction and gliotoxicity, blood–brain damage,
and inflammation induced by QUIN also are implicated in its
neurotoxicity.11 Thus, activation of the KP in the CNS may
damp down inflammatory processes but also damage neurons
via the production of QUIN.12

Diabetic retinopathy (DR) is a complex disorder that
involves both systemic and retinal tissue-specific initiating
factors and cell types. A number of hyperglycemia- and
dyslipidemia-activated pathways leading to retinal endothelial
cell and neural cell dysfunction have been identified.3–21 Thus,
the loss of neurons is also observed as part of the
pathophysiology22–29; ultimately the summation of these
aberrant events can lead to vision loss and even blindness.

Activation of the KP has been implicated in both the
causation30–34 and complications35–38 of diabetes. The KP
downstream products, kynurenine and 3-hydroxykynurenine,
were found to be increased in the serum of DR individuals.39 In
streptozotocin-induced diabetes in rats, the levels of IDO
activity and mRNA in the lenses were raised when compared
with those of nondiabetic animals, and oxidative stress
markers, for example, thiobarbituric acid-reacting substances,
were also increased when compared with control lenses.35

We therefore hypothesized that neuronal loss in DR is
mediated via products of inflammation, including metabolites of
TRP derived from the KP. In this study, the expression of markers
of inflammation and retinal damage were evaluated alongside the
expression of IDO and QUIN in a series of retinas from normal,
T1D, and T2D human subjects and in a rat model of T1D.

MATERIALS AND METHODS

Human Eyes

We used 40 human adult eyes (20 nondiabetic, 7 T1D; 13 T2D;
one eye represents one subject), aged 46 to 78 years, obtained
from the Lions NSW Eye Bank in accordance with the
Declaration of Helsinki for the Use of Human Tissue. This
study was approved by the Human Research Ethics Committee
of the University of Sydney (Approval 15190). Cause of death
for the donors was predominantly cardiovascular diseases or
cancer. Among the eyes, 7 were from donors with a history of
T1D, and 13 with a history of T2D. All eyes were enucleated
within 12 to 24 hours following death. After removing the
corneas and the anterior segments, the eyes were fixed in 2%
w/v paraformaldehyde overnight and then transferred into
PBS. The eyes were examined using immunohistochemistry.

Animals and Experimental Diabetes

Male Sprague-Dawley rats were obtained from Animal Resource
Center in Perth and housed in the institutional animal care
facilities at the University of Sydney. The Animal Ethics
Committee of the University of Sydney approved all animal

protocols, and complied with the ARVO Statement for the Use
of Animals in Ophthalmic and Vision Research.

Experimental diabetes was induced as previously de-
scribed.40 Briefly, Sprague-Dawley rats aged 7 to 10 weeks
were rendered diabetic with a single intraperitoneal injection
of streptozotocin (STZ, 90 mg/kg) freshly dissolved in citrate
buffer (pH 4.5). Development of diabetes (defined by blood
glucose greater than 15 mmol/L) was verified 1 week after the
first STZ injection (Accu-Chek Peforma blood glucometer;
Roche Diagnostics GmbH, Mannheim, Germany). Diabetes was
confirmed by blood glucose levels greater than 15 mmol/L on
repeated testing.41 To sustain the rats for a longer time, insulin
was administered to diabetic rats every 3 days based on body
weight and blood glucose levels (the mortality rate in the STZ
model at 8 weeks was 8.3%). Three animals were examined in
each cohort, control and diabetic.

Immunofluorescence Histochemistry on Retinal
Whole Mounts and Transverse Sections

The entire adult human retinal flat mount is too large for
microscopic examination, and as different combinations of
antibodies were required for the same retina, the whole retina
was cut into several pieces. Approximately 80% of the pieces
were from the nasal side (between 12 to 3 o’clock), and 20%
were from the temporal side (between 10 to 12 o’clock) to
avoid the fovea region.42 Each piece contained the central,
middle, and peripheral regions. All images and data were
collected from the middle-peripheral region. The pieces of
flat mounted retina or sections on slides were stained with
antibodies to indoleamine 2,3-dioxygenase 1 (IDO1; LS-
B1746, LSBio, Seattle, WA, USA), quinolinic acid (QUIN, Ref.
21203002; apDia, Turnhout, Belgium), kynurenine 3 mono-
oxygenase (catalog number 10698-1-AP; proteintech, Rose-
mont, IL, USA), Iba-1 (Wako, Osaka, Japan) for visualization of
microglia/macrophages,43 CD39 (22A9; Novocastra/Leica
Microsystems, Bannockburn, IL, USA) for visualization of
resident microglia and blood vessels, Ulex europaeus lectin
(UEA lectin, L9006; Sigma-Aldrich Corp., St. Louis, MO, USA)
for blood vessels, biotinylated Griffonia simplicifolia (Ban-

deiraea) isolectin B4 (GS Lectin, L3795; Sigma-Aldrich Corp.)
for rat microglia/macrophages and blood vessels, monoclonal
anti-vimentin�Cy3 antibody produced in mouse (C-9080, used
at 1:200; Sigma-Aldrich Corp.) was used to identify Müller
cells, and neuronal nuclei (NeuN, MAB 377; Chemicon,
Temecula, CA, USA) for neurons. The tissues were washed
and transferred to secondary antibodies conjugated with
either Alexa594 or Alexa488 (Invitrogen-Molecular Probes,
Carlsbad, CA, USA).

Confocal Microscopy

Imaging was carried out using a ZEISS LSM 510 Meta
confocal microscope at the Bosch Advanced Microscopy
Facility (University of Sydney). Images were captured with
the ZEISS LSM 510 acquisition software (Carl Zeiss, North
Ryde, NSW, Australia). Z-stack images were collected. The
optimal interval, pinhole size, and optical depth parameters
were consistently maintained as required for the 20 3 0.8NA
and 40 3 0.75NA, using an image frame size of 1024 3 1024

microglia density was significantly higher in both T1D (13%) and T2D (26%; *P < 0.05) retinas when compared with nondiabetic controls. N¼ 5 to
10 samples/group, and there was no significant difference between T1D and T2D. (H) Quantitative analysis shows that the bright CD39þmicroglia
density was significantly lower in both T1D (21%) and T2D (13%; *P < 0.05) retinas when compared with nondiabetic controls. N ¼ 5 to 15
samples/group, and there was no significant difference between T1D and T2D. Calibration in A: for A–F. Arrows in E, F indicate CD39�/ Iba-1þ bone
marrow–derived macrophages.
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FIGURE 2. Retinal flat mounts from nondiabetic (A, B), T1D (C, D), and T2D (E, F) human retinas, triple stained with IDO (red), UEA lectin (green),
and CD39 (blue). A and B, C and D, E and F are the same images, with A, C, and E showing only IDO labelling. The images in A and B show weak
IDOþ expression on CD39þmicroglia and CD39þ/UEA lectinþ blood vessels. In T1D and T2D, IDOþmicroglia increased in density and brightness,
but IDO expression on blood vessels did not change. (G) Quantitative analysis shows IDOþmicroglia-like cell density was significantly higher in both
T1D (53%) and T2D (56%; *P < 0.05) retinas when compared with nondiabetic controls. N¼ 4 to 6 samples/group, and there was no difference
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pixels. The laser lines were 405, 488, 561, and 633 nm. Scan

speed and averaging remained consistent for all images

captured in each experiment for both qualitative and

quantitative purposes. Image analysis was performed using

LSM 510 Meta 4.2 (Carl Zeiss) offline software and Adobe

Photoshop CS6 version 12.0 software (Adobe Systems, San

Jose, CA, USA) on an Apple (Cupertino, CA, USA) Macintosh

computer .

Quantitative Analysis of Iba-1þ Microglia/
Macrophages, Iba-1�/CD39þ Resident Microglia,
IDOþ or QUINþ Microglia-Like Cell Densities and
Intensities (Brightness), and IDOþBlood Vessel and
QUINþ Müller-Like Cell Intensities

Confocal images (203) of the flat mounted retinas were
analyzed to obtain the data of Iba-1þ microglia/macrophages
and Iba-1-/CD39þ resident microglia, IDOþ or QUINþMicroglia-

between T1D and T2D. (H) Quantitative analysis shows IDOþ cell brightness (intensity) was significantly higher both in T1D (68%) and T2D (54%;
*P < 0.05) retinas when compared with nondiabetic controls. N¼ 4 to 6 samples/group, and there was no difference between T1D and T2D. (I)
Quantitative analysis shows that the bright IDOþ expression on blood vessel endothelial cells (BVECs) was similar among the T1D, T2D, and
nondiabetic control groups. (N ¼ 4–6 samples/group). Calibration in A: for A–F.

FIGURE 3. Retinal flat mounts from nondiabetic (A, B) and T1D (C, D) rat retinas, double stained with IDO (red) and GS lectin (green). A and B, C
and D are the same images, with A and C only showing IDO labeling. The images in A and B show weak IDOþ expression on GS lectinþmicroglia
and GS lectinþ blood vessels. In T1D (C, D), IDOþ/Lectinþ microglia (arrows) increased in density and brightness, and IDOþ labeling on blood
vessels also increased when compared with control. (E) Quantitative analysis shows IDOþmicroglia-like cell density was significantly higher in T1D
(2.76 times; *P < 0.05) retinas when compared with nondiabetic controls. N ¼ 3 samples/group. (F) Quantitative analysis shows IDOþ cell
brightness (intensity) was significantly higher in T1D (2.06 times; *P < 0.05) retinas when compared with nondiabetic controls. (G) Quantitative
analysis shows that the bright IDOþ expression on BVECs was significantly higher in T1D (1.88 times; *P < 0.05) retinas when compared with
nondiabetic controls. Calibration in A: for A–D.
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FIGURE 4. Retinal flat mounts from nondiabetic (A, B), T1D (C, D), and T2D (E, F) human retinas, double stained with QUIN (red) and CD39
(green). A and B, C and D, E and F show the same fields of view, but A, C, and E only show QUIN labeling. The images show a very weak level of
QUINþmicroglia/macrophage in nondiabetic retinas, whereas the density of QUINþmicroglia/macrophages was increased greatly in T1D and to a
lesser extent in T2D retinas. Some of the QUINþ microglia/macrophages are CD39 positive (arrows). Besides QUINþ microglia/macrophages, the
retinal parenchyma also showed a high level of background QUINþ expression. (G) Quantitative analysis shows QUINþ microglia-like cell density
was significantly higher in both T1D (31 times) and T2D (10.3 times; *P < 0.05) retinas when compared with nondiabetic controls (N ¼ 4–6
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like cell densities and intensities as well IDOþ blood vessel and
QUINþ Müller-like cell intensities. In each sample, three or
more images were taken from different regions of the retinas.
The positive cells were determined by their specific antibody
labeling and unique morphology, and the images were analyzed
using ImageJ software (NIH Research Services Branch, http://
rsb.info.nih.gov/ij/index.html).

Quantitative Analysis of NeuNþ Neuron Densities

Confocal images (403, 10 mm from the optic nerve head) of
the retinal sections were analyzed to obtain the densities of
NeuNþ neurons in the ganglion cell layer from diabetic and
control human retinas. For each individual, three or more
images were taken from different sections for analysis. The
positive cells were determined by their specific antibody
labeling and unique morphology. The density of positive cells
was quantified manually using ImageJ software.

Statistical Analysis

The density and fluorescence intensity of positive cells was
normalized by dividing by the mean values of age-matched

controls in the same region or tissue and expressed as the
percentage of relative densities or fluorescence intensity for
each retina.40 All data are shown as mean values 6 SEM.
Statistical differences between two groups, for example,
control compared to T1D, or T1D compared to T2D, were
determined by applying ANOVA (for comparison among three
groups) and 1-tailed Student’s t-tests (for comparison between
groups) for unpaired groups with equal variance. A P value of
less than 0.05 (P < 0.05) was considered statistically
significant.

RESULTS

Increased Iba-1þ Microglia/Macrophage Density
and Decreased CD39 Expression in T1D and T2D
Human Retinas

The fluorescence intensity and the density of Iba-1þmicroglia/
macrophages increased significantly (P < 0.05) in T1D and
T2D retinas when compared with nondiabetic retinas (Fig. 1B
compared to 1D, 1F). Quantitative analysis (Fig. 1G) showed
that there was no significant difference of CD39þ and Iba-1þ

samples/group), and significantly higher in T1D than T2D (*P < 0.05). (H) Quantitative analysis shows QUINþ microglia-like cell brightness
(intensity) was significantly higher in T1D (1.9 times) retinas when compared with nondiabetic controls and T2D. N¼ 4 to 6 samples/group (*P <
0.05), and there was no difference between nondiabetic controls and T2D. (I) Quantitative analysis shows QUINþ Müller-like cell brightness
(intensity) was significantly higher in T1D (3.6 times) and T2D (1.5 times; *P < 0.05) retinas when compared with nondiabetic controls, and
significantly higher in T1D than T2D (*P < 0.05). N¼ 4 to 6 samples/group. Calibration in A: for A–F.

FIGURE 5. Retinal flat mounts from T1D (A–F) human retinas, double stained with CD39 (green) and IDO (red) or QUIN (red). A, B, and C and D,
E, and F show the same fields of view. A and D only show CD39 labeling. B only shows IDO labeling. E shows only QUIN labeling. C is the merged
image of A and B. F is the merged image of D and E. The images A–C show some CD39þmicroglia (arrow in A) were IDO positive (arrows in B and
C). The images D–F (higher magnification from Figs. 4C, 4D) show some CD39þ microglia are QUIN positive. Calibration in A: for A–F.
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cell densities between T1D and T2D. When compared with
nondiabetic retinas (Fig. 2A), the bright CD39þ microglia
density in the T1D (Fig. 1C) and T2D (Fig. 1E) retinas was
decreased significantly (P < 0.05, see Fig. 1H), with no
significant difference between T1D and T2D retinas. The
CD39þ/Iba-1þ microglia in the diabetic retinas often displayed
shorter processes (Figs. 1D, 1B–F), indicating that these
microglia were in an activated state. Some Iba-1þ microglia/
macrophages without CD39 expression were also detected
(arrows in Figs. 1C–F), suggesting that the cells were bone
marrow–derived macrophages (CD39 is only expressed on
resident microglia).44

Increased Density and Brightness of IDOþ

Microglia Are Observed in Both T1D and T2D

Human and Rat Retinas

Microglia weakly positive for IDO were seen around CD39þ/
UEA lectinþ blood vessels in the nondiabetic retinas (Figs. 2A,
2B). All IDOþ microglia were CD39þ, suggesting that they are
resident retinal microglia. In the T1D (Figs. 2C, 2D) and T2D
(Figs. 2E, 2F) retinas, IDOþmicroglia increased in number and
brightness (Fig. 2A compared to 2C, 2F). Quantitative analysis
(Fig. 2G) showed the IDOþmicroglia density to be significantly
(P < 0.05) higher in T1D and T2D retinas when compared
with nondiabetic retinas, with no significant difference
between T1D and T2D. IDO immunostaining intensity on
positive microglia (Fig. 3H) was significantly (P < 0.05) higher
in T1D and T2D retinas when compared with nondiabetic

retinas, with no difference between T1D and T2D. However,
IDO immunostaining intensity on vascular endothelial cells
(Fig. 2I) was similar in the three conditions.

In T1D rat retinas, IDOþ microglia increased in density and
brightness, and IDOþ labeling on blood vessels also increased
when compared with controls (Figs. 3A, 3B compared to 3C,
3D). Quantitative analysis showed IDOþ microglia-like cell
density was significantly higher in T1D (2.76 times, P < 0.05)
retinas when compared to nondiabetic retinas (Fig. 3E). IDOþ

microglia-like cell brightness (intensity) was significantly
greater in T1D (2.06 times, P < 0.05) retinas when compared
with nondiabetic rats (Fig. 3F). The bright IDOþ expression on
blood vessel endothelial cells was also significantly higher in
T1D (1.88 times, P < 0.05) retinas when compared with
nondiabetic retinas (Fig. 3G).

QUINþ Expression on Microglia-Like and Müller-

Like Cells Is Greatly Increased in Human T1D and

T2D Retinas

In 33% of nondiabetic human retinas (Figs. 4A, 4B), there were
no QUINþ cells. In the other 67% of nondiabetic retinas, there
were very few weakly labeled QUINþ cells (mean 0.64 6 0.26/
mm2). However, in T1D (Figs. 4C, 4D) and T2D (Figs. 4E, 4F),
the QUINþ cell number increased, especially in T1D (mean
30.96 6 2.73/mm2; T2D, mean 10.3 6 2, 86/mm2). Some of
them were CD39þmicroglia (arrows in Figs. 4C–F, Figs. 5D–F),
and the CD39 negative QUINþ cells also had microglial
morphology. In addition to the increased number of QUINþ

FIGURE 6. Middle-peripheral region of retinal cross sections from human nondiabetic (control, A–C) and T2D (D–F) retinas, double stained with
QUIN (red) and VIM (green). A, B, and C and D, E, and F show the same fields of view. A and D only show QUIN labeling. B and E show only VIM
labeling. C is the merged image of A and B. F is the merged image of D and E. The images A–C show a few QUINþ fibers (arrow in A) are VIM
positive (arrows in B and C). The images D–F show QUINþ labeling increases in T2D retina, and many QUINþ labeled (arrows in D) are VIM positive
(arrows in E and F). Calibration in A: for A–F. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer.
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microglia, QUINþ labeling was evident on Müller-like cells in
the parenchyma in human T1D and T2D retinas in flat mount
preparations (Figs. 4A, 4B compared to 4C–F). The images
from retinal sections confirmed that the QUINþ labeling was on
a few Müller cells in the nondiabetic retinas, but greatly
increased in T2D retinas (Figs. 6A–C compared to 6D–F).
Quantitative analysis confirmed that the density of QUINþ

microglia-like cells was significantly higher (P < 0.05) in both
T1D and T2D retinas when compared with the nondiabetic
retinas, and the density of QUINþ microglia-like cells in T1D
retinas was significantly (P < 0.05) greater than in T2D retinas
(Fig. 4G). The brightness of QUINþ microglia-like cells was
significantly higher (P < 0.05) in T1D, but not T2D, retinas
when compared with nondiabetic retinas (Fig. 4H). The
brightness of QUINþ Müller-like cells was significantly (P <
0.05) greater in both T1D and T2D retinas when compared
with nondiabetic retinas, with it being significantly (P < 0.05)
higher in T1D than in T2D (Fig. 4I). The localized QUIN
expression on microglia-like and Müller cells is strongly
suggestive of QUIN production by these cell types rather than
it being of systemic origin.

T1D Retinas Had Fewer NeuNþ Neurons When

Compared With Nondiabetic Retinas

Many NeuNþ neurons were seen in the ganglion layer in the
nondiabetic retinas (Fig. 7A). In T1D (Fig. 7B) and T2D (Fig.
7C) retinas, there were fewer NeuNþ neurons in the ganglion
cell layer. Quantitative analysis (Fig. 7D) showed that the
NeuNþ cells were 63% fewer and 43% fewer relative to the
nondiabetic retinas in T1D and T2D, respectively (P < 0.05),

and there were significantly fewer in T1D than in T2D (P <
0.05).

DISCUSSION

Diabetes is strongly associated with a systemic proinflamma-
tory state,45,46 including raised circulating levels of the
proinflammatory cytokines interferon-gamma (IFN-c) and
TNF.47–49 These cytokines can activate IDO, and therefore
the KP, in tissues, including the CNS.50 KP activity is known to
downregulate immune and inflammatory processes, thereby
acting as a protector of tissue structure and function.51

However, some CNS cells are susceptible to the cytotoxic
effects of KP products such as QUIN, and this is believed to
contribute to the manifestations of several neurologic disor-
ders.8,12,50,52 Our data are consistent with such a process
contributing to DR.

Microglia activation, increased IDO and QUIN expression,
and loss of NeuNþ neurons were observed in the retinas from
T1D and T2D human eyes when compared with age-matched
controls. We propose that these changes are related. In DR,
ganglion cell degeneration occurs, which is one of the reasons
for vision loss. To date, the pathogenesis of ganglion cell
degeneration in DR remains incompletely understood. The
presence of microglia activation and increased IDO and QUIN
expression in T1D and T2D retinas may provide insight into a
mechanism for neuronal loss in diabetes.

Activated retinal microglia previously have been found in
donor diabetic retinal tissue.53 In this study, the density of Iba-
1þCD39- microglia/macrophages in the retinas of T1D and T2D
subjects was increased. Iba-1þ/CD39� microglia/macrophages

FIGURE 7. Middle-peripheral region of retinal cross-sections from nondiabetic (A), T1D (B), and T2D (C) retinas stained with NeuN in the ganglion
cell layer. The images show many NeuNþ neurons in the ganglion cell layer of the nondiabetic retina (A). In the T1D (B) and T2D (C) retinas, there
are far fewer NeuNþ neurons. (D) Quantitative analysis showed a marked decrease in the density of NeuNþ cells in T1D and T2D (*P< 0.05, 63% and
43% reduction, respectively) relative to controls (nondiabetic), and there was significantly less in T1D then in T2D (*P < 0.05). N¼ 3 to 4 samples/
group. Calibration in A: for A–C.
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exhibited an activated morphology when compared with those

of nondiabetic donors (Fig. 1). In contrast, bright CD39þ

resident microglia in the diabetic retinas were reduced in

number (Fig. 1). CD39 has anti-inflammatory functions, and

CD39 activity can attenuate microglia phagocytosis.54 CD39

overexpression has protective effects against STZ-induced

diabetes in mice.55 Mice deficient in CD39 are highly

susceptible to STZ-induced diabetes.56 Previously, we found

increased Iba-1þ/CD39� microglia/macrophage and decreased

CD39þ resident microglia densities in diabetic hypothalamus,

which suggests activation of CNS inflammation.57 Increased

expression of proinflammatory cytokines, such as interleukin-

1b and tumor necrosis factor a (TNF-a) are observed in DR.58

The increased expression of the proinflammatory cytokines

can, in turn, activate the KP, which has been shown to

contribute to CNS pathology and neuronal loss.6,12,50

IDO activation triggers the KP. IDO expression is low or
absent in the normal CNS,59 but can be induced in
macrophages, microglia, neurons, astrocytes,60,61 and vascular
endothelial cells.62,63 Increased enzyme expression can be
provoked in neuro-inflammatory disorders, such as cerebral
malaria.12,59 The increased IDO expression is believed to be
mainly caused by the presence of T-lymphocytes and/or IFN-
c59 and other cytokines such as TNF.64 The predominant
physiological inducer of IDO expression is IFN-c. In T1D and
T2D, sources of IFN-c can be resident retinal cells as well as
circulating cells that extravasate into the retina. Furthermore,
IFN-c is expressed locally in the CNS65 and activated microglia
in the diabetic brain exhibit enhanced IFN-c expression.66

Activated microglia produce TNF in experimental DR.67

Evidence in support of systemic production of relevant
cytokines comes from the observation that there are high
serum levels of IFN-c and TNF in T1D subjects with DR.47–49

In this study, weak IDO expression was found in microglia-
like cells and vascular endothelial cells in nondiabetic retinas
(Figs. 2A, 2B). In contrast, strong IDO expression was found in
T1D (Figs. 2C, 2D) and T2D (Figs. 2E, 2F) retinas. The
quantitative data (Figs. 2G–I) indicated that IDOþmicroglia-like
cells in T1D and T2D retinas increased in density and
brightness when compared with those of nondiabetic cells,
but the brightness of IDO expression on vascular endothelial
cells was similar in all three conditions. Our observation of IDO
expression by microglia is consistent with the local production
of IFN-c and TNF.68 Furthermore, the loss of blood–retinal
barrier function in DR would permit systemic IFN-c and TNF to
access the retinal parenchyma, promoting IDO activation.69

IDO is one of the prominent mediators of immune
regulation.51 In the CNS, IDO expression has dual roles in
immune responses.8 On the one hand, IDO can induce
immune tolerance to down-regulate inflammation in several
experimental autoimmune diseases in the CNS, including
multiple sclerosis and experimental autoimmune encephalo-
myelitis.70,71 On the other hand, as the first enzyme in the KP,
the up-regulation of IDO expression can increase downstream
KP products, such as QUIN, which have the potential to
promote immune-mediated neuronal damage.8 In the normal
CNS, QUIN is only expressed on macrophage-like cells.72

However, in CNS inflammatory diseases, such as amyotrophic
lateral sclerosis, expression of IDO and QUIN is increased on
microglia and neurons.61

In this study, IDO and QUIN expressions were both
increased on microglia-like cells in the diabetic human and
rat retinas when compared with nondiabetic controls (Figs. 2,
3, 4), which suggested that the increased IDOþ expression by
these cells might promote the expression of QUIN. Activated
microglia are capable of producing the whole spectrum of KP
metabolites, whereas astrocytes do not produce significant
amounts of QUIN.73 Thus, our observation of IDO and QUIN in
microglia in diabetic retinas suggests that these cells are the
most important source of KP metabolites in this disease.
Furthermore, the presence of IDO-negative, QUINþMüller cells
(the major retinal microglia besides astrocytes)74 is consistent
with the uptake of QUIN by these cells.

QUIN is an endogenous metabolite of the KP and is involved
in several neuronal degenerative disorders, such as Alzheimer’s
disease and Huntington’s disease.75 QUIN neural toxicity
involves the following mechanisms: (1) continuous stimulation
of N-methyl-D-aspartate receptors, with calcium entry into
neurons11; (2) activation of second messenger-dependent
protein kinases, which phosphorylate head domain sites on
neurofilament subunits, potentially dysregulating intermediate
filament assembly76; (3) impairment of the sarco/endoplasmic
reticulum calcium-ATPase pump resulting in disturbed intra-
cellular calcium signaling77; (4) increased glutamate release by

FIGURE 8. A schematic showing the role of the kynurenine pathway in
ganglion cell degeneration and inflammation in T1D and T2D. Our
study showed increased IDO and QUIN expression in the microglia and
Müller cells of diabetic human and rodent retina. Diabetes leads to
increased IFN-c and TNF both systemically and in the retina. These
cytokines induce IDO expression in microglia, leading to toxic
production of QUIN. The QUIN causes dysfunction of astrocytes and
the retinal blood barrier, as well as ganglion cell death, which in turn
leads to microglial activation. QUIN also is taken up by Müller cells,
possibly leading to their activation.
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neurons, inhibition of uptake by astrocytes, and inhibition of
astrocyte glutamine synthesis, thereby increasing glutamate
concentration in the microenvironment, leading to neurotox-
icity78; (5) progressive energetic dysfunction, leading to
neurodegeneration79; and (6) increased neuronal nitric oxide
synthases, resulting in DNA damage, NAD(þ) depletion, and
neuronal death.80

Our study has demonstrated a marked reduction in the
density of retinal neurons, as identified by NueNþ staining in
the ganglion cell layer of the retinas of T1D and T2D compared
to the nondiabetic controls (Fig. 7). Our findings are in
agreement with clinical studies utilizing optical coherence
tomography of the retina and demonstrating quantitative
evidence of neurodegenerative changes in subjects with
diabetes.81 Even in the absence of vascular changes, the retinal
nerve fiber layer thickness around the optic disc is thinner in
T2D subjects when compared with controls.82 Recently, Jeon
et al.83 confirmed these findings and demonstrated that average
retinal nerve fiber layer thickness in T2D individuals was
significantly thinner than that of nondiabetic, nonglaucoma-
tous controls. These changes were present in individuals with
no DR or mild nonproliferative retinopathy. It was interesting
to note in this study that QUINþ expression in human T1D
retinas was significantly higher than that in T2D retinas (Fig. 4),
whereas the density of NeuNþ neurons in human T1D retinas
was significantly lower than that in T2D retinas (Fig. 7), which
suggests that the loss of NeuNþ neurons may be related to the
increased QUINþ expression in human diabetic retinas.

In summary (Fig. 8), increased densities of Iba-1þ microglia
and Iba-1þ/CD39- bone marrow–derived macrophages occur in
human T1D and T2D and diabetic rodent retinas, demonstrat-
ing the existence of local inflammation. CD39 has anti-
inflammatory and protective functions. Reduced CD39 expres-
sion on Iba-1þ microglia may lead to increased production of
proinflammatory cytokines, in particular IFN-c, which induce
IDO expression and activity. Enhanced microglial IDO activity
increases the generation of QUIN via the KP. QUIN can
increase the extracellular glutamate concentration and induce
neuronal nitric oxide synthesis, resulting in DNA damage and
NAD(þ) depletion. QUIN also may adversely affect blood–brain
barrier function and lead to astrocyte dysfunction and damage,
thereby contributing to neuronal injury. All of these mecha-
nisms could potentially contribute to neuronal loss in diabetic
retinas (Fig. 7).
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