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Abstract

We report association mapping of a locus on bovine chromosome 3 that underlies a Mendelian form of stunted growth in
Belgian Blue Cattle (BBC). By resequencing positional candidates, we identify the causative c124-2A.G splice variant in
intron 1 of the RNF11 gene, for which all affected animals are homozygous. We make the remarkable observation that 26%
of healthy Belgian Blue animals carry the corresponding variant. We demonstrate in a prospective study design that
approximately one third of homozygous mutants die prematurely with major inflammatory lesions, hence explaining the
rarity of growth-stunted animals despite the high frequency of carriers. We provide preliminary evidence that heterozygous
advantage for an as of yet unidentified phenotype may have caused a selective sweep accounting for the high frequency of
the RNF11 c124-2A.G mutation in Belgian Blue Cattle.
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Introduction

Growth is one of the economically most important phenotypes

in livestock production. While genetic variants with large effects on

stature account for part of the between-breed variation [1], within-

breed variation is likely to be highly multifactorial and polygenic.

Accordingly, quantitative trait loci (QTL) influencing growth are

reported on all autosomes in the cattle QTL database (http://

www.animalgenome.org/cgi-bin/QTLdb/BT/index).

The BBC breed is a beef breed that is famous for its ‘‘double-

muscling’’ phenotype caused in part by a disruptive 11-bp deletion

in the myostatin (MSTN) gene [2]. As in other breeds, growth

performances are paramount in BBC as they control duration of

the fattening period and final carcass weight, hence directly

determining profit.

In recent years, an increasing number of young animals with

growth retardation as primary symptoms were reported to our

heredosurveillance platform. We established this platform in 2005

to rapidly detect genetic defects emerging in the BBC, identify the

culprit genes and mutations, and develop diagnostic tests to limit

their negative impact [3]. Animals with growth retardation

underwent a standard protocol including a genome-wide associ-

ation study (GWAS) to identify putative causative loci. We herein

report the mapping of a locus accounting for ,40% of growth-

retardation cases, and identify the causative loss-of-function

mutation in the RING finger protein 11 (RNF11) gene. Moreover,

we perform a prospective study that indicates that as much as one

third of homozygous mutants die from infection before six months

of age. We finally present evidence that carriers of the mutation

might benefit from a selective advantage that may account for its

unexpectedly high frequency (,13%) in the BBC population.

Results

A major growth-stunting locus maps to BTA3
Between 2008 and 2011, we collected blood samples and

epidemiological data from 147 BBC individuals, aged between 3

months and 3 years old, with pronounced (,15% reduction in

stature when compared to contemporaries) yet proportionate

growth retardation as primary distinctive feature. We initially

genotyped 33 of these with a custom-designed 50 K medium-

density bovine SNP array [3]. None of these animals would be

homozygous or compound heterozygote for the previously

identified c.2904-2905delAG [4] and c.1906T.C [5] MRC2

mutations causing Crooked Tail Syndrome and known to affect

stature. Using the genotypes of the corresponding SNPs (yet

obtained with a distinct, high-density bovine SNP array) from 275

healthy sires as control, we performed a GWAS using an approach

based on hidden haplotype states with a generalized mixed model

accounting for stratification (Zhang et al., submitted for publica-

tion). A genome-wide significant signal was obtained on BTA3

driven by haplotype state 17, observed at a frequency of 52% in

cases versus 12% in controls (Figure 1A). Fourteen of the 33 cases

(42%) were homozygous for the corresponding haplotype, causing
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a significant deviation from Hardy-Weinberg expectations in cases

(expected: 27%, p,0.002), hence suggesting recessivity.

Retrospective phenotypic analysis of the 14 homozygotes

revealed shared features: proportionate growth retardation

appearing around 5–6 months of age (not observed at birth),

normal muscular development, close forehand, long and thin neck,

hairy, long and thin head (Figure 2). Pedigree analysis indicated

that the 14 individuals traced back to Galopeur des Hayons (a once

popular BBC sire) on sire and dam side.

A splice site mutation in the RNF11 gene is the likely
causative mutation

Direct examination of the SNP genotypes of the 14 cases

homozygous for hidden state 17 revealed a 3.3 Mb (100,727,788–

104,017,608 - Btau 4.0) segment of autozygosity (Figure 1B). It

encompassed 19 annotated genes of which none was an obvious

candidate (Figure 1C). We thus undertook the systematic re-

sequencing of all open reading frames (ORF) and intron-exon

boundaries. During this process (and after completion of 14/19

genes), we identified an A to G transition (c124-2A.G) mutating

the intron 1 acceptor splice site of the RNF11 gene (Figure 1D).

RNF11 encodes a highly conserved, ubiquitously expressed protein

with 154 amino-acids [6], recently recognized as a subunit of the

A20 ubiquitin-editing complex regulating NF-kb signaling [7]. We

developed a 59-exonuclease assay and genotyped (i) the case-

control cohort used for GWAS (33 cases, 275 controls), (ii) a

diversity panel encompassing 141 animals from eleven breeds

other than BBC, (iii) 549 additional normal adult BBC animals,

and (iv) Galopeur des Hayons. The c124-2A.G variant appeared in

near perfect linkage disequilibrium (D9 = 1; r2 = 0.984) with

haplotype state 17 in the case-control cohort. It was not present

in non-BBC animals. It had an allelic frequency of 13% amongst

the 824 genotyped healthy adult BBC animals, yet without a single

animal being homozygous GG (p,0.01 under Hardy-Weinberg

equilibrium). Galopeur was indeed confirmed to be carrier of the

c124-2A.G mutation.

The effect of the c124-2A.G mutation on RNF11 transcripts

was examined by RT-PCR using RNA extracted from skeletal

muscle, spleen, mesenteric lymph node, thymus, lung, trachea of

one GG and one AA animal. Using two primers located respectively

in exon 1 and 3 and RNA from wild-type AA animals, we obtained

a unique 360-bp RT-PCR product in all examined tissues, and

showed by sequencing that it encompassed the expected exon 2

sequence (data not shown). The same experiment performed with

RNA from a homozygous mutant GG animal yielded (i) a major

product of ,190 bp, and (ii) a minor product of ,360 bp

(Figure 3A). The major product was shown by sequencing to

correspond to a transcript skipping exon 2. The minor product

missed the first seven base pairs of exon 2, and resulted from the

activation of a cryptic splice site in exon 2. RT-PCR conducted

with primers located respectively in exon 1 and 2 confirmed the

existence of transcripts containing exon 2 in homozygous mutants

(Figure 3B). Both forms are expected to cause a frameshift,

appending 29 (major product) and 14 (minor product) illegitimate

residues to a severely truncated (41/154 amino-acids) RNF11

protein missing the ubiquitin interaction and RING-finger

domains. The transcript corresponding to the minor form is

expected to undergo non-sense mediated RNA decay (NMRD)

[8], due to the occurrence of a stop codon in exon 2 of three.

NMRD is not expected to affect the transcript corresponding to

the major form as the corresponding open reading frame

terminates in exon 3 of three. We compared the levels of RNF11

transcript in mesenteric lymph node and spleen of a wild-type AA

and a mutant GG animals, using quantitative RT-PCR with

primer sets targeting the second (outside of the 7-bp deletion) and

third RNF11 exons, respectively, as well as three internal control

genes. In spleen, we observed a 1.1-fold reduction (p = 0.4) in the

amount of exon 3 containing transcripts, and a 11-fold reduction

(p,0.005) in exon 2 containing transcripts. Assuming NMRD of

the minor but not of the major product, this allows us to estimate

(i) that ,80% of the RNF11 pre-mRNAs skip exon 2, while ,20%

use the exon 2 cryptic splice site, and (ii) that 55% of exon 2

retaining transcripts are being degraded by NMRD. The same

analysis conducted in lymph node reveals a ,2-fold reduction

(p,0.05) in exon 3 containing transcripts, and ,37-fold reduction

(p,0.0005) in exon 2 containing transcripts, corresponding to (i)

,44% of RNF11 pre-mRNAs skipping exon 2 and ,56% using

the exon 2 cryptic splice site, and (ii) ,95% of exon 2 retaining

transcripts being degraded by NMRD (Supporting Information

S1).

Taken together, our findings strongly support the causality of

the c124A.G RNF11 mutation in determining stunted growth in

homozygous GG animals.

Increased juvenile mortality accounts for incongruent
carrier frequency and disease incidence

The ,26% carrier frequency amongst healthy individuals is

incompatible with the number of reported cases of stunted growth.

As an example, ,6% of offspring of known carrier bulls should be

affected, and such high figures were never recorded. We reasoned

that this lower than expected incidence of cases might reflect

elimination of mutant animals either before or after birth.

Embryonic mortality of homozygous mutant fetuses has been

reported for deficiency in uridine monophosphate synthetase

(DUMPS) [9], Complex Vertebral Malformation (CVM) [10,11]

and Brachyspina (BS) (Charlier et al., submitted for publication).

To test these hypotheses we first examined field data and tested

the effect of sire carrier status on (i) ‘‘non return (in oestrus) rate’’

of inseminated cows between 28 and 280 days after insemination,

and (ii) rate of mortality, morbidity and culling of offspring

between birth and 14 months of age [12]. Non-return rates

tended to be slightly decreased when cows were inseminated with

semen from carrier sires (i.e. reproductive failure increased), but

the effect was not significant (p = 0.66). Mortality, morbidity and

Author Summary

Recessive defects in livestock are common, and this is
considered to result from the contraction of the effective
population size that accompanies intense selection for
desired traits, especially when relying heavily on artificial
insemination (as males may concomitantly have a very
large number of offspring). The costs of recessive defects
are assumed to correspond to the loss of the affected
animals. By performing a molecular genetic analysis of
stunted growth in Belgian Blue Cattle (BBC), we highlight
(i) that the economic impact of recessive defects may
outweigh the only loss of affected animals and (ii) that
some genetic defects are common for reasons other than
inbreeding. We first demonstrate that a splice site variant
in the RING finger protein 11 (RNF11) gene accounts for
,40% of cases of stunted growth in BBC. We then show
that a large proportion of animals that are homozygous for
the corresponding RNF11 mutation die at a young age due
to compromised resistance to pathogens. We finally
demonstrate that carriers of the mutation benefit from a
selective advantage of unidentified origin that accounts
for its high frequency in BBC.

RNF11 Splice Site Variant in Cattle
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culling tended to be increased in offspring of carrier sires, but this

effect was not significant either (p = 0.89) (Supporting Informa-

tion S1).

As analysis of field data did not provide conclusive results, we

performed a prospective study. We identified 105 carrier dams in

22 farms that were pregnant following insemination with semen

from known carrier sires. We followed the ensuing 105 calves up to

12 months after birth. The responsible veterinarian (AS) and the

breeders were not aware of the calves’ RNF11 genotype until

completion of the study. Genotypic proportions at birth did not

deviate significantly from Mendelian expectations (AA: 26

( = 24.8%); AG: 56 ( = 53.3%); GG: 23 ( = 21.9%); p = 0.72). All

calves looked normal, and there was no significant effect of RNF11

genotype on weight or height at birth. However, one year after

birth, 10 calves had died and eight had been culled for health-

related reasons. Strikingly, all but one of these were homozygous

Figure 1. Genome-wide haplotype-based association mapping of a growth stunting locus on BTA 3. (A) Manhattan plot for the haplotype-
based genome-wide association study for stunted growth using a model with 20 ancestral haplotypes. Alternating colors (black and grey dots) mark the
limits between autosomes. Inset: frequency of the 20 hidden haplotype states in the 33 cases (red) and the 275 controls (black) at position
BTA3:103,391,968 bp. (B) Genotypes of the 14 cases homozygous for hidden haplotype state 17 for 2,347 BTA3 SNPs. Homozygous genotypes are shown
in orange or yellow and heterozygous genotypes in red. The limit of the homozygous haplotype shared by the 14 cases is highlighted in red. (C) Gene
content of the 3.3 Mb shared interval (19 genes). (D) RNF11 gene model, and representation of the RNF11 c124-2A.G splice site variant.
doi:10.1371/journal.pgen.1002581.g001

Figure 2. Features of animals homozygous for the RNF11 c124-2A.G mutation. Affected (front) and control (back) calves of same age,
illustrating the proportionate growth retardation, close forehand, and hairy head masking a narrow skull (A). Illustration of the hairy head (B), and
normal muscle development (C) of animals homozygous for the RNF11 c124-2A.G variant.
doi:10.1371/journal.pgen.1002581.g002
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mutant GG, while one was AG (p,0.0005) (Figure 4A). While the

AG animal was euthanized with a limb fracture, the nine deceased

GG animals died with severe inflammation (primarily pneumonia)

(Supporting Information S1). The c124-2A.G genotype had a

highly significant (p#0.001) effect on post-natal growth. Indeed,

all surviving GG animals exhibiting stunted development after 6

months (Figure 4B). A contrario, the growth pattern of AG and AA

animals was indistinguishable.

Taken together, our data indicate that as much as one third of

homozygous GG calves die with major inflammation, while all

remaining calves exhibit stunted growth and are hence systemat-

ically culled prematurely.

Selective advantage of heterozygotes may underlie the
high carrier incidence

The 26% carrier frequency amongst healthy BBC animals is

puzzling given the observed purifying selection against GG

animals. This suggests that heterozygotes might benefit from a

selective advantage that would maintain the G allele at high

frequency in the population. Such balanced polymorphism has

been demonstrated for MRC2 loss-of-function mutations causing

Crooked Tail Syndrome in homozygotes, yet increased muscle

mass in carriers [4,5].

To test this hypothesis, we first used field data and examined the

effect of RNF11 c124-2A.G sire carrier status on own and

progeny performances for recorded traits including size, muscu-

larity, type and general appearance [12]. We obtained conflicting

results: carrier status appeared to negatively affect the perceived

quality of sire, yet improve the quality of its offspring (Supporting

Information S1).

As an alternative approach to test for a putative selective

advantage benefitting carriers, we evaluated whether the incidence

of carriers amongst active AI sires was compatible with Mendelian

(0.5:0.5) inheritance of a neutral mutation from the founder bull

Galopeur. Assuming that the c124-2A.G mutation improves

zootechnical performances in heterozygotes, carriers should be

over-represented amongst AI sires related to Galopeur. Two

hundred and six of the 262 BBC AI sires born between 2003

and 2007 were related to Galopeur and 58 ( = 28%) of these proved

to carry the RNF11 c124-2A.G mutation. Using gene dropping in

the known genealogies, we computed the probability that 58 or

more descendants would be carrier in the absence of selection (no

systematic transmission distortion). This probability was 0.0002,

0.0006 and 0.01 assuming a frequency of 0, 0.01 and 0.05 for the

c124-2A.G mutation outside the Galopeur lineage (Figure 5A).

These results suggest that the c124-2A.G mutation indeed

Figure 3. Effect of the c124-2A.G splice site variant on RNF11 transcripts. (A) Gel electrophoresis of RT-PCR products obtained from
mesenteric lymph node from homozygous wild-type (AA) and mutant (GG) animals using primer sets located respectively in exon 1 and 3 (E1–E3) and
exon 1 and 2 (E1–E2). M: molecular weight marker. (B) Sequence analysis and structure of the 190-bp and 360-bp RT-PCR products obtained from an
affected (GG) animal.
doi:10.1371/journal.pgen.1002581.g003
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Figure 4. Survival and growth of 105 calves born from matings between carrier sires and dams. (A) Survival (from birth to 7 months of
age) of calves sorted by c124-2A.G genotype (red: GG, dark blue: AA, light blue: AG) (***: p,0.001). (B) Weight (estimated from heart girth length)
and (C) height at withers (from birth to 7 months of age) of calves sorted by c124-2A.G genotype (red: GG, dark blue: AA, light blue: AG). Regression
lines (black) were fitted separately for affected and non-affected animals.
doi:10.1371/journal.pgen.1002581.g004
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underwent a recent selective sweep in the BBC population,

although the phenotype that is being selected remains unclear.

That 58/206 descendents of Galopeur carry the c124-2A.G

mutation is best explained by assuming that the mutation has

,10% excess probability (i.e. 60%) to be transmitted by a carrier

parent to an AI sire or one of its ancestors (Figure 5B).

Lack of evidence for other major growth-stunting loci
Homozygosity at the RNF11 c124-2A.G mutation accounted

for 14 of the first 33 analyzed cases (i.e. 42%), raising the question

of what caused stunted growth in the others. To address this, we

genotyped the remaining 114 cases for the c124-2A.G mutation.

In agreement with genotypic proportions in the first 33 cases, 47/

114 (41%) were homozygous and 23/114 (20%) heterozygous.

Therefore, carrier frequency amongst non c124-2A.G homozy-

gous cases was 34% (29/86), which does not differ significantly

(p = 0.10) from the frequency of c124-2A.G carriers in the

control cohort (211/829 = 26%). This suggests that the c124-

2A.G mutation is the only common RNF11 mutation involved in

stunted growth in BBC.

To identify putative other loci involved in stunted growth, we

genotyped the remaining 67 non c124-2A.G homozygous cases

with a medium density 50 K SNP array (Illumina), and rescanned

the genome as described before using only non c124-2A.G

homozygous cases (86) and the same control cohort (275). As

expected, there was no evidence for a residual effect of the RNF11

locus. Neither was there any genome-wide significant evidence for

other loci on any one of the 29 autosomes (Supporting Information

S1)

Discussion

We herein demonstrate that a loss-of-function mutation in the

RNF11 gene affects normal growth and disease resistance in calves.

This is the first report of a phenotypic effect associated with RNF11

mutations in any organism, including human and mouse [7].

We postulate that the increased disease susceptibility of

homozygous c124-2A.G calves is related to the demonstrated

role of RNF11 in feedback down-regulation of NF-kB by the A20

complex [7]. Indeed, the nine c124-2A.G homozygous calves

that underwent necropsy were affected by extensive inflammation

of the respiratory tract (eight) or by polyarthritis (one). Of note,

A20 knock-out mice die prematurely from multi-organ inflamma-

tion [13]. The fact that only ,1/3 of homozygous mutant calves

died prematurely is compatible with a defect in the control or

resolution of inflammation. External factors, including pathogens,

may trigger an intendedly salutary innate and/or adaptive

response, that evolves in pathogenic non-resolving inflammation

[14].

The effects on growth may be secondary to hidden episodes of

uncontrolled inflammation, as proposed for A20- and ITCH-

deficient mice and human [13,15,16]. However, the fact that

several of the surviving homozygous c124-2A.G calves appeared

perfectly healthy upon clinical examination, suggest that growth

retardation might be directly related to alternative functions of

RNF11 as modulator of growth factor receptor signaling

(particularly TGF-b and EGFR signaling) and transcriptional

regulation [6]. It is also noteworthy, that RNF11 has been found to

be highly expressed in bone cells during osteogenesis [17].

Calf mortality is an economically important trait. It is generally

considered highly complex and multifactorial, and its heritability is

always very low. It is thus difficult to improve using conventional

selection strategies. We herein demonstrate that genomic ap-

proaches may help dissect such complex phenotypes in sub-

components including some with simple Mendelian determinism

amenable to effective ‘‘marker assisted selection’’. The situation

uncovered in this work is reminiscent of bovine leukocyte

deficiency (BLAD) in Holstein-Friesian [18], an immune deficien-

cy resulting from CD18 deficiency and causing increased

susceptibility to infection in young calves [19].

We provide suggestive evidence that the high incidence of the

RNF11 c124-2A.G mutation in BBC is not only due to drift, but

may be due to the superiority of heterozygotes for unidentified

selection criteria. Such a situation would be reminiscent of

previously described pleiotropic effects on conformation of

mutations in the gene encoding the calcium release channel (CRC) in

pigs (causing malignant hyperthermia and porcine stress syndrome

in homozygotes) [20] and in the MRC2 gene in cattle (causing

Crooked Tail Syndrome in homozygotes) [4,5]. These examples

illustrate some of the issues resulting from the selection of animals

with extreme performances.

Materials and Methods

Ethics statement
Blood samples were collected from sires, cows and calves, by

trained veterinarians following standard procedures and relevant

national guidelines.

Genotyping
Genomic DNA of cases was extracted from 350 ml of blood

using the MagAttract DNA Blood Midi M48 Kit (Qiagen).

Genomic DNA of controls was extracted from frozen semen using

the MagAttract Mini M48 Kit (Qiagen). The 33 cases of the initial

genome scan were genotyped using a custom-made 50 K SNP

array [3]. The 67 cases of the second scan (excluding RNF11 c124-

2A.G homozygotes) were genotyped with the BovineSNP50 v2

DNA analysis BeadChip (Illumina). The 275 control sires were

genotyped with the BovineHD BeadChip (Illumina). SNP

genotyping was conducted using standard procedures at the

GIGA genomics core facility.

Genome-wide haplotype-based association studies
Phasing of the SNP genotypes and assignment of the haplotypes

to a predetermined number of hidden haplotype states was

conducted with PHASEBOOK [21]. Hidden haplotype state-

based association analysis was conducted using GLASCOW

(Zhang et al., submitted for publication). GLASCOW uses

generalized linear models and fits a random hidden haplotype

state effect as well as a random polygenic effect to correct for

population stratification. Locus-specific p-values were determined

from 1,000 permutations assuming a gamma distribution of the

used score test (Zhang et al., submitted for publication). We applied

a conservative Bonferonni correction assuming 50,000 indepen-

dent tests to determine the genome-wide significance thresholds.

Mutation scanning
Coding exons of positional candidate genes were amplified from

genomic DNA of a homozygous case and a healthy control using

standard procedures. The primers used for the RNF11 gene are

listed in the Supporting Information S1. PCR products were

directly sequenced using the Big Dye terminator cycle sequencing

kit (Applied Biosystem, Foster City, CA). Electrophoresis of

purified sequencing reactions was performed on an ABI PRISM

3730 DNA analyzer (PE Applied Biosystems, Forster City, CA).

Multiple sequence traces from affected and wild-type animals were

aligned and compared using the Phred/Phrap/Consed package

(www.genome.washington.edu).

RNF11 Splice Site Variant in Cattle

PLoS Genetics | www.plosgenetics.org 7 March 2012 | Volume 8 | Issue 3 | e1002581



RNF11 Splice Site Variant in Cattle

PLoS Genetics | www.plosgenetics.org 8 March 2012 | Volume 8 | Issue 3 | e1002581



59 exonuclease diagnostic assay of the c124-2A.G RNF11
mutation

A 59 exonuclease assay was developed to genotype the c124-

2A.G RNF11 mutation, using 59-AGG AAG AAA CAA AAG

GAA AAC ATT ACC TAG A-39 and 59-TGT TGG ATG ATA

GAC CGG AAC TG-39 as PCR primers, and 59-ACT TGT TCC

TAA ATT TT-39 (wild type A allele) and 59-TTG TTC CCA

AAT TTT-39 (mutant G allele) as probes (Taqman, Applied

Biosystems, Fosters City, CA). Reactions were carried out on an

ABI7900HT instrument (Applied Biosystems, Fosters City, CA)

using standard procedures.

RT–PCR and cDNA sequencing
Total RNA from RNF11 c124-2A.G AA and GG animals was

extracted from lung, lymph nodes, spleen, skeletal muscle, thymus

and trachea using standard procedures (Trizol, Invitrogen). After

DNase-treatment (Turbo DNA-free, Ambion), cDNA was synthe-

sized using the SuperScript III First-Strand Synthesis SuperMix

(Invitrogen). A cDNA segment was amplified using two RNF11

specific primers sets: one encompassing exon 2 with primers

located in exon 1 and exon 3 (E1–E3) and one encompassing the

exon1-exon2 boundary (E1–E2) (Supporting Information S1).

PCR products were separated by electrophoresis on a 2% agarose

gel containing 0.0001% of SYBR Safe DNA gel stain (Invitrogen)

at 100 volts during 40 min and size was evaluated with

SmartLadder 200 lanes (Eurogentec). The PCR products were

directly sequenced as described above.

Real-time quantitative RT–PCR
Total RNA from RNF11 c124-2A.G AA and GG animals was

extracted from lymph node, spleen as described above. After

DNase-treatment (Turbo DNA-free, Ambion), 500 ng of total RNA

was reverse transcribed in a final volume of 20 ml using

SuperScript III First-Strand Synthesis SuperMix (Invitrogen).

PCR reactions were performed in a final volume of 10 ml

containing 4 ml of 5-fold diluted cDNA (corresponding to 100 ng

of starting total RNA), 1X of ABsolute Blue QPCR SYBRE Green

ROX Mix 2X (Thermo Fischer Scientific), 0.3 mM forward and

reverse primers and nuclease free water. PCR reactions were

performed on an ABI7900HT instrument (Applied Biosystems,

Forster City, CA) under the following conditions: 10 min at 95uC
followed by 40 cycles at 95uC for 15 sec and 60uC for 1 min. Two

primers sets were used to test RNF11 expression and three genes

were included as candidate endogenous controls: (1) Beta-Actin

(ACTB), (2) Ribosomal Protein Large P0 (RPLP0), (3) Tyr-3- &

Trp-5-Monooxygenase Activation Protein Zeta (YWHAZ). The

corresponding primer sequences are given in Supporting Infor-

mation S1. A standard curve with a five point two-fold dilution

series (total RNA = 100, 200, 400, 800 and 1600 ng from lymph

node and spleen from a AA wild-type individual) for each RNF11

primer set was used to determine the amplification efficiency. All

sample/gene combinations were analyzed in triplicate. ACTB and

YWHAZ genes were selected as endogenous controls using

geNorm [22]. Normalized relative RNF11 expression, for exon

2- and exon 3-containing transcripts, in the lymph node and the

spleen of a wild-type AA and a mutant GG animal accounting for

primer efficiency were computed using the qbaseplus software

package (Biogazelle) [23].

Estimating the effect of carrier status for the RNF11 c124-
2A.G mutation on agronomically important traits
measured in the field

The effect of the sire’s RNF11 c124-2A.G genotype on non-

return rate (NRR) of its mates was estimated using a mixed model

including sire’s RNF11 genotype (fixed), year and month at

insemination (fixed), mate’s herd (random), individual animal

effect of the offspring (random) and error. NRR are computed

from the AI information collected by inseminators working with

the Association Wallonne de l’Elevage (AWE; http://www.

awenet.be/) at seven time-points after AI. The analysis was

performed on 479,674 cows mated to 340 AI sires.

The effect of the sire’s RNF11 c124-2A.G genotype on the rate

of mortality, morbidity and culling of its offspring was estimated

using a mixed model including sire’s RNF11 genotype (fixed), calf’s

gender (fixed), year and month of calf’s birth (fixed), mate’s parity

(fixed), calf’s in utero position (fixed; forward or backward), calf’s

herd (random), individual animal effect of the calf (random), and

error. The corresponding phenotypes are collected by AWE

technicians visiting farms, for (i) newborn calves, and (ii) calves

having reached the age of 14 months since last visit. The number

of records for newborn offspring was 317,350 from 332 AI sires,

and for 14 month-old offspring was 126,098 from 288 AI sires.

The effect of the sire’s RNF11 c124-2A.G genotype on its own

zootechnical performances was estimated using a mixed model

including sire’s RNF11 genotype (fixed), sire’s MRC2 genotype

(fixed) [4,5], year and month at scoring (fixed), sire’s body

condition at scoring (fixed), sire’s age at scoring (quadratic

regression), individual animal effect for the sires (random) and

error [24]. Zootechnical performances of AI sires are recorded

between 15 and 56 months of age as 22 linear scores (0–50 score)

that are summarized as indexes evaluating size, muscularity, meaty

type and general appearance [12]. Three hundred and eleven sires

were used in this analysis.

The effect of the sire’s RNF11 c124-2A.G genotype on the

zootechnical performances if its offspring was estimated using a

mixed model including sire’s RNF11 genotype (fixed), sire’s MRC2

genotype (fixed) [4,5], offspring’s gender (fixed), year and month at

scoring (fixed), offspring’s body condition at scoring (fixed),

offspring’s age at scoring (quadratic regression), offspring’s herd

(random), individual animal effect for the offspring (random) and

error [24]. The first data set corresponded to the same five global

scores (cfr. sire’s own performances) measured on 92,475 36-

month-old daughters of 306 sires by AWE technicians. The second

data set corresponded to weight (Kg), size (cm) and conformation

(1–9 score) measured on 95,045 14-month-old offspring of 315

sires.

Covariances between random individual animal effects were

assumed to be proportionate to twice the kinship coefficient

Figure 5. Signature of selection. (A) Frequency distribution (number of simulations out of 10,000) of the number of sires tracing back to the
Galopeur founder (total: 206) that are expected to carry the c124-2A.G mutation assuming that it segregates in the corresponding pedigree
according to Mendelian expectations, and that the frequency of c124-2A.G outside the Gallopeur lineage is 0% (red), 1% (orange), or 5% (yellow).
The dotted vertical marks the actual number of carrier sires (58) amongst the 206 descendants of Galopeur. (B) Distribution of the number of
simulations (out of 10,000) yielding 58 carriers out of 206 descendants of Galopeur (Y-axis), as a function of the rate of transmission of the mutation
from heterozygous carriers (X-axis). Three curves are given corresponding to frequencies of the mutation outside of the Galopeur’s lineage of 0%
(red), 1% (orange), and 5% (yellow). The dotted orange vertical line corresponds to a transmission rate of 62%, maximizing the number of simulations
yielding 58 carriers for a mutation frequency (outside of the Galopeur’s lineage) of 1%.
doi:10.1371/journal.pgen.1002581.g005
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computed from known genealogies. Variance components and

fixed effects were computed using MTDFREML [25].

Supporting Information

Supporting Information S1 Supporting figures and tables.

(PDF)

Acknowledgments

We are grateful to the GIGA Genomics Platform for their technical

assistance, to the breeders for their collaboration, and to the Walloon

Breeding Association (AWE) and the Belgian Blue Beef Herd-Book

(HBBBB) for pedigree, performance, and progeny test data.

Author Contributions

Conceived and designed the experiments: MG CC. Performed the

experiments: AS CF SG NT. Analyzed the data: AS TD CM ZZ MG

CC. Contributed reagents/materials/analysis tools: TD WC. Wrote the

paper: AS MG CC.

References

1. Karim L, Takeda H, Lin L, Druet T, Arias JA, et al. (2011) Variants modulating
the expression of a chromosome domain encompassing PLAG1 influence bovine

stature. Nat Genet 43: 405–413.
2. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, et al. (1997) A

deletion in the bovine myostatin gene causes the double-muscled phenotype in

cattle. Nat Genet 17: 71–74.
3. Charlier C, Coppieters W, Rollin F, Desmecht D, Agerholm JS, et al. (2008)

Highly effective SNP-based association mapping and management of recessive
defects in livestock. Nat Genet 40: 449–454.

4. Fasquelle C, Sartelet A, Li W, Dive M, Tamma N, et al. (2009) Balancing
selection of a frame-shift mutation in the MRC2 gene accounts for the outbreak

of the Crooked Tail Syndrome in Belgian Blue Cattle. PLoS Genet 5: e1000666.

doi:10.1371/journal.pgen.1000666.
5. Sartelet A, Kingbell P, Franklin CK, Fasquelle C, Géron S, et al. (2011) Allelic
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