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Abstract

Objective

Charcot-Marie-Tooth 1A (CMT1A) disease is the most common inherited neuropathy that

lacks of therapy and of molecular markers to assess disease severity. Herein, we have pur-

sued the identification of potential biomarkers in plasma samples and skin biopsies that

could define the phenotype of CMT1A patients at mild (Mi), moderate (Mo) and severe (Se)

stages of disease as assessed by the CMT neuropathy score to contribute to the under-

standing of CMT pathophysiology and eventually inform of the severity of the disease.

Methods

We have used: (i) a high-throughput untargeted metabolomic approach of plasma samples

in a cohort of 42 CMT1A patients and 15 healthy controls (CRL) using ultrahigh liquid chro-

matography coupled to mass spectrometry and (ii) reverse phase protein microarrays to

quantitate the expression of some proteins of energy metabolism and of the antioxidant

response in skin biopsies of a cohort of 70 CMT1A patients and 13 healthy controls.

Results

The metabolomic approach identified 194 metabolites with significant differences among

the four groups (Mi, Mo, Se, CRL) of samples. A multivariate Linear Discriminant Analysis

model using 12 metabolites afforded the correct classification of the samples. These metab-

olites indicate an increase in protein catabolism and the mobilization of membrane lipids
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involved in signaling inflammation with severity of CMT1A. A concurrent depletion of leu-

cine, which is required for the biogenesis of the muscle, is also observed in the patients. Pro-

tein expression in skin biopsies indicates early loss of mitochondrial and antioxidant proteins

in patients’ biopsies.

Conclusion

The findings indicate that CMT1A disease is associated with a metabolic state resembling

inflammation and sarcopenia suggesting that it might represent a potential target to prevent

the nerve and muscle wasting phenotype in these patients. The observed changes in

metabolites could be useful as potential biomarkers of CMT1A disease after appropriate val-

idation in future longitudinal studies.

Introduction

Charcot-Marie-Tooth (CMT) disease, also referred as hereditary motor and sensory neurop-

athy, is the most common group of inherited neuromuscular disorder with a prevalence of

1/2,500 [1]. Currently, mutations in more than seventy genes have been described as causes

of CMT and the list of genes is ever-growing (Neuromuscular Disease Centre, http://

neuromuscular.wustl.edu/index.html). Disease onset is usually in the first two decades and

the symptoms include distal weakness and muscle atrophy, loss of proprioception and pin-

prick sensation [2]. Based on electrophysiological and nerve biopsy findings [2] two major

CMT types can be distinguished dysmyelinating CMT (or CMT1) and axonal CMT (or

CMT2). The most common form of CMT is type 1A (CMT1A), which is due to a 1.4 Mb

duplication of chromosome 17 containing the PMP22 gene [3, 4]. CMT1A constitutes

approximately 50% of CMT cases in most series reported [5–7]. Because of this, the majority

of therapeutic strategies have been designed for CMT1A patients. Ascorbic acid, progester-

one antagonists or recombinant human neuregulin-1 have been investigated as therapies in

rodent models [8–10]. However, and to date, the clinical trials using ascorbic acid in humans

have not shown an effect on disease severity and progression [11, 12] and the need of bio-

markers [13] for assessing CMT disease severity, progression and response to therapy are

urgently required.

Biomarkers for assessing CMT patients include nerve conduction velocities, skin biopsies

[14] and CMT neuropathy scores [15, 16]. Recently, a new magnetization transfer ratio MRI

(magnetic resonance imaging) assay has been reported as biomarker of nerve pathology in

CMT patients that correlates with disability [17] and electrical impedance myography has

been suggested as a potential biomarker for CMT patients [18]. Moreover, the disturbance of

intramuscular water distribution followed by fat accumulation, quantifiable by MRI pattern of

the muscle is also a powerful biomarker of disease progression [19]. However, the current sce-

nario shows that no molecular markers of the disease and effective therapies are available for

CMT patients being the clinical scores the most used tools to assess the evolution of the

disease.

Within the research project TREAT-CMT (http://www.treat-cmt.es/index.php/en), we

have performed a study searching for skin and plasma molecular markers of CMT1A patients.

We have developed a high-throughput untargeted metabolomic approach to identify potential

disease biomarkers unknown so far, in a cohort of 57 plasma samples of CMT1A patients
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(n = 42) and healthy subjects (n = 15). Moreover, reverse phase protein microarrays (RPPmA)

[20, 21] have been used to investigate the expression of proteins of energy metabolism in a

cohort of 83 skin biopsies from CMT1A patients (n = 70) and healthy subjects (n = 13). The

results provide molecular markers of the CMT1A phenotype that deepen in the pathophysiol-

ogy of the disease.

Materials and methods

Patient’s evaluation

Seventy patients with CMT subtype 1A were prospectively evaluated by neurologists at the

Neuromuscular Clinics of the following University Hospitals of Spain: Bellvitge, Barcelona

(n = 37), Virgen del Rocı́o, Sevilla (n = 18), La Fe, Valencia (n = 13) and La Paz, Madrid

(n = 2). Evaluation consisted of a detailed history, a neurological examination and electrophys-

iological studies. Primary clinical outcome was the CMT neuropathy score (second version)

(CMTNSv2) [16].

Human samples

Skin biopsies from seventy patients with clinical and genetic diagnosis of CMT1A were stud-

ied. Patients were classified attending to disease progression into mild (30 biopsies, Mi), mod-

erate (25 biopsies, Mo) and severely (15 biopsies, Se) affected groups by neurological and

clinical examination through CMT neuropathy score (Mild: 0–10; Moderate: 11–20 and

Severe:> 20) at the hospitals involved in the project. Moreover, skin biopsies of thirteen

healthy subjects, approximately matched by age with the moderate CMT1A group were also

collected and studied. Blood samples from 42 of the CMT1A patients (15 Mild; 18 Moderate

and 9 Severe) and from 15 healthy subjects were also collected. Skin biopsies and plasma sam-

ples were obtained in consenting control and CMT1A patients and immediately frozen and

stored at -80˚C until processing. The protocol was approved by the Ethics Committee/Institu-

tional Review Board of the Hospital Universitari Bellvitge, Barcelona (PR184/12), Hospital

Universitario Virgen del Rocı́o, Sevilla (CEI 2012PI/164), Hospital Universitario La Fe, Valen-

cia (CEIB-2011/0537), Hospital Universitario La Paz, Madrid (HULP-PI-1378) and Universi-

dad Autónoma de Madrid (CEI 52–961). Patients gave written informed consent before

biopsy procedure and blood sampling following the Declaration of Helsinki. The samples were

coded for anonymity to protect patient confidentiality.

Metabolite extraction

A total of 57 plasma samples from forty two CMT1A patients suffering from mild (n = 15),

moderate (n = 18) and severe (n = 9) disease and including 15 samples from healthy subjects

were processed. Plasma samples were thawed on ice immediately prior to metabolic extrac-

tion. Metabolites were extracted from the samples (200 μL) by adding 1 mL of cold (-20˚C)

methanol. After vortex-mixing the mixture was incubated at -20˚C for 12 h and centrifuged

at 24,000 x g for 15 min at 4˚C. The supernatant (900 μL) was collected and dried under vac-

uum. The vacuum-dried samples were dissolved in 180 μL of water and directly analyzed by

UHPLC-MS. Quality control (QC) samples for each group of subjects (QCCrl, QCMi, QCMo

and QCSe) were obtained by mixing equal volume of metabolic extracts from each group (i.e.

control, mild, moderate and severe). Then a total QC (QCTotal) was also obtained by mixing

equal volumes of the QC samples obtained for each of the groups (QCCrl, QCMi, QCMo and

QCSe). These pooled samples were injected each 3 samples in order to monitor quality of

Phenotype of Charcot-Marie-Tooth 1A
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analysis and to assist in data mining process. In addition, a mixture of commercial standards

was injected each 5 runs in order to gain reliable data and to assure a correct instrument intra

and inter-day variability. The commercial standard mixture consisted of 50 μM carboxy-

methylcysteine, 10 μM nicotinic acid, 8 μM adenosine, 80 μM benzoic acid, 100 μM N-ben-

zoyltyrosine, 20 μM glutaric acid, 20 μM glucose-cysteine, 20 μM leucine, phenylalanine,

20 μM pantothenic acid and 20 μM methyl-2-aminobenzoic acid, in water. Only standards not

detected in the plasma samples and not overlapping with the metabolic signal from the sam-

ples were evaluated. As a result a final concentration of 2 μM nicotinic acid and 100 μM N-

benzoyltyrosine in the metabolic extracts was selected as internal standards.

Metabolomic analysis

An untargeted or global metabolomic approach (https://www.ebi.ac.uk/training/online/

course/introduction-metabolomics/designing-metabolomics-study/key-stages-

metabolomics-study) was followed with the purpose of determining as many metabolites as

possible without any bias. Metabolomic analyses were performed using a ultra-high perfor-

mance liquid chromatography (UHPLC) system 1290 from Agilent (Agilent Technologies,

Santa Clara, CA, USA) connected to a quadrupole-time-of-flight mass spectrometer (Q/TOF

MS) Agilent 6540 equipped with an orthogonal ESI interface (Agilent Jet Stream, AJS) and

operating in positive ion mode. The instrument was controlled by a PC running the Mass

Hunter Workstation software 4.0 (MH) from Agilent. Reverse-phase (RP) chromatographic

separation was performed using as phase A water with 0.1% formic acid (v/v) and as phase B

acetonitrile with 0.1% formic acid (v/v). The final selected gradient was as follows: 0–30% B

in 0–7 min, 30–100% B in 7–11 min, and 100% B in 11–14 min. The volume of sample

injected was also optimized (2–4 μL) and 2 μL was the only volume of sample that did not sat-

urate the MS detector. Each sample was analyzed in triplicate and three blanks were run

between samples in order to avoid carryover of compounds between runs. MS operation

parameters were the following: capillary voltage, -4000 V; nebulizer pressure, 30 psi; drying

gas flow rate, 10 L/min; gas temperature, 300˚C; skimmer voltage, 45 V; fragmentor voltage

was 125 V in positive mode. TOF MS accurate mass spectra were recorded across the range

of 50–1000 m/z at 1.5 spectra/s. Internal mass calibration of the instrument was carried out

using an AJS ESI source with an automated calibration delivery system. The reference com-

pound solution for internal mass calibration of the Q/TOF mass spectrometer containing

5 μM of purine ([C5H5N4]+ at 121.050873 m/z) and 2.5 μM HP-0921, hexakis (1H,1H,3H-

tetrafluoropropoxy) phosphazine ([C18H19O6N3P3F24]+ at 922.009798 m/z) in acetoni-

trile-water (95:5, v/v) was also from Agilent. External calibration of the TOF MS was carried

out using a commercial mixture from Agilent with next m/z values: 118.086255, 322.048121,

622.028960, 922.009798, 1221.990637 and 1521.971475.

Data analysis and metabolite identification

Raw UHPLC-MS data were extracted and converted to the MS exchange format mzXML

using the Trapper program version 4.3.0 (http://tools.proteomecenter.org/wiki/index.php?

title=Software:trapper). Data processing was performed using R programming language (ver-

sion 3.1.2) and Java. R package XCMS PeakML (http://masspec.scripps.edu/xcms/download.

php) was used for peak detection. It converts three-dimensional LC-MS data (m/z, retention

time and ion intensity) to a readily accessible two-dimensional data matrix as ion peaks (as

pairs of their m/z and retention time) and their respective areas. Then to combine and align

peaks from different samples mzMatch [22] was used. Gapfiller was used for recursive analysis

(settings used for data processing in this work are described in S1 Table). Final filtering of the
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data was then carried out to ensure ions with a high quality: (i) peaks below 3x intensity from

the blanks were removed, (ii) peaks not found in at least a 75% of the samples belonging to the

same group of subjects (i.e. control, mild, moderate and severe groups of subjects) or with a

high variability within the same group (with a value of median/average > 1.5) were removed.

The resulting output data table of high quality time-aligned detected compounds, with their

corresponding retention time, m/z and peak area obtained for each sample, was submitted to

statistical analysis (see S2 Table).

Principal Component Analysis was applied to detect possible outliers in each group of sam-

ples (i.e. control, mild, moderate and severe groups). Once outliers were discarded a Kolmogo-

rov-Smirnov test was applied to statistically evaluate normality by comparing the cumulative

distribution of the data. Then Levene’s test was applied to assess the equality of the variances of

the metabolites in all the groups. Analysis of variance by a parametric one-way ANOVA was

performed to detect the different peak areas averages (p<0.05). A non-parametric analysis of

variance applying a Kruskal-Wallis test was performed to compare the medians of the variables

with heterogeneity in the variances among the four groups (revealed by Levene’s test). A Lin-

ear Discriminant Analysis (LDA), with forward stepwise procedure (with F values set at 4 and

3.9 to enter and to remove variables respectively) was performed to select the significant

variables (p<0.05) most useful in differentiating the four sets of samples. Canonical Variate

Analysis (CVA) was also carried out to obtain a low-dimensional graphical representation of

the samples that separates the groups as much as possible. The predictive power of the LDA

classification method was carried out by using a Leave-One-Out Cross-Validation procedure.

Finally, we examined the differences in the average values corresponding to the LDA selected

variables. STATISTICA (v.9, Statsoft, Tulsa, OK, USA, www.statsoft.com) and SPSS (v.19,

IBM, Chicago, IL, USA, www.spss.com) programs for Windows were used for the statistical

analysis. Tentative identification was carried out for statistically different (p<0.05)

metabolites.

Tentative identification of key metabolites was achieved by matching the obtained accurate

m/z to those published in appropriated databases: KEGG [23], HMDB [24] and Metlin [25]

within a mass accuracy window of 10 ppm (see S2 Table). Molecular Formula Generator algo-

rithm within MassHunter software (Agilent) was used to support the agreement between the

molecular formula generated by the software and the proposed compound from metabolite

database search in terms of mass error (ppm) and isotopic pattern similarity. When isomers

existed for a given formula, metabolite identification was sorted giving preference to metabo-

lites from central metabolic pathways in KEGG, metabolites already found in plasma and

number of databases containing each metabolite.

When available, co-injection of standards with plasma samples was performed to confirm

the identified metabolites. Leucine, lysine, tryptophan, sphingosine-1-phosphate, lyso-phos-

phatidylcholine (18:0), uridine and 2-deoxygalactopyranose, were from Sigma-Aldrich and

urobilinogen was obtained from Santa Cruz Biotechnology (Santa Cruz, USA), and used for

identification purposes.

Preparation of skin extracts

Tissue powder obtained from frozen skin biopsies grinded in a mortar with liquid nitrogen

were extracted with 150 μl of 50 mM Tris-HCl pH 8, containing 100 mM NaCl, 1 mM DTT,

1% (v/v) Triton X100, 0.1% SDS, 0.4 mM EDTA and a cocktail of protease (Roche) and phos-

phatase (Sigma) inhibitors. After protein extraction, samples were centrifuged (15,000 g) at

4˚C for 30 min. The protein concentration in the supernatants was determined with the
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Bradford reagent (Bio-Rad Protein Assay) using BSA as standard. Aliquots of the supernatants

were stored at -80˚C until used.

Printing and processing of reverse phase protein microarrays (RPPmA)

Protein samples from skin biopsies were diluted in PBS to a final protein concentration of

0.75 μg/μl before printing. Serially diluted protein extracts (0–1 μg/μl) derived from HCT116

and OVCAR8 cells were also prepared to asses printing quality and the linear response of

protein recognition by the antibodies used. A solution of BSA and of mouse IgGs (1 μg/μl)

were also prepared for printing as internal negative and positive control, respectively.

Approximately, 1 nl volume of each sample was spotted in duplicate onto nitrocellulose-

coated glass slides (FAST Slides, Scheleicher & Schuell BioScience, Inc.) using a BioOdyssey

Calligrapher MiniArrayer printer (Bio-Rad Laboratories, Inc.) equipped with a solid pin

(MCP310S) at constant humidity of 45% and 10˚C and 16˚C for the plate and chamber,

respectively. Each array was incubated with each antibody independently. The commercial

and/or in-house produced antibodies used in RPPmA were previously validated by western

blotting of fractionated human tissue proteins in SDS-9% PAGE. The antibodies selected

only recognized a single protein band of the expected molecular mass in different human tis-

sues (See S1 Fig). A representative protein microarray illustrating the printing protocol of

skin biopsies developed with antibodies against pyruvate kinase M2 (PKM2) is shown in

S2 Fig.

After printing, arrays were allowed to dry at room temperature for 16 h and further blocked

in PBS-T containing 5% skimmed milk. After, the arrays were incubated overnight at 4˚C with

the indicated concentrations of the following highly specific primary monoclonal antibodies

(mAbs): anti-β-F1-ATPase (1/2,500), anti-PK-M2 (1/150), anti-GAPDH clone 273A-E5

(1:250) and anti-HSP60 clone 17/9-15G1 (1:250) from [26]; anti-IF1 (1/100) from [27]; anti-

LDHA (1/2,500) from [21]; anti-HADHA (1/100), anti-COXII (1/100), anti-NDUFS3 (1/100)

and anti-SOD2 from Abcam; anti-SDHB (1/500) and anti-PDHe (1/200) from Invitrogen;

anti-Core 2 of complex III (1/1,000) from Mitosciences; anti-catalase (1/5,000) and anti-β-

actin (1/5,000) from Sigma-Aldrich; anti-DLP-1 (1/200) from BD Transduction Lab and anti-

G6PDH (1/500) from Thermo Scientific).

After incubation the arrays were washed with PBS-T and further incubated with a donkey

anti-mouse or donkey anti-rabbit secondary antibody conjugated with alexa-488 (Invitrogen)

and processed as previously described [20, 21]. Microarrays were scanned using a Typhoon

9410 scanner (GE Healthcare, Inc.). The mean fluorescent intensity of the spots was quantified

using FIJI software (N.I.H., USA) and converted into arbitrary units of expressed protein/ng

of total protein in the tissue extract using the expression obtained in the linear plot of HCT116

cell line protein.

Other statistical analysis

Statistical analysis was performed by SPSS 23.00. Distribution of metabolic and protein mark-

ers and other categorical variables were contrasted using Kruskal-Wallis and t-test following

evaluation of equality of variances or not with Levine´s test. Person and Spearman correlations

analysis were used for the variables which follow normal and non-normal distribution respec-

tively. Nonparametric receiver operating characteristic (ROC) curves were generated to plot

sensitivity of some of the plasma metabolites against the false-positive rate (1-specificity). The

relative ability of the biomarker in diagnosis was evaluated by calculating the area under the

curve (AUC), and AUCs were compared by Chi-square test. P-values of less than 0.05 were

considered statistically significant.
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Results

Metabolic fingerprint in plasma of CMT1A patients

A representative UHPLC-MS metabolic profile of plasma samples is shown in Fig 1A. After

data processing a total of 3,326 highly confident metabolite signals detected in all the samples

were considered for analysis and the resulting data matrix was normalized and subjected to

statistical analysis. After Principal Component Analysis, one sample in the moderate CMT1A

group that fell out of the 95% confidence ellipse (Fig 1B) was considered outlier and removed

from the statistical analysis. It should be noted that quality control samples (QC) are closely

clustered in the middle of the score plots (Fig 1B), confirming the reliability and quality of the

UHPLC-MS data (Fig 1A). Both parametric and non-parametric methods of univariate analy-

sis showed 194 metabolite signals with significant differences among the groups of samples

(see S2 Table). To select the signals most useful in discriminating the four groups a multivari-

ate Linear Discriminant Analysis was applied revealing 12 metabolites able to correctly classify

all samples. A Canonical Variate Analysis was carried out to obtain a low-dimensional graphi-

cal representation of the results (Fig 1C). The resulting plot showed a clear independent clus-

tering of the four groups of samples (Fig 1C) being the metabolic fingerprints of CMT1A mild

patients and healthy controls those more similar among the four groups of individuals studied

(Fig 1C). The abundance of the 12 metabolites used in the multivariate Linear Discriminant

Analysis model shows that 6 increase whereas 2 decrease in CMT1A patients when compared

to healthy controls (Fig 1D).

As expected, the age and CMTNSvs2 of the CMT1A patients studied in the cohort used for

metabolomic studies increased with progression of the disease (S3 Table). The differences in

plasma values of the 12 metabolic signals selected for Linear Discriminant Analysis of the four

groups of samples are summarized in Fig 2. There are two main trends of variation of the

plasma metabolites: those that increase in content with severity of the disease, such as metabo-

lites 3, 5, 6, 7, 8, 9, and 10; and those whose signals drop with disease severity such as metabo-

lites 2, 4, 11 and 12 (Fig 2). Metabolite 1 escapes this classification (Fig 2).

The identification of the 12 metabolites (Fig 2) was carried out as described in Methods (see

S2 Table for details) and leucine, tryptophan, sphingosine-1-phosphate, lyso-phosphatidylcho-

line (18:0) and urobilinogen confirmed as potential biomarkers of CMT1A disease by co-injec-

tion of the commercially available standards (Fig 3, and see S2 Table for details). Moreover,

lysine, uridine and 2-deoxygalactopyranose (see S2 Table) were also confirmed by co-injection

with appropriate standards (S3 Fig). Severity of CMT disease correlates with an increase in the

age of patients (S3 Table). In this regard, it should be noted that of the twelve metabolites used

in the LDA (Fig 2) only 3-deoxyvitamin D3 significantly correlated with age of the patients; a

finding that was confirmed by calculation of the Partial Correlation Coefficient (PCC) that

measures the association between the three variables.

Interestingly, and with the exception of 6-hydroxysphingosine, the identified metabolites

could be classified into two major groups attending to its trend of variation with severity of the

disease as assessed with the CMTNSvs2 (Fig 2). Those that increase in the severe group corre-

spond to metabolites revealing an enhanced protein catabolism such as urobilinogen and glu-

taminyl-serine (Fig 4) and the mobilization of membrane lipids involved in inflammation,

immune response and quimiotaxis (lysophosphatidylcholine and sphingosine-1-phosphate

(Fig 4). Those that decrease with severity of the disease correspond to metabolites such as leu-

cine that is essential for the biogenesis of the muscle and of palmitic amide, a poorly character-

ized disease marker that might play an anti-apoptotic function (Fig 4). Interestingly, of the 12

metabolites used to develop the LDA, four of them (glutaminyl-serine, sphingosine-1-phos-

phate, tryptophan and leucine) could provide potential biomarkers of the disease as assessed
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PLOS ONE | https://doi.org/10.1371/journal.pone.0178376 June 2, 2017 7 / 19

https://doi.org/10.1371/journal.pone.0178376


Fig 1. Analysis of plasma metabolome in CMT1A patients. (A), Representative UHPLC-MS total ion chromatogram of

plasma samples. (B), Plot in a two-dimensional Cartesian coordinate system, with the axes (principal components, PC)

representing the greatest variations in the data of Control (blue), Mild (red), Moderate (green) and Severe (black) states related

to CMT1A. Three quality control (QC) injections per group are also represented in the plot for the four groups of individuals. 95%

confidence ellipses are also included. Triplicate outliers of one of the samples in the Moderate group fall out of the ellipse. (C),

Phenotype of Charcot-Marie-Tooth 1A
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by their significance in ROC curves (Fig 5), but after approval in longitudinal, interpersonal

and interinstitutional studies [13].

Protein fingerprint of CMT1A skin biopsies

S3 Table summarizes the progressive increase in age and CMTNSvs2 of the cohort of CMT1A

patients studied. The analysis of protein expression in skin biopsies comparing all data from

CMT1A patients to the controls provided significant differences in mitochondrial proteins of

the OXPHOS system (Table 1) which included representative markers of the electron trans-

port chain (NDUFS3 of Complex I, SDH-B of Complex II, Core 2 of Complex III and COXII

Plot of distribution of the plasma samples defined by the two canonical variables (CV1 and CV2) obtained by Canonical Variate

Analysis considering the 12 selected metabolites after forward stepwise Linear Discriminant Analysis. The 95% canonical

ellipses are also included. Control subjects and mild, moderate and severe CMT1A patients are represented by blue circles, red

squares, green diamonds and black triangles, respectively. (D), Histogram showing the content of the 12 metabolites in plasma

samples of healthy (blue, n = 15) and CMT1A patients (yellow, n = 42). The results shown are the mean values ± S.E.M. *,

P<0.05 by Student’s t test.

https://doi.org/10.1371/journal.pone.0178376.g001

Fig 2. Whisker plots showing significant correlations between plasma metabolite levels and severity of the disease in CMT1A patients.

Determination of the plasma levels of the 12 selected metabolites after forward stepwise Linear Discriminant Analysis was carried out by UHPLC-MS and

grouped considering severity of the disease as assessed by the CMT neuropathy score (second version). Healthy subjects (n = 15), Mild (n = 15),

Moderate (n = 18) and Severe (n = 9) groups of CMT1A patients are represented. Identification of the metabolites was achieved by matching the obtained

accurate m/z to those published in appropriated databases (see S2 Table) and when available, by co-elution of commercial standards with the extracted

ion chromatograms of plasma samples (highlighted in red). Box plots represent the lowest, lower quartile, median, upper quartile, and highest

observations of each marker in the different groups. �, outlier values P-value is calculated by analysis of variance; r is the Spearman coefficient.

https://doi.org/10.1371/journal.pone.0178376.g002
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of Complex IV) and oxidative phosphorylation (β-F1-ATPase and IF1). Other mitochondrial

proteins involved in mitochondrial structure (Hsp60) and dynamics (DLP-1), pyruvate metab-

olism (PDHe) and β-oxidation (HADHA) and the antioxidant response (SOD2) were not sig-

nificantly affected (Table 1). Likewise, the expression of proteins of glycolysis (GAPDH,

PK-M2 and LDHA) and of the pentose phosphate pathway (G6PDH) was not affected

(Table 1). Interestingly, the expression of catalase was significantly reduced in skin biopsies of

CMT1A patients (Table 1). Depletion of mitochondrial markers in skin biopsies occurred

early during onset of the disease because for most of the CMT1A down-regulated proteins we

observed that its expression in early stage patients was not different from that at later stages of

the disease (Table 1). It should be noted that some of the down-regulated proteins showed an

enhanced expression at later stages of disease (Table 1). However, Spearman test indicated that

none of the protein markers correlate with disease severity as assessed by CMTNSv2. It should

be noted that peripheral nerves represent a small fraction of skin biopsies. Therefore, the

changes reported in protein expression might be biased toward the abundant skin proteins

missing other relevant nerve proteins for pathogenesis.

Fig 3. Identification of metabolites by co-elution with commercial standards. Extracted ion chromatograms of selected metabolites in plasma

samples (purple lines) and commercial standards (blue lines) are shown. The metabolites are defined by their name, ID number, m/z (M+H), retention

time, Human Metabolome Data Base ID number and molecular formula.

https://doi.org/10.1371/journal.pone.0178376.g003
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Fig 4. Scatter plots showing significant correlations between plasma metabolite levels and severity of

the disease in CMT1A patients. Determination of the plasma levels of the metabolites was carried out by

UHPLC-MS and its levels correlated with severity of the disease as assessed by CMTNSv2. Healthy controls

(blue circles, n = 15), Mild (red squares, n = 15), Moderate (green diamonds, n = 18) and Severe (black triangles,

n = 9) groups of CMT1A patients are represented. Metabolites related to (i) protein catabolism (upper row); (ii)

mobilization of membrane lipids (middle row) and (iii) muscle biogenesis and the anti-apoptotic function (lower

row) are represented. P-value is calculated by analysis of variance; r is the Spearman coefficient.

https://doi.org/10.1371/journal.pone.0178376.g004
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Discussion

The identification of biomarkers to aid the diagnosis and prognosis and eventually predict the

response to treatment is a bottleneck for the innovation in medicine. In the present study, we

utilized a large cohort of CMT1A patients to identify changes in skin proteins and plasma

metabolites that may contribute to the understanding of the molecular basis of the disease and

its severity and could eventually become future biomarkers of the disease [13].

Skin biopsies provide an important tool to the neurologist for the diagnosis of peripheral

nerve disorders [14]. Herein, we have determined the relative expression of proteins involved

Fig 5. Diagnostic performance of metabolic biomarkers. ROC curves were plotted to describe performance characteristics of the indicated

metabolites in the 57 subject cohort. The Area under the curve (AUC), 95% range of the interval of confidence (IC) and P values are indicated.

https://doi.org/10.1371/journal.pone.0178376.g005
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in different metabolic pathways (glycolysis, oxidative phosphorylation, mitochondrial metabo-

lism, structure and dynamics and of the antioxidant system) of skin biopsies of CMT1A

patients, to understand the etiology of the disease and to be added as quantitative molecular

markers to the changes in morphology and density of epidermal nerves and of other immuno-

histochemical studies that inform about the pathogenesis and prognosis of this peripheral neu-

ropathy. If the reduction of epidermal nerve density is a common neuropathic abnormality in

skin biopsies of CMT patients [14] we now show that the early loss of the mitochondrial enzy-

matic machinery involved in the provision of metabolic energy by oxidative phosphorylation

and of ROS handling is also a distinctive feature of skin biopsies of CMT1A patients at early

onset of the disease. This finding is in agreement with a similar observation in peripheral

nerves of the Gadp1 -/- mouse model of CMT disease [28]. Overall, the findings in human

biopsies and in the Gadp1 -/- mice further suggest that the bioenergetic deficit originated by

mitochondrial dysfunction is likely to contribute to the loss of peripheral nerves in CMT1A

disease.

High-throughput metabolomic technologies of plasma metabolites provide accessible and

convenient biomarkers for diagnosis, prognosis and therapeutic intervention in a large num-

ber of human diseases [29, 30]. Herein, we have used liquid chromatography/mass spectrome-

try to detect 3,326 highly confident metabolite signals in the serum of healthy and CMT1A

patients and identify 194 metabolites that reveal significant differences among the groups stud-

ied to examine their relation to CMT1A disease. We find that twelve metabolites allowed the

Table 1. Protein expression in skin biopsies of CMT1A patients.

CMT1A

Protein Markers Healthy TOTAL MILD MODERATE SEVERE

N˚ cases 13 70 30 25 15

Glycolysis GAPDH 0.98 ± 0.13 0.84 ± 0.04 0.95 ± 0.08 0.73 ± 0.07 0.79 ± 0.09

PKM2 0.87 ± 0.13 1.00 ± 0.09 1.29 ± 0.18 0.78 ± 0.07 0.79 ± 0.12

LDHA 1.23 ± 0.14 1.08 ± 0.05 1.15 ± 0.10 1.04 ± 0.08 0.98 ± 0.08

OXPHOS NDUFS3 5.47 ± 1.39 3.46 ± 0.27* 3.29 ± 0.43 3.48 ± 0.41 3.78 ± 0.70

SDHB 3.82 ± 0.86 2.65 ± 0.17* 2.63 ± 0.25 2.70 ± 0.32 2.61 ± 0.38

CORE2 1.50 ± 0.22 1.14 ± 0.06* 1.21 ± 0.11 1.11 ± 0.09 1.03 ± 0.15

COXII 1.78 ± 0.32 1.26 ± 0.07* 1.29 ± 0.10 1.28 ± 0.13 1.16 ± 0.16

βF1 1.19 ± 0.11 0.91 ± 0.05* 0.96 ± 0.09 0.87 ± 0.08 0.87 ± 0.11

IF1 1.96 ± 0.51 1.23 ± 0.11* 1.06 ± 0.17# 1.38 ± 0.21 1.33 ± 0.20

Mit. Structure, Dynamics and Metabolism HSP60 1.30 ± 0.27 0.87 ± 0.08 0.78 ± 0.05# 0.95 ± 0.20 0.91 ± 0.13

PDHe 1.97 ± 0.43 1.56 ± 0.09 1.41 ± 0.13 1.63 ± 0.16 1.74 ± 0.24

HADHA 1.56 ± 0.23 1.38 ± 0.10 1.34 ± 0.18 1.31 ± 0.13 1.55 ± 0.19

DLP1 4.82 ± 1.25 3.32 ± 0.33 2.60 ± 0.49# 3.67 ± 0.46 4.17 ± 0.85¥

Antioxidant System SOD2 12.70 ± 4.07 8.63 ± 0.84 6.40 ± 1.09# 8.56 ± 0.46 13.2 ± 2.45¥

CATALASE 4.96 ± 0.97 3.19 ± 0.25* 2.59 ± 0.32# 3.48 ± 0.48 3.83 ± 0.50¥

Pentose Phosphate Pathway G6PDH 3.78 ± 0.74 2.63 ± 0.25 1.91 ± 0.24# 2.81 ± 0.44 3.79 ± 0.70¥

The relative expression (a.u./ng protein) of relevant proteins involved in glycolysis (GAPDH, PKM2, LDHA), oxidative phosphorylation (OXPHOS, NDUFS3,

SDHB, CORE2, COXII, βF1 and IF1), mitochondrial structure (HSP60), dynamics (DLP1) and metabolism (PDHe, HADHA) and of the antioxidant response

(SOD2, catalase, G6PDH) as determined by reverse phase protein microarrays is shown for the cohort of biopsies studied and grouped in Healthy and

CMT1A patients (total CMT1A cohort and for each of the mild, moderate and severe groups) as assessed by the CMTNSv2. The results shown are the

mean values ± S.E.M.

*, # and ¥, P<0.05 when compared healthy vs CMT1A Total, healthy vs Mild and Mild vs Severe, respectively. The P-value is determined by t-test.

https://doi.org/10.1371/journal.pone.0178376.t001
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discrimination of healthy subjects from affected patients and that the trend of variation and

abundance of these metabolites nicely discriminate mildly, moderately and severely affected

patients, emphasizing their potential as plasma metabolites that could aid the diagnosis and

prognosis of CMT1A patients in future studies. Notably, the identified metabolites are either

up-regulated or down-regulated with severity of the disease. Within the first group of up-regu-

lated ones we find markers of protein catabolism such as the dipeptide glutaminyl-serine, tryp-

tophan, urobilinogen (a marker of the degradation of heme containing proteins) and the

polyamine acetylagmatine, all consistent with an enhanced breakdown of proteins that may be

associated with peripheral nerve and muscle pathology in the patients. The polyamine, which

results from the degradation of arginine, can also participate in CMT1A neuropathy since it

has been reported to inhibit muscle contraction after electrical stimulation [31].

The other group of up-regulated metabolites is comprised by four lipid components

released from biological membranes that are sphingosine-1-phosphate, 6-hydroxysphingosine,

lysophosphatidylcholine and 11-hydroxyeicosatetraenoate glyceryl ester. The ceramide sphin-

gosine-1-phosphate and lysophosphatidylcholine are signaling molecules recognized by spe-

cific plasma membrane G-protein-coupled receptors of the lysophospholipid receptor family

[32]. Sphingosine-1-phosphate signaling is needed for egression of immune T and B cells from

lymphoid organs into the blood and their circulation to inflamed tissues [33]. Lysophosphati-

dylcholine stimulates phagocyte recruitment and phagocytosis of the myelin sheath causing

demyelination and mimicking the effects of multiple sclerosis [34, 35]. Like in the case of the

ceramide, there are studies supporting that manipulating the inflammatory response provides

a benefit in myelin repair in multiple sclerosis [34, 36–38]

The down-regulation of plasma leucine levels in the disease is difficult to rationalize based

on a restriction of its ingestion in the diet of the patients. Leucine, is involved in the induction

of muscle biogenesis [39] and is an independent predictor of muscle protein synthesis [40, 41].

Moreover, and since its plasma concentration does not correlate with the age of the patients,

its downregulation is likely to result from either a diminished unexplained malabsorption of

the essential amino acid and/or because its oxidation is enhanced with severity of the disease.

The oxidation of the essential branched chain amino acid is indicative of a prolonged fasting

and/or endurance exercise [42, 43]. This metabolic phenotype is associated with an enhanced

plasma availability of fatty acids, products of the catabolism of triglycerides and membrane

phospholipids, which favor the plasma accumulation of tryptophan [43–46]. The fate of

the fatty acids liberated by the hydrolysis of membrane phospholipids is its oxidation in mito-

chondrial β-oxidation, which is also the final destiny of the carbon skeletons resulting from the

oxidation of branched chain amino acids. Hence, the enhanced plasma availability of lysopho-

sphatidylcholine and tryptophan and the reduction of plasma leucine support the idea of a

prolonged and unexplained fasting-like metabolic state in severely affected CMT1A patients.

Remarkably, the PROVIDE Study, a recent randomized, double-blind, placebo controlled trial

has stressed the benefit of leucine plus vitamin D3 supplementation on measures of sarcopenia

in older adults [47].

Conclusion

We report significant changes in skin proteins and plasma metabolites that represent molecu-

lar candidates that might become biomarkers of CMT1A disease after appropriate future eval-

uation. The results indicate that an early event of the disease is the loss of mitochondrial

bioenergetic markers in skin biopsies (Fig 6). Moreover, severity of the disease seems to be

associated with a metabolic state resembling inflammation and sarcopenia (Fig 6), what could

partially explain the nerve and muscle wasting phenotype in these patients. Some of the
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markers identified might contribute to monitor the effect of potential therapies in future clini-

cal trials.

Supporting information

S1 Table. Parameters used for data processing. A total of 57,647 signals were detected and

aligned in the plasma samples through data processing by means of R program. The subse-

quent peak filtering process allowed us to detect 3,326 high confident metabolites (plus the sig-

nals corresponding to the 2 internal standards) in all the samples (i.e. 171 replicates from

CMT1A plasma samples and 12 selected replicates from QC samples).

(DOCX)

S2 Table. Spreadsheet of output data. Lists the metabolite signals differentially expressed

among the four groups of samples. All signals are defined by their retention time and a mass-

to-charge (m/z) value. In addition, the 12 metabolites used in the LDA are highlighted in red.

(XLSX)

Fig 6. Summary of the major changes in the expression of skin and plasma metabolites during progression of CMT1A. The loss of muscle and

nerves is shown during severity of the disease as revealed by the CMT neuropathy score v2. The changes in biomarkers are illustrated by row

thicknesses.

https://doi.org/10.1371/journal.pone.0178376.g006
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S3 Table. Clinicopathological parameters of CMT1A patients in metabolomic and proteo-

mic approaches. Number of cases, age and CMT neuropathy score (second version) of each

cohort of patients is indicated for the Total CMT1A cohort and for each mild, moderate and

severe groups studied. The results shown are the mean values ± S.E.M. The P-value is indicated

as assessed by Kruskal-Wallis test.
(DOCX)

S1 Fig. Validation of the antibodies used for application in RPPmA. 20–25 μg of protein

derived from human muscle were fractionated on SDS-PAGE gels, blotted against the indi-

cated antibodies and processed for western blotting. The migration of molecular mass markers

is indicated to the left.

(PPTX)

S2 Fig. Representative reverse phase protein microarrays showing the printing scheme of

skin biopsies. A, Scheme of RPPmA printing processed for anti-PK-M2 is shown magnified.

One nl samples were spotted in duplicate. Black boxed: negative controls of BSA; Blue and pur-

ple boxed: standard curves of HCT116 and OVCAR8 cells; Light blue: mouse IgGs; Green

boxed: tissue samples from control donors; Red boxed: tissue samples from patients. Below are

shown representative RPPmAs processed with other antibodies. B, The plot illustrates the lin-

ear correlation that exists between the fluorescence intensity (arbitrary units, a.u.) and the

amount of PK-M2 in HCT116 cell lysates. Protein concentrations in the biopsies were calcu-

lated according to the fluorescence intensity obtained in the linear plot of HCT116 cells.

(PPTX)

S3 Fig. Identification of metabolites by co-elution with commercial standards. Extracted

ion chromatograms of selected metabolites in plasma samples (purple lines) and commercial

standards (blue lines) are shown. The metabolites are defined by their name, ID number, m/z

(M+H), retention time, Human Metabolome Data Base ID number and molecular formula.

(PPTX)
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