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Circadian rhythms are biological oscillations with a period of ∼24 h. These rhythms

are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the

hypothalamus, the circadian “master clock,” which exactly adjusts clock outputs to

solar time via photic synchronization. At the molecular level, circadian rhythms are

generated by the interaction of positive and negative feedback loops of transcriptional

and translational processes of the so-called “clock genes.” A large number of clock

genes encode numerous proteins that regulate their own transcription and that of other

genes, collectively known as “clock-controlled genes.” In addition to the sleep/wake

cycle, many cellular processes are regulated by circadian rhythms, including synaptic

plasticity in which an exquisite interplay between neurons and glial cells takes place.

In particular, there is compelling evidence suggesting that glial cells participate in and

regulate synaptic plasticity in a circadian fashion, possibly representing the missing

cellular and physiological link between circadian rhythms with learning and cognition

processes. Here we review recent studies in support of this hypothesis, focusing on

the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis.

Keywords: circadian rhythms, clock genes, glial oscillators, learning, memory, plasticity

INTRODUCTION

Most light-sensitive organisms have an internal timekeepingmechanism to anticipate daily changes
associated with the transition of day to night that is commonly known as “circadian clock”. In
1959, Halberg denominated “circadian rhythms” the biological rhythms that have a period of∼24 h
(Halberg, 1959). These rhythms regulate a large number of physiological and behavioral functions
in vertebrates, such as hormone secretion, body temperature, metabolism, and even memory
processes. The sleep-wake cycle is one the most studied rhythms (Schibler and Sassone-Corsi, 2002;
Stratmann and Schibler, 2006; Walker and Stickgold, 2006).

Sleep is a highly conserved process (Hartse, 2011), and several hypotheses support
the notion that sleep supersedes learning and memory, possibly through the control
of synaptic plasticity (Benington and Frank, 2003; Frank and Benington, 2006; Frank,
2011; Fellin et al., 2012; Frank and Cantera, 2014; De Pittà et al., 2016). Synaptic
plasticity refers to the biochemical processes by which synaptic strength changes in an
activity-dependent fashion. These cellular cascades are a combination of post-translational
modifications that change neural activity, and also result in the reshaping of synaptic
terminals (Lohmann and Kessels, 2014). Depending on its temporal course, synaptic plasticity
is distinguished into three classes: (1) short-term plasticity, that occurs in the milliseconds
to minutes range, and includes the modulation of neurotransmitter release, and depends
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on post-translational modifications via phosphorylation,
ubiquitination, and several other molecular processes (Bliss and
Collingridge, 1993; Martin et al., 2000); (2) long-term plasticity,
such as long-term potentiation (LTP) and depression (LTD),
which may last from hours to months and is represented by
cellular changes involving modification of the cellular protein
repertoire that may require changes in transcriptional activity
and are strictly dependent on protein synthesis (Martin et al.,
2000); (3) homeostatic plasticity, which is the result of a variety
of molecular and cellular events that shape neuronal circuits,
continuously occurs in parallel with other plasticity phenomena
and is thought to prevent runaway of neural activity by excessive
excitation (Turrigiano, 2011).

Various studies have shown that disruptions of circadian
rhythms alter synaptic plasticity and thus, learning and memory,
including spatial and place learning and trace fear memory
(Winocur and Hasher, 2004; Van der Zee et al., 2008; Wang
et al., 2009; Jilg et al., 2010; Kondratova et al., 2010). Based
on these studies, it has been suggested that a functional
circadian clock is required for optimal learning and memory
formation and consolidation (Becker-Weimann et al., 2004;
Eckel-Mahan and Storm, 2009). The neural correlates and
the mechanisms underpinning these clocks remain largely
unknown. In the past two decades, the notion that brain
function exclusively relies on neuronal signaling has been
challenged by evidence that glial cells work in coordination
with neurons, to regulate neurotransmission (Araque et al.,
1999). These regulatory events occur through a set of molecular
mechanisms that control neurotransmitter recycling (Danbolt
et al., 2016), energy requirements (Newman et al., 2011; Suzuki
et al., 2011), and eventually sleep homeostasis (Halassa et al.,
2009b). This often involves, but is not limited to, the secretion
of neuroactive molecules (or “gliotransmitters”) in an activity-
dependent manner which target synaptic terminals modulating
synaptic transmission (Bergles et al., 1997; Haydon, 2001; Lin and
Bergles, 2004; Fellin et al., 2006; Perea et al., 2009).

Interestingly, astrocytes which are themost common glial cells
in the cortex, have also been implicated in the circadian control
of synaptic plasticity (Lavialle and Servière, 1993; Du et al.,
2005; Lavialle et al., 2011; Hayashi et al., 2013a,b), suggesting
a possible non-neuronal, glial candidate for the regulation of
circadian rhythms that control learning and memory processes.
This review focuses on this hypothesis, further elaborating on the
possible clinical implications associated with disruptions of glial-
mediated pathways on circadian rhythms related to high brain
function.

CIRCADIAN CLOCKS AND THEIR
MOLECULAR/GENETIC BASES

Mammalian circadian clocks are hierarchically organized by a
“master clock” in the suprachiasmatic nucleus (SCN) of the
anterior hypothalamus. This clock coordinates independent
peripheral clocks (Reppert and Weaver, 2002; Lowrey and
Takahashi, 2004). At the molecular level, all of these clocks are
the result of a translation-based, interconnected feedback loops

in which the transcription factors Brain and Muscle ARNT-Like
Protein 1 (BMAL1) and Circadian Locomotor Output Cycles
Kaput (CLOCK) form heterodimers that regulate the circadian
expression of Cryptochrome (Cry) and Period (Per; Dunlap,
1999; Reppert and Weaver, 2001), whose products lead to the
inhibition of their own transcription. Additionally, an accessory
regulatory loop involves the regulation of Bmal1 transcription by
the coordinated action of the orphan nuclear receptors Reverse
erb α (Rev-erbα, repressor) and Retinoid-related orphan receptor-
α (Rorα, activator) through the binding to the evolutionarily
conserved nucleotide sequence [A/T]A[A/T]NT[A/G]GGTCA
present in the promoter region of Bmal1 (Dunlap, 1999; Harmer
et al., 2001; Reppert and Weaver, 2001; Preitner et al., 2002).

Significantly, a large number of circadian transcription factors
not only regulate their own transcription, but also the expression
of numerous other “clock-controlled genes” (CCGs) (Dunlap,
1999; Reppert and Weaver, 2001) whose protein products are
not essential for the core clock mechanism itself. Among the
genes that are part of the CCGs, various enzymes are included,
like phosphoenolpyruvate carboxykinase, glycogen phosphorylase,
and glucose-6-phosphatase (Panda et al., 2002); ion channels,
like cGMP-gated cation channels, various voltage-gated calcium
and potassium channels, the Na+/K+-ATPase, and a long-
opening cation channel (Ko et al., 2009); peptides, such as
arginine-vasopressin (Avp; Jin et al., 1999) and D element-
binding protein (DBP; Le Martelot et al., 2009). In fact, cells
rhythmically synthesize about 10% of their transcripts, including
those involved in neuronal signaling and synaptic plasticity
(Panda et al., 2002; Lowrey and Takahashi, 2004).

CIRCADIAN CLOCKS, SLEEP, AND THEIR
INVOLVEMENT IN SYNAPTIC PLASTICITY

In recent years, numerous reports of in vitro and in vivo
studies, have suggested an essential functional role of sleep in
synaptic plasticity (Frank, 2011; Fellin et al., 2012). Accordingly,
sleep has been proposed to strengthen, stabilize, or weaken
synapses (Benington and Frank, 2003; Frank and Benington,
2006; Frank and Cantera, 2014). The molecular basis of these
synaptic changes and whether sleep is necessary for their
occurrence remain largely unknown.While sleep is the result of a
combination of circadian rhythms and homeostatic mechanisms
(Frank and Cantera, 2014), a clear causal connection between
circadian clocks, sleep homeostasis, and synaptic plasticity has
not been demonstrated.

In this context, it is noteworthy that the recycling of glutamate
(Glu) is regulated by clock components, strongly suggesting a
functional interplay between circadian rhythms and excitatory
synaptic transmission (Beaulé et al., 2009). In fact, glial glutamate
transporters are regulated by clock genes having a significant
impact in the dynamic, activity-dependent metabolic coupling
of glial cells with glutamatergic neurons. This glia/neuron
interplay is mediated by the glutamate/glutamine cycle and the
astrocyte/neuron/lactate shuttle (Martínez-Lozada and Ortega,
2015). In the same vein, taking into consideration the major
role of Glu as the most abundant excitatory transmitter and its
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role in the molecular models of synaptic plasticity, like LTP and
LTD, it is tempting to speculate that another molecular loop
between clock genes’ expression and glia/neuron coupling via the
glutamatergic tripartite synapses control synaptic plasticity at the
immediate, mediate and long-term ranges (Flores-Méndez et al.,
2016).

GLIAL REGULATION OF SYNAPTIC
PLASTICITY

Astrocytes
Beyond their recognized role in synapse development and
neurodegeneration, astrocytes provide a delicate ensheathment
of synapses in the mature brain (Chao et al., 2002; Theodosis
et al., 2008). It is well-established that the degree of astrocytic
ensheathing greatly changes with the brain area, hinting local
specialization. In the hippocampus for example, a single astrocyte
is in close proximity to few hundreds dendrites of different
neurons, but can ensheathe up to several hundred thousands
synapses (Bushong et al., 2002; Halassa et al., 2007; Agulhon
et al., 2008). Such morphological arrangement provides the
structural substrate for tight functional interactions between
astrocytes and neurons (Saab et al., 2012; Bernardinelli et al.,
2014).

Astrocytes are also recognized for their role in clearance
of neurotransmitters, such as Glu and gamma-aminobutyric
acid (GABA), from the synaptic cleft. Perisynaptic astrocytes
processes are indeed enriched in transporters that guarantee
rapid and efficient removal of the released neurotransmitters
(Anderson and Swanson, 2000; Conti et al., 2004). Interestingly,
the regulation of the kinetics and the extent of neurotransmitter
clearance by astrocytes have been related to synaptic plasticity
insofar as they both affect the degree of postsynaptic activation
and desensitization (Tzingounis and Wadiche, 2007). Moreover,
through the release of a variety of neuroactive molecules, such
as Glu, D-serine, adenosine triphosphate (ATP), adenosine,
GABA, tumor necrosis factor-α (TNFα), prostaglandins,
proteins and peptides, astrocytes are capable of regulating
synaptic transmission and plasticity (Halassa and Haydon,
2010; Araque et al., 2014). These neuroactive molecules activate
extrasynaptic metabotropic and ionotropic receptors, modifying
neurotransmitter release and regulating short-term plasticity
and synaptic efficacy (Parpura et al., 1994; Araque et al., 1998a,b,
2014; Halassa et al., 2009a; Halassa and Haydon, 2010).

Increasing evidence indicates that astrocytes could be involved
in the synchronization of cortical firing. Cortical circuits for
sensory integration are known to display transient synchrony of
neuronal ensembles (Harris et al., 2003; Haider and McCormick,
2009). The hallmark of this synchronized activity is the
alternation of UP states—i.e., episodes of persistent neuronal
firing lasting fewmilliseconds—andDOWN states—i.e., episodes
of neuronal hyperpolarization (Steriade et al., 2001; Brecht and
Sakmann, 2002; Cossart et al., 2003; Kenet et al., 2003). UP
and DOWN states are common in a wide range of conditions,
including quiescent wakefulness (Gentet et al., 2010), anesthesia
(Steriade et al., 1993; Ramaswamy and Muller, 2015), and sleep

itself (Massimini and Amzica, 2001). Moreover, astrocytes have
been implicated in UP state genesis through the release of D-
serine, adenosine and ATP (Fellin et al., 2009, 2012; Halassa
et al., 2009b; Poskanzer and Yuste, 2011, 2016). Interestingly,
gliotransmission has been proposed to operate on different time
scales (Fellin et al., 2012). According to the Hill and Tononi’s
model of sleep and in agreement with the modulation cortical UP
and DOWN states, Fellin and colleagues have demonstrated that
the depolarizing effect of NMDA receptors currents preserves
the UP state (Hill and Tononi, 2004; Fellin et al., 2012). Such
a role for NMDA receptors is thought to be dependent on the
availability of glia-released D-serine (Fellin et al., 2012), again
demonstrating a prominent role of glia/neuron coupling.

Oligodendrocytes
Oligodendrocytes projections wrap neuronal axons forming the
myelin sheaths in the central nervous system (CNS). These
myelin sheaths insulate the fibers, and help them to carry the
nerve impulses. Interestingly, myelin can influence conduction
velocity of the electrical impulse by regulating the axon diameter,
thickness of the myelin sheath, the number and spacing of nodes
of Ranvier, and nodal structure and molecular composition of
ion channels in the node and paranodal region (Berthold et al.,
1983; Wurtz and Ellisman, 1986; Baker and Stryker, 1990; Carr
and Konishi, 1990; Dupree et al., 2004). Taking this into a
consideration, it has been shown that myelin specific proteins,
including Nogo-A (Chen et al., 2000; GrandPré et al., 2000),
myelin-associated glycoprotein (MAG; McKerracher et al., 1994)
and oligodendrocyte-myelin glycoprotein (OMgp; Wang et al.,
2002; Huang et al., 2005), inhibit directly axon sprouting and
synaptogenesis and constrain nervous system plasticity. This
finding indicates the participation ofmyelin in learning, memory,
and cognition.

Microglia
These glial cells are part of the brain’s immune system and
are mainly involved in the phagocytosis of foreign matter and
cellular wastes of the CNS (Aloisi, 2001). Moreover, during
postnatal development and adaptation to novel environments,
microglia has a critical role in synaptic remodeling through
the elimination of synapses and axon terminals. Additionally,
increasing evidence points out that microglia could regulate
synaptic plasticity and neurotransmission through the release
of gliotransmitters (Batchelor et al., 1999, 2002; Zhong et al.,
2010; Harry and Kraft, 2012; Sierra et al., 2013), as well as
an increase hippocampal LTP and NMDA receptor-mediated
responses via the secretion of glycine (Thomson et al., 1989; Abe
et al., 1990; Hayashi et al., 2006). During neuroinflammation,
microglia is capable to regulate excitatory neurotransmission by
the rapid production of small amounts of ATP, that in turn,
recruit astrocytes to augment ATP formation and Glu exocytosis
enhancing synaptic transmission via metabotropic Glu receptors
(Pascual et al., 2012). In fact, several reports reveal that some of
the established astrocytic functions are regulated by the upstream
activation of microglia (Ben Achour and Pascual, 2010; Pascual
et al., 2012).
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CIRCADIAN MODULATION OF THE
SYNAPTIC PLASTICITY IN GLIAL CELLS

Since 1978, it has been demonstrated that diverse cognitive
processes are regulated by the circadian clocks in a phase-specific
manner (Monk and Folkard, 1978). Particularly, in long-term
memories generated in diverse learning paradigms, a role for the
endogenous circadian clock has been reported both in vertebrates
and invertebrates (Rudy and Pugh, 1998; Valentinuzzi et al., 2004;
Rawashdeh et al., 2007). However, the circadian modulation of
short-term memory formation has been almost impossible to
prove. In this section, we summarize the evidence that involves
different glial cells in processes of synaptic plasticity regulated by
circadian generators.

Astrocytes
Gliotransmission is the process by which astrocytes interact with
nearby neurons via the release of transmitters, like ATP and Glu
(Haydon, 2001; Perea et al., 2009; Parpura and Zorec, 2010).
Remarkably, ATP has been linked to modulation of LTP but
also of synaptic depression (Gordon et al., 2005; Pascual et al.,
2005; Bains and Oliet, 2007). In vivo, an astrocyte-dependent
rhythmic ATP release is present in the SCN. Although the
mechanisms responsible for these ATP oscillations are unknown,
calcium-dependent signaling seems to be involved (Womac
et al., 2009). Subsequently, it was shown that astrocytes display
daily extracellular ATP oscillations that depend on the clock
genes (Clock, Per, and Bmal1) and in inositol triphosphate (IP3)
signaling, indicating that extracellular ATP levels increase at a
specific time of day and suggest a clock-induced increase in
energy metabolism and glial activity, which participate in sleep-
wake changes in the brain and in control synaptic transmission
(Marpegan et al., 2011).

To date, there is no report demonstrating that the circadian
clock regulates Glu release. In contrast, accumulating evidence
indicates that the glutamate/aspartate transporter (Glast) gene
expression and protein levels exhibit a diurnal rhythm in a
light/dark 12/12 h cycle (Spanagel et al., 2005). These findings
are consistent with the absence of rhythmicity of GLAST in
the Per2 mutant mice, pointing out the presence of a circadian
control (Spanagel et al., 2005). Later on, using cultured cortical
astrocytes from Clock mutant animals, it was observed a marked
decrease in Glast mRNA and protein levels, proposing that glial
Glu uptake activity is a function of the clock genes: Clock, Npas2,
and Per2 (Beaulé et al., 2009). Specifically, the dependence related
to CLOCK and NPAS2 may be due to their involvement in
Glast transcription, or in GLAST stability and/or localization
(Danbolt, 2001). It is important to mention that no conclusive
evidence has been shown for a circadian-dependent change in
Glu uptake, suggesting a non-circadian role for clock proteins in
Glast transcription or Glast mRNA translation and/or stability
(Beaulé et al., 2009). However, it is clear that the regulation
and precise function of this transporter is very important
to guarantee an efficient glutamatergic neurotransmission. A
failure in synaptic Glu clearance is neurotoxic due to a
hyperactivation of postsynaptic Glu receptors resulting in the
phenomena known as excitotoxicity, which is implicated in

most of neurodegenerative diseases (McEntee and Crook, 1993;
Domingues et al., 2010; Gegelashvili and Bjerrum, 2014).

In the adult brain, the distribution of the specific astrocyte
marker, glial fibrillary acidic protein (GFAP), has been reported
to peak during daily rhythms in the SCN (Lavialle and Servière,
1993). Furthermore, it has been demonstrated that this peak
also prevails in constant darkness (Lavialle and Servière, 1993;
Moriya et al., 2000), strongly suggesting that these rhythms are
essential and independent of environmental light. Although the
function of circadian fluctuations of GFAP immunoreactivity
is unknown, it has been observed that mice lacking the gfap
gene show reduced eyeblink training and impaired LTD in the
cerebellum (Shibuki et al., 1996), suggesting that this protein
plays a role in the regulation of neuronal functions.

CNS excitatory synapses are extremely dynamic structures
that show stabilization in response to learning and memory
process. These synapses are surrounded by intricate astrocytic
processes denominated perisynaptic astrocytic processes (PAPs;
Iino et al., 2001; Hirrlinger et al., 2004; Nishida and Okabe, 2007).
It has been described in primary cultured astrocytes that ezrin
(an actin-binding protein) is required for filopodia formation
and motility of PAPs, such motility can be induced by Glu
via activation of metabotropic Glu receptors 3 and 5 (Lavialle
et al., 2011). Moreover, changes in glutamatergic circadian
activity in the hamster SCN are in synchrony with changes in
ezrin immunoreactivity which is consistent with Glu-induced
perisynaptic glial motility (Lavialle et al., 2011). These results
suggest that ezrin is essential for Glu-induced PAPs plasticity that
could be regulated by circadian system.

On the other hand, the brain fatty-acid binding protein
(FABP7) localizes in astrocytes and neuronal cell precursors
in the mature brain, and presents a high binding affinity to
long chain fatty acids whose effects on brain function include
development, emotion, learning, and memory (Yamamoto et al.,
1987; Jensen et al., 1996; Wainwright et al., 1997; Moriguchi
et al., 2000; Takeuchi et al., 2003). Gerstner and colleagues
demonstrated in adult murine brain that levels of Fabp7 mRNA
oscillate over a 24 h period in brain areas that participate in daily
activity and sleep like the hypothalamus, the tuberomammilary
nucleus, the pons and the locus coeruleus. In these areas, Fabp7
diminish in the dark phase and increase instead in the light
phase (Gerstner et al., 2006, 2008). In contrast with its mRNA
levels, FABP7 levels are higher during the dark phase (Gerstner
et al., 2008), indicating that expression of this protein is delayed
by 12 h with regards to its mRNA. More recently, the same
group demonstrated that FABP7 is specifically augmented in
the perisynaptic compartment of fine astrocytic processes that
surround synapses. Furthermore, CPEB-mediated cytoplasmic
polyadenylation controls the diurnally regulated Fabp7 mRNA
levels (Gerstner et al., 2012). Accordingly, in plasticity terms,
targeting of Fabp7 and CPEB-mediated polyadenylation could
participate in controlling astrocytic process extension, although
it is unknown if variations in synaptic plasticity and/or neuronal
activity modify polyadenylation and trafficking of Fabp7 mRNA
resulting in morphological modifications of the astrocytic
processes (Gerstner et al., 2012). In addition, variations in
cycle-dependent memory formation and synaptic plasticity could
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regulate the circadian variations in subcellular trafficking and
localization of Fabp7 mRNA in hippocampal tripartite synapses
(Gerstner et al., 2009, 2012).

Oligodendrocytes
To date, there is no evidence that oligodendrocytes have an
internal circadian clock; however, it has been reported that
oligodendrocytes precursor cells (OPCs) proliferation in the
hippocampus could be regulated by clock genes (Matsumoto
et al., 2011). It should be noted that OPCs proliferation itself
could modulate the synaptic plasticity of the hippocampus in
response to neuronal activity, thus circadian proliferation of
these cells could regulate hippocampal function. Particularly, the
OPCs give rise to mature oligodendrocytes, and are thought
to be a constitutive reservoir of oligodendrocytes that replace
damaged myelin (Levine et al., 1993) or add de novomyelination
(McCarthy and Leblond, 1988). Interestingly, myelin proteolipid
protein (plp), a myelin-specific gene, is regulated by Clock (Du
et al., 2005), suggesting that the circadian clock controls myelin
formation.

Microglia
Microglial cells constantly retract and extend their processes to
sense their local environment contributing to the maintenance
of healthy neuronal circuits (Kirchhoff, 2013). There is evidence
that an intrinsic molecular clock exists in cortical microglia
which controls diurnal morphological changes of its processes,
and whereby these cells regulate the sleep-wake cycle-dependent
changes in synaptic strength (Hayashi et al., 2013a,b). In line
with these findings, it has been reported that the microglia-
specific lysosomal cysteine protease Cathepsin S (CatS) exhibits
a circadian expression in cortical microglia. The expression
of CatS is involved in diurnal variations of synaptic strength
in cortical neurons via the proteolytic modification of the
perineuronal environment. However, disruptions in CatS lead
to hyperlocomotor activity and to the deletion of the diurnal
variations in spine density and synaptic activity of these
cortical neurons as a consequence of the failure to downscale
synaptic strength during sleep (Hayashi et al., 2013a). Since
downscaling of synaptic strength is required for the acquisition
and consolidation of novel information upon awakening, it is
evident that dysfunction of the microglial intrinsic circadian
clock is involved in neuropsychiatric disorders based on sleep
disturbance, including depression and cognitive impairment
(Bhattacharjee, 2007; Hayashi et al., 2014).

On the other hand, microglial cells express ATP receptors
of the P2X (P2XR, ligand-gated ion-channel receptor) and P2Y
subtypes (P2YR, G protein-coupled receptor). ATP released by
glial cells during neuronal activity is then, capable to influence
synaptic transmission. In fact in microglial cells, ATP increases
the number their branch points, extension of their processes and
morphological complexity (Fontainhas et al., 2011). Specifically,
it has been demonstrated that the degree of microglial process
extension is controlled by microglial P2Y12Rs (Haynes et al.,
2006). Moreover, Hayashi and colleagues reported that microglial
P2Y12Rs present circadian oscillations regardless that microglia
would be isolated under constant darkness conditions (Hayashi

et al., 2013b). Interestingly, inhibition of these purinergic
receptors disrupts the rhythmic patterns of synaptic strength
or spine density, while upregulated P2Y12Rs during the dark
phase results in extension of the microglial processes that are
partially retracted during the light phase resulting in a decrease
of synaptic strength or spine density (Hayashi et al., 2013b). In
the same fashion of CatS disruptions, dysfunctions in microglia-
synapse interactions participate in neuropsychiatric disorders
(Bhattacharjee, 2007; Hayashi et al., 2014).

Concerning P2X purinergic receptors, Nakazato and
coworkers demonstrated that ATP selectively promotes the
expression of the protein and mRNA of Per1 through the
activation of P2X7R in microglial cells (Nakazato et al., 2011).
While the outcome of this upregulation is not completely clear,
it has been reported that Per is not only crucial for long-term
memory formation (LTM), but overexpression of this gene also
enhances memory formation (Sakai et al., 2004). Taken together
these evidences suggest that Per has an important function in the
regulation of circadian synaptic plasticity in microglia.

Additionally, several reports indicate that ATP promotes
microglial cells to secrete several signaling molecules, like
interleukin-1 beta (IL-1β), TNFα, and plasminogen (Inoue et al.,
1998; Hide et al., 2000; Sanz and Di Virgilio, 2000; Suzuki
et al., 2004); which are involved in the modulation of synaptic
transmission and plasticity (Ikegaya et al., 2003; Becker et al.,
2013; Liu et al., 2014). Finally, it should be noted that microglia
display rhythmic fluctuations in the gene expression of these
mediators (Fonken et al., 2015).

CLINICAL IMPLICATIONS

Although synaptic dysfunction is the cellular basis of most
mental illnesses, disturbance of the circadian clock system and
dysfunctions of glial cells are likely to be involved in diverse
brain pathologies. Up to now, only few studies, summarized
in Table 1, provide a link between brain disorders, circadian
rhythm dysfunction and glial physiology. For example, a study
using Per2Brdm1 mutant mice demonstrated that a nonfunctional
Per2 results in a hyperglutamatergic state due to a reduced
GLAST expression and as a consequence, Glu uptake by astrocyte
is diminished (Spanagel et al., 2005). Accordingly, one could
expect that a reduction of astrocytic Glu uptake would be related
to severe pathophysiological implications as shown in several
disease models, including multiple sclerosis, Alzheimer’s, and
Huntington diseases (Domingues et al., 2010). Additionally,
several studies related to proteins that are involved in the
regulation of the astrocytic processes extension that surround
synapses, like ezrin and FABP7, have shown that dysfunctions in
these proteins lead to impairment in processes, like development,
learning, memory, and emotion (Lavialle et al., 2011; Gerstner
et al., 2012).

The fact that microglia exhibits circadian rhythmicity, such
as oscillating expression patterns of clock genes that regulate
the expression of P2Y12R and of the CatS protease suggests that
alteration of these two factors disrupts the rhythmic patterns
of synaptic strength and spine density (Hayashi et al., 2013a,b).
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TABLE 1 | Clock-controlled genes (CCG) and their implications in brain

pathologies.

CCG Preparation Pathological implications References

ASTROCYTES

ATP Cortical

astrocyte

cultures

Disruptions in sleep-wake

changes in the brain and in

control synaptic transmission.

Marpegan et al.,

2011

GLAST Per2 mutant

mice

Dysregulation in the Glu uptake

process.

Spanagel et al.,

2005

GFAP GFAP mutant

mice

Impaired LTD in the cerebellum,

as well as reduced eyeblink

conditioning.

Shibuki et al.,

1996

Ezrin Primary

astrocytes

cultures

Alterations in the Glu-induced

PAPs plasticity.

Lavialle et al.,

2011

FABP7 Primary mouse

astrocyte culture

Dysregulation of astrocytic

processes extension.

Gerstner et al.,

2012

OLIGODENDROCYTES

OPCs Mouse

hippocampus

slices

Alterations in synaptic plasticity

for the hippocampal function.

Matsumoto

et al., 2011

MICROGLIA

CatS CatS−/− mice Neurological disorders by

disruption of the circadian

oscillation patterns of synaptic

strength and spine density in

cortical neurons.

Hayashi et al.,

2013a

P2Y12R Cortical

microglia

cultures

Neurological disorders by

disruption of the rhythmic

patterns of synaptic strength or

spine density.

Hayashi et al.,

2013b

P2X7R Cultured murine

microglia and

BV-2 cells

Downregulates Per1 mRNA

expression.

Nakazato et al.,

2011

Reduces the number of

processes in microglial cells as a

result of cellular activation.

ATP, Adenosine triphosphate; CatS, cathepsin S; FABP7, brain-type fatty acid binding

protein; GFAP, glial fibrillary acidic protein; GLAST, Glu/aspartate transporter; LTD,

long-term depression; OPCs, oligodendrocytes precursor cells; P2X7R, P2X7 receptor;

P2Y12R, P2Y12 receptor; PAPs, perisynaptic astrocytic processes.

In this context, healthy brain synaptic homeostasis depends
on microglia-synapse interactions controlled by the intrinsic
microglial clock, so the dysfunction of this clock most probably

leads to neuropsychiatric disorders, like depression and cognitive
deficits (Bhattacharjee, 2007; Hayashi et al., 2014).

Finally, it has been demonstrated that sleep disturbances are
involved with multiple negative effects on human physiology,
including neuronal dysfunction (Joo et al., 2013), mood
disturbances (Dinges et al., 1997), cognitive impairments (Lo
et al., 2012), and disruption to circadian rhythmicity (Möller-
Levet et al., 2013).

CONCLUSIONS

Glial cells have long been regarded as simple supportive cells
of neuronal function. However, in recent years, several reports
have demonstrated the involvement glial cells in diverse processes
required for proper brain function, including contribution to the
regulation of the synaptic plasticity. Taking into consideration
that clock genes modify glial Glu transporters and, by these
means, control the strength and continuity of the major
excitatory system, their role in higher brain functions is likely of
a high relevance. Accordingly, specific alterations of the circadian
system are related to various diseases in which glutamatergic
transmission is impaired. Additionally, dysfunction of astrocyte-
neuron signaling plays a critical role in the pathology of most
of the neurodegenerative diseases, such as Alzheimer, Parkinson,
andHuntington. Altogether, these findings make it clear that glial
cells are an important tool to understand the circadian regulation
of synaptic plasticity, both in the short and in the long terms.
Certainly, characterization of the activity-dependent and clock-
dependent changes in glial proteins repertoire will provide a
major input to our understanding of the pivotal role of glial cells
in higher brain functions.
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