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Abstract

ST266 is the biological secretome of cultured Amnion-derived Multipotent Progenitor cells

containing multiple growth factors and cytokines. While intranasally-administered ST266

improves the phenotype in experimental optic neuritis, specific ST266 components mediat-

ing these effects are not known. We compared the effects of ST266 with and without

removal of large molecular weight proteins both in vitro and in the multiple sclerosis model

experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice. Mice were treated

daily with intranasal vehicle, ST266 or lower molecular weight fraction of ST266. Retinal

ganglion cells were counted in isolated retinas, and optic nerves were assessed for inflam-

mation and demyelination. ST266 treatment significantly improved retinal ganglion cell sur-

vival and reduced optic nerve demyelination in EAE mice. The lower molecular weight

ST266 fraction significantly improved optic nerve demyelination, but only showed a trend

towards improved retinal ganglion cell survival. ST266 fractions below 50kDa increased

Schwann cell proliferation in vitro, but were less effective than non-fractionated ST266.

Demyelination attenuation was partially associated with the lower molecular weight ST266

fraction, but removal of higher molecular weight biomolecules from ST266 diminishes its

neuroprotective effects, suggesting at least some high molecular weight proteins play a role

in ST266-mediated neuroprotection.

Introduction

Acute demyelinating optic neuritis is the most common presenting symptom of multiple scle-

rosis (MS), a debilitating demyelinating disease of the central nervous system and leading

cause of neurologic disability in young adults [1]. Corticosteroids—a commonly used therapy

for optic neuritis—can potentially accelerate visual recovery, but does not meaningfully alter

the final visual outcome, with approximately 60% of patients developing some permanent

visual deficits, including 40% of affected eyes which do not return to baseline visual acuity [2].

Novel interventions are needed to improve morbidity in these patients.
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Recent work has shown therapeutic potential for ST266 (formerly ACCS, Amnion-derived

Cellular Cytokine Solution) [3–7], a biologic therapy containing secreted products from

human placenta Amnion-derived Multipotent Progenitor (AMP) cells. ST266 contains hun-

dreds of biomolecules, including numerous growth factors and cytokines and other common

components of known anti-inflammatory and anti-apoptotic pathways [3].

Intranasally-delivered ST266 protects against vision loss, preserves retinal ganglion cells

(RGCs), and decreases inflammation and demyelination of the optic nerve in the experimental

autoimmune encephalomyelitis (EAE) mouse model of MS [4, 6]. These effects are selective

for EAE optic neuritis, with the highest concentrations of ST266 proteins accumulating prefer-

entially in the eye and optic nerve, with no effects observed in suppressing EAE lesions in the

spinal cords of the same mice [4]. Daily intranasally-delivered ST266 also exerts similar neuro-

protective effects in a model of traumatic optic neuropathy [6].

The mechanism by which ST266 decreases demyelination and promotes neuronal survival

is not fully understood but is likely multifactorial and is being actively investigated. While the

total ST266 secreted protein concentration from the AMP cells is in the microgram per ml

range, individual components are only present in pg to ng per ml quantities [7]. Liquid chro-

matography—mass spectrometry studies indicate that there are hundreds of cytokines and

growth factors in ST266. Therefore, it is difficult to specifically identify which individual fac-

tors are necessary to promote neuroprotection. Evaluation of ST266 molecular weight frac-

tions might facilitate further understanding of the relative role of some of the factors found in

this biologic therapy. One consideration in the formulation of ST266 is the requirement for

large molecular weight proteins. AMP cells that secrete ST266 are cultured in proprietary

STM100 growth media containing human serum albumin (66.5 kDa) which acts as a stabilizer

that prevents protein aggregation and adsorption of cytokines and growth factors to plastic

containers and pipettors [8]. While albumin is not expected to play a significant role in neuro-

protection, the potential role of other high molecular weight molecules in ST266-mediated

neuroprotective effects is unknown.

To examine the relative role of large and presumably inert proteins such as albumin as well

as higher molecular weight growth factors in the neuroprotective and myelin-protective effects

mediated by ST266 in optic neuritis, we generated a lower molecular weight fraction of ST266

in which proteins larger than 50 kDa were excluded. Effects of this less than 50 kDa ST266

fraction were compared to full composition ST266 in a standardized in vitro cell proliferation

assay as well as the mouse EAE model of optic neuritis.

Materials and methods

Animals/Ethics statement

Female C57BL/6J mice were purchased from the Jackson Laboratory (Bar Harbor, ME, USA).

All experiments in this study adhered to the Association for Research in Vision and Ophthal-

mology Statement for the Use of Animals in Ophthalmic and Vision Research and were com-

pliant with the University of Pennsylvania Institutional Animal Care and Use Committee

guidelines and policies. All animal studies and procedures reported in this manuscript were

reviewed by the University of Pennsylvania Institutional Animal Care and Use Committee,

who specifically approved these studies as the University of Pennsylvania Institutional Animal

Care and Use Committee protocol #804701.

ST266 fractions

Filtrates of ST266 were prepared using Amicon Ultra-15 filters (50 kDa Cat#:UFC905024 and

30 kDa Cat#:UFC903024; Millipore Sigma, St. Louis, MO). The centrifuge (Sorvall Legend RT)
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was pre-cooled for 4˚C and set to 4,000 g. For each filter, depending on the molecular weight

cut off, spin time was optimized following manufacturer instructions. Filters were first washed

with 15 mL Water for Injection (WFI) to remove potential residual compounds following

manufacture. Water was removed, and samples loaded into the filter.

Schwann cell proliferation assay

For Schwann cell proliferation assay, SW10 Mouse Schwann Cells (Cat# CRL-2766; ATCC,

Manassas, VA) were seeded in 96-well tissue culture treated plates and cultured in normal

growth media (NGM), containing Dulbecco’s Modified Eagle Medium (DMEM; Cat# 11054–

020, Thermo Fisher Scientific, Waltham, MA), GlutaMAX (Cat# 35050061) and 10% FBS

(HyClone Cat# SH30071.01, GE Healthcare, Chicago, IL), for a fixed amount of time at 37˚C

and 5% CO2. When acclimated, NGM media was replaced by minimal starvation medium for

24-hours and subsequently replaced by one of the treatment medias: NGM, Iscove’s Modified

Dulbecco’s Media (IMDM; growth under minimal conditions), STM100 (proprietary base

medium for culturing human placental AMP cells), ST266 or a filtrate fraction of ST266 below

the molecular weight cut-off of either 50 kDa or 30 kDa.

After 24-hours, proliferation of Schwan cells was determined using a commercial viable

cell counting kit (Cat# 96992, Milipore Sigma, St. Louis, MO) per the manufacturer’s protocol.

This colorimetric assay measures the water-soluble formazan dye formed by NADH-mediated

reductions in extracellular tetrazolium salt WST-8. ST266 reference control and uncondi-

tioned media reference control were also run in each assay. Absorbance was read at 450nm

using Synergy 2 plate reader (Bio Tek, Winooski, VT) and either the STM100 or NGM blank

media signal was subtracted. For each plate, proliferation was normalized to NGM treatment

and data reported as a ratio of sample absorbance to the NGM value. Experiments were

repeated three times, each with freshly made ST266 filtrate fractions.

EAE induction

Chronic experimental autoimmune encephalomyelitis was induced in mice as previously

described [9]. Briefly, at age eight weeks, mice were anesthetized with isoflurane and a sub-

cutaneous injection was done at two dorsal sites containing a total of 200 μg myelin oligoden-

drocyte glycoprotein (MOG) peptide (MOG 35–55; Genscript, Piscataway, NJ, USA) emulsi-

fied in Complete Freund’s Adjuvant (Difco, Detroit, MI, USA) with 2.5 mg/ml killed

Mycobacterium tuberculosis (Difco). Control mice were injected with equivalent volumes of

phosphate buffered saline (PBS) accompanied by equal doses of Complete Freund’s Adjuvant

and M. tuberculosis. Each animal was also injected intraperitoneally with 200 ng pertussis

toxin dissolved in 0.1 ml PBS at the time of initial immunization and again 48 hours later. Dis-

ease severity based on ascending paralysis was scored daily using previously described scales as

follows: no disease = 0; partial tail paralysis = 0.5; tail paralysis or waddling gait = 1.0; partial

tail paralysis and waddling gait = 1.5; tail paralysis and waddling gait = 2.0; partial limb paraly-

sis = 2.5; paralysis of one limb = 3.0; paralysis of one limb and partial paralysis of another = 3.5;

paralysis of two limbs = 4.0; moribund state = 4.5; death = 5.0 [9]. Mice were scored and

weighed daily for the entire 6 week experiments. While moribund state and death are included

in our scoring scale and any mouse reaching a score of 4.5 or losing 20% body weight would

be humanely euthanized, the amount of antigen used to induce disease induces mild-moderate

disease and is not expected to reach these endpoints. Indeed, no mice were euthanized for

humane endpoints and no mice died. The paralytic disease itself is not painful, but for any

mice that developed hind limb paralysis moistened food and gel were provided on the floor

of their cages to avoid stress of having to reach up to eat or drink.
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ST266 treatment

Aliquots of ST266 prepared as described above for in vitro cell proliferation assays were pro-

vided by Noveome Biotherapeutics, Inc., (Pittsburgh, PA, USA) and stored at 4˚C. For intrana-

sal dosing, unanesthetized mice were secured by the scruff and 20 μl of the test agent or vehicle

control were instilled in the nares once daily, similar to prior studies [4–6].

Optokinetic response measurement

Optokinetic nystagmus reflex was used to estimate visual performance in mice using the Opto-

Motry apparatus and software (CerebralMechanics Inc., Medicine Hat, Alberta, CA). As

described in prior studies [10], mice were positioned on a platform surrounded on all sides by

video monitors displaying 100% contrast sinusoidal black and white bands rotating clockwise

or counter clockwise. A trained masked observer graded head movement in the direction of

rotation of the bands to detect the threshold spatial frequency (cycles per degree) where an ani-

mal fails to track the pattern [11].

Retinal ganglion cell immunolabeling and quantification

RGCs were quantified by Brn3a immunolabeling using previously described methods [12]. In

summary, following euthanasia, eyes were removed and fixed in 4% paraformaldehyde at 4˚C

overnight. Retinas were dissected, washed with PBS containing 0.5% Triton X-100, and then

permeabilized by freezing at -80˚C for ten minutes. After thawing, each retina was labeled

with rabbit anti-mouse Brn3a antibody (Synaptic Systems #411003, Goettingen, Germany) at

1:4000 dilution in blocking buffer containing PBS with 2% bovine serum albumin and 2% Tri-

ton X-100. After overnight incubation at 4˚C, retinas were washed four times in PBS and then

incubated for one hour at room temperature with an anti-rabbit secondary antibody conju-

gated to Alexa Fluor 488 (A21206, Thermo Fisher Scientific, Waltham, MA, USA) at 1:4000

dilution in blocking buffer. After washing in PBS x 4, retinas were flat-mounted with four

radial relaxing cuts and placed RGC side up on positively charged slides and cover-slipped

with vectashield antifade mounting media (Vector Laboratories, Burlingame, CA). Photomi-

crographs were obtained with an epifluorescent microscope at 20x magnification by an investi-

gator masked to treatment groups. Three representative regions were captured in each

quadrant—corresponding to one-sixth, three-sixths, and five-sixths of the retinal radius—for a

total of twelve photos per retina. Digital images were re-labeled with random codes for mask-

ing and RGCs were semi-automatically counted using established protocols with ImageJ Fiji

open source image analysis software [13, 14]. This strategy employs initial automatic detection

of RGCs based on size, contrast and shape, to allow for higher throughput and minimal opera-

tor bias. To verify good quality analysis, automatically counted images were individually evalu-

ated in a masked manner and counts were manually adjusted in the rare instances this was

necessary, for example, if some debris was present on the slide.

Optic nerve histology

Optic nerves were isolated at the time of sacrifice, fixed in 4% paraformaldehyde, embedded in

paraffin, and cut into 5 μm thick longitudinal sections. For assessment of inflammation, sec-

tions were stained with H&E and examined by light microscopy. Scores were assigned to each

sample by a masked observer per prior studies [15] as follows: no infiltration = 0; mild cellular

infiltration of the optic nerve or optic nerve sheath = 1; moderate infiltration = 2; severe infil-

tration = 3; massive infiltration = 4. While not specifically staining inflammatory cells, prior

studies have shown that detection of gross cellularity within the optic nerve on H&E stained
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sections correlates highly with immunostaining for macrophage markers in EAE optic neuritis

[4, 5]. To detect demyelination, sections of the optic nerve were stained with luxol fast blue

(LFB) and quantified on a 0–3 point relative scale by a masked investigator as in prior studies

[4, 16]: 0 = no demyelination; 1 = scattered foci of demyelination; 2 = prominent foci of demy-

elination; and 3 = large (confluent) areas of demyelination. The entire length of each optic

nerve section was examined.

Statistics

Evaluation of EAE severity scores and OKR thresholds over time were compared using

ANOVA of repeated measures followed by Tukey post-hoc comparisons between each group.

RGC counts, final OKR scores, optic nerve inflammation scores, optic nerve demyelination

scores, and Schwann cell proliferation levels were compared by one-way ANOVA with Tukey

post-hoc comparisons between treatment groups. Where indicated, pairwise comparisons

were made using the two tailed Student t-test. For the grouped analysis isolating mice with

moderate demyelination phenotype, data from three separate experiments were pooled. In

order to avoid potential bias from possibly variable RGC counts in different experiments, mice

of each treatment group were compared to untreated controls from their corresponding indi-

vidual experiment, and this is reported as a ratio, which was then combined between all three

experiments in an effort to decease noise. All computations were done using Graph Pad Prism

(GraphPad Software, San Diego, CA). P values less than 0.05 were considered significant.

Results

ST266 increases Schwann cell proliferation following starvation conditions

more potently than either <50 kDa or <30kDa filtrate fractions

One-way ANOVA with six groups revealed significant differences in Schwann cell prolifera-

tion between treatments (F[5,66] = 424.1, p< 0.0001; Fig 1). Tukey’s Post-hoc analysis

revealed that Schwann cell proliferation is significantly higher with treatment of ST266 or

either of the ST266 filtrate fractions compared to IMDM and STM100 controls (p< 0.0001

for all comparisons). The proliferation effects of the<50 kDa and<30 kDa ST266 fractions

were significantly lower than non-fractionated ST266 (p = 0.032 and p< 0.0001, respectively).

No significant difference was found between the effect of<50 kDa and <30 kDa fractions

(p = 0.11, ns).

ST266 and <50 kDa fractionated ST266 suppress optic nerve

demyelination in mice with mild EAE/optic neuritis

EAE mice (n = 8/treatment group) and control (non-EAE) mice (n = 6) were monitored daily

for development of ascending paralysis and weekly for OKR responses, prior to sacrifice at day

42 post-immunization. EAE induction produced only mild EAE disease which was not altered

by daily intranasal treatment with ST266 or<50 kDa ST266 (Fig 2a), and failed to induce a sig-

nificant decrease in OKR responses (Fig 2b). However, even in this cohort of mice with only

mild EAE disease, an overall trend toward loss of RGCs in EAE mice was observed, and analy-

sis of RGC survival by retinal region (central, mid-peripheral, and peripheral) showed a small

but significant loss of RGCs induced by EAE in the mid-periphery (Fig 3). This regional RGC

loss was significantly prevented by daily treatment with ST266, whereas <50 kDa ST266 treat-

ment only led to a non-significant trend towards increased RGC survival as compared to PBS-

treated EAE mice (Fig 3). EAE mice developed significant optic nerve inflammation and

demyelination, and treatment with both ST266 and<50 kDa ST266 significantly reduced the
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level of demyelination compared with PBS-treated EAE mice. Both treatments prevented sig-

nificant optic nerve inflammation from developing as compared to control, non-EAE mice,

but showed only a trend towards reducing inflammation compared to PBS-treated EAE mice

(Fig 4).

Fig 1. ST266 increases Schwan cell proliferation following 24-hours starvation conditions. Media of Schwan cells

cultured in normal growth media (NGM) was replaced by minimal starvation medium for 24-hours and subsequently

replaced by either NGM, IMDM, STM100 (base medium), ST266 or filtrate of ST266 below 50- or 30- kDa cutoff. (a) After

24-hours treatment, cell proliferation was determined by extracellular reduction of WST-8, with results shown as a ratio of

sample absorbance to the NGM value for each plate. (b) Representative light micrograph images of cultured murine

Schwann cells following starvation and a 24-hours treatment demonstrate relative presence of healthy, elongated Schwann

cells at 20X (scale bars = 200 μm) and 40X (scale bars = 100 μm) magnification. Images illustrating the development of color

from CCK-8 assay in Schwann cell cultures. Corresponding cell viability is listed below each representative set of images.

Data shown as mean + SEM from three separate experiments with total of n = 12 per group (��p< 0.0001 and �p< 0.05).

https://doi.org/10.1371/journal.pone.0243862.g001
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Fig 2. Mild EAE induced by MOG peptide immunization. (a) Mice immunized with MOG peptide to induce EAE were treated daily with

intranasal ST266 (n = 8 mice),<50 kDa ST266 (n = 8) or PBS (vehicle) (n = 8) from days 15–42 post-immunization, and control, non-EAE

mice (n = 6) were treated with PBS. Mice were scored daily based on clinical signs of ascending paralysis. Mild EAE disease developed in all

immunized groups with no difference in EAE scores between treatment groups (one-way repeated measures ANOVA p>0.05). (b) To estimate

visual function, OKR testing was performed. Measurements were taken at baseline and then weekly for 6 weeks. In this cohort of mice with

mild EAE disease, no significant vision loss developed compared with control mice, and no difference was detected in mean scores between

treatment groups over time (one-way repeated measures ANOVA p>0.05) or at the final measurement on day 42 (one way ANOVA p>0.05).

Data shown as mean +SEM.

https://doi.org/10.1371/journal.pone.0243862.g002
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ST266 attenuates decreases in OKR responses and loss of RGCs in EAE

mice whereas effects of <50 kDa ST266 are not significant

To assess effects of ST266 and <50 kDa ST266 in mice with moderately higher levels of EAE

disease, the experiment above was repeated two additional times, and all EAE mice that devel-

oped mild to moderate clinical EAE disease were used to assess optic neuritis outcomes. All

mice that developed a cumulative EAE paralysis score between 0.5–60 (EAE score summed

over entire 42 days of experiment) were included in this study. Mice that failed to develop any

clinical signs of EAE paralysis (EAE score of 0) and mice who developed severe EAE disease

defined as either a cumulative EAE score >60, or a single day EAE score of 4 (both hind limbs

paralyzed) or higher, were excluded. In all, 44 eyes of 22 control (non-EAE mice) were exam-

ined and compared to 23 eyes from EAE mice treated with PBS, 26 eyes from EAE mice treated

with ST266, and 24 eyes from mice treated with<50 kDa ST266.

Fig 3. RGC neuroprotection by ST266 in mild EAE optic neuritis. (a) Representative photos of Brn3a immunolabeled RGCs

in flat mounted retinas isolated 42 days post-immunization from the same cohorts of mice shown in Fig 2. Lower magnification

images (top; original magnification X 10) demonstrate the density of RGCs. White boxes indicate areas shown at higher

magnification (bottom) demonstrating the ability to identify individual Brn3a positive cells. (b) Total number of RGCs across

12 standardized fields for each eye show a trend toward loss of RGCs in eyes from PBS-treated EAE mice (n = 16 eyes)

compared with eyes from control mice (n = 12 eyes) (student t-test †p = 0.155). Eyes from EAE mice treated with ST266

(n = 16) showed greater RGC counts than vehicle-treated EAE animals (ANOVA �p<0.05), whereas the trend toward increased

RGC numbers in eyes from<50 kDa ST266-treated EAE mice (n = 16) compared with PBS-treated EAE mice was not

significant. (c) Diagram shows the eccentricity of standardized photos of RGCs, including a central (c), mid-peripheral (m) and

peripheral (p) photo which were obtained in each retinal quadrant. (d) Average RGC numbers present in each retinal region

show that eyes from mice treated with ST266 have greater numbers of surviving RGCs than eyes from PBS-treated EAE mice

(one-way ANOVA �p<0.05) in all three retinal regions. The mid-peripheral region showed the greatest difference in RGC

numbers between eyes from control mice and eyes from PBS-treated EAE mice, although this was not significant by ANOVA

but was significant in direct comparison between these two groups (student t-test †p = 0.05). Data shown as mean +SEM.

https://doi.org/10.1371/journal.pone.0243862.g003
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Over the course of 42 days, progressive decline in OKR responses were observed in EAE

mice, with a trend toward improved OKR in EAE mice treated with ST266 and<50 kDa

ST266 that was not significant by ANOVA of repeated measures. On Day 42 post-immuniza-

tion, OKR responses were significantly decreased in PBS-treated EAE mice as compared with

control, non-EAE mice, and daily ST266 treatment significantly improved OKR responses

whereas<50 kDa ST266 treatment led to a non-significant trend in improved OKR responses

(Fig 5). ST266 also significantly attenuated EAE-induced loss of RGCs (Fig 6a), and specifically

improved RGC survival in the mid-periphery and peripheral retina (Fig 6b). Treatment with

<50 kDa ST266 lead to a non-significant trend toward increased RGC survival (Fig 6).

Fig 4. Optic nerve demyelination is significantly reduced by both ST266 and<50 kDa ST266 in mild EAE optic neuritis. (a)

Representative photos of optic nerve sections are shown from the same cohorts of mice shown in Fig 2, prepared following sacrifice on

day 42 post-immunization. H&E staining shows the relative cellularity within the optic nerves, and LFB staining shows the relative

level of myelination. Scale bar = 50 microns in lower magnification images (top two rows) and scale bar = 5 microns in higher

magnification images (bottom two rows). (b) Masked scoring demonstrates increased inflammatory cell infiltration present in nerves

from PBS-treated EAE mice (n = 16 optic nerves) as compared with nerves from control, non-EAE mice (n = 12) (�p<0.05). Daily

intranasal ST266 (n = 16) or<50 kDa ST266 (n = 16) treatment both show a strong trend towards reducing optic nerve inflammation

that is not statistically significant as compared with PBS-treated EAE mice. Masked scoring of LFB staining demonstrates increased

levels of myelin loss present in nerves from PBS-treated EAE mice (n = 16 optic nerves) as compared with nerves from control, non-

EAE mice (n = 12) (�p<0.05). Daily intranasal ST266 (n = 16) or<50 kDa ST266 (n = 16) treatment both show significant reduction

in optic nerve demyelination as compared with PBS-treated EAE mice (�p<0.05). Comparisons analyzed by one-way ANOVA with

Tukey post-hoc testing. Data shown as mean +SEM.

https://doi.org/10.1371/journal.pone.0243862.g004
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Discussion

Results demonstrating the ability of ST266 to reduce RGC loss and preserve functional visual

responses measured by OKR in EAE mice are consistent with prior studies showing similar

neuroprotective effects of intranasal ST266 in EAE optic neuritis [4, 5]. Removal of the highest

molecular weight components of ST266, >50 kDa, led to diminished neuroprotective effects

in EAE optic neuritis, as this induced a trend toward increased RGC survival and preserved

OKR responses, but that trend was not significant. ST266 did however maintain a significant

ability to reduce levels of demyelination in mice with mild EAE disease even after removal of

>50 kDa proteins. In vitro, fractionated <50 kDa and<30 kDa ST266 each showed a signifi-

cant ability to stimulate Schwann cell proliferation, but stimulated significantly less prolifera-

tion than non-fractionated ST266. Together, these studies demonstrate that the lower

molecular weight fraction of ST266 retains some effects mediated by complete ST266, both in

vitro and in an in vivo disease model, but not all effects, suggesting that the full complement

of biomolecules present in ST266 may provide the optimal combination of factors to promote

important biologic effects.

Current results build on previous work showing decreased myelin loss and protection

against RGC death in optic neuritis and traumatic optic neuropathy [4, 6] as well as benefits in

other models of inflammation and wound healing [17–20]. The data suggests that the mecha-

nism of action is due to a combination of factors and not from a single molecule. In a clinical

study of UV-induced skin damage, the DNA repair enzymes such as Xeroderma pigmento-

sum, complementation group A (XPA) and cyclobutane pyrimidine dimer (CPD) were poten-

tially implicated in ST266 treatment [18]. In optic neuritis, the SIRT1 pathway was shown to

be activated in the setting of ST266 treatment and could be acting by increasing mitochondrial

biogenesis via PGC1α [4]. While these pathways could be important, it is not well understood

which molecules in ST266 are driving upregulation of these pathways, and it is likely that mul-

tiple factors play a role.

Fig 5. ST266 preserves visual responses in mice with mild-moderate EAE optic neuritis. Mice immunized with MOG peptide to

induce EAE were treated daily with intranasal ST266 (n = 24 mice),<50 kDa ST266 (n = 24) or PBS (n = 24) from days 15–42 post-

immunization, and control, non-EAE mice (n = 22) were treated with PBS across three identical experiments. Eyes from mice that

developed at least minimal EAE paralysis (cumulative EAE score greater than 0 over 42 days post-immunization) but without severe

disease (cumulative EAE score not more than 60) were included for further analysis of visual function. OKR scores measured weekly

across 42 days showed a non-significant trend towards improved responses in eyes from EAE mice treated with ST266 as compared

with eyes from PBS-treated EAE mice when compared by ANOVA of repeated measures. At day 42 post-immunization, a significant

decrease in OKR responses in eyes from PBS-treated EAE mice (n = 23 eyes) was observed as compared to eyes from control, non-

EAE mice (n = 44) (�p<0.05), and this decrease was significantly improved in eyes from ST266-treated EAE mice (n = 28) (�p>0.05),

while a trend towards improvement in eyes of<50 kDa ST266-treated mice (n = 24) did not reach statistical significance. Data shown

as mean +SEM.

https://doi.org/10.1371/journal.pone.0243862.g005
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Known components of ST266 itself reveal hundreds of cytokines and growth factors which

have been implicated in anti-inflammatory and neuro protective pathways. Of these, the

majority are less than 50 kDa in size, including platelet derived growth factor BB—which has

been shown to protect against RGC loss along with Igf1 via Akt [21]—as well as angiogenin,

Fig 6. ST266 attenuates RGC loss in mice with mild-moderate EAE optic neuritis. Retinas were isolated from the eyes of

control mice and EAE mice with mild-moderate EAE disease and immunolabeled with Brn3a. Data are from the same eyes

shown in Fig 5, with the exception of one eye from the vehicle (PBS)-treated EAE mouse cohort in which the retina was

damaged during dissection and therefore could not be quantified. (a) The average normalized RGC count across the entire

retina shows a decrease in RGC numbers in vehicle-treated EAE mouse eyes (n = 22 eyes) compared to eyes from non-EAE

control mice (n = 44 eyes) (�p<0.05). RGC numbers were significantly higher in eyes from ST266-treated EAE mice (n = 28) as

compared with PBS-treated EAE mice (�p<0.05), whereas treatment with<50 kDa ST266 (n = 24 eyes) led to a non-significant

trend towards increased RGCs. (b) RGC numbers in central, mid-peripheral and peripheral regions of the retina showed a

significant decrease in all regions in eyes of PBS-treated EAE mice as compared with control mouse eyes, and treatment with

daily intranasal ST266 improved RGC survival in both the mid-peripheral and peripheral retinal regions (�p<0.05). Data

shown as mean +SEM.

https://doi.org/10.1371/journal.pone.0243862.g006
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macrophage inhibitory cytokine-1 (MIP1), macrophage inhibitory cytokine-1 (MIP1), dipepti-

dyl peptidase-IV(DPP4), soluble tumor necrosis factor receptor 1, soluble tumor necrosis fac-

tor–related apoptosis-inducing ligand receptor-3, Axl, tissue inhibitors of metalloproteinases

(TIMP1 and TIMP2) and the lipid resolvin D1 [3]. Of note, this panel of possible targets is not

complete, and future comprehensive proteomic studies of ST266 will be useful.

As discussed in prior reports, the effect of ST266 likely relies on a multitude of simultaneous

paracrine signals—as each component is present in physiologic or sub-physiologic concentra-

tions [3]. In contrast, prior studies of neuroprotection in the eye which sought to target specific

pathways have not historically proved clinically successful. Small molecules such as brimoni-

dine and memantine as well as single growth factors such as ciliary neurotropic factor (CNTF)

failed to demonstrate clinical utility in human retinal and optic nerve disease [22]. Glucocorti-

coids, which likely have pleotropic targets, have been shown to decrease inflammation in EAE

mice, but do not protect against RGC loss when they are initiated after symptom onset [23].

Our approach of using the secreted products of a defined cell population is similar to work

where whole platelet lysate was advantageous in wound healing [24]. Mesenchymal stem cell

treatments [25], as well as exercise [26] are hypothesized to employ a similar mechanism of

trophic support via a host of growth factors and cytokines to create a desired cellular milieu

and have shown promising results in neurodegenerative models. Our strategy builds on this

model starting with a reproducible mixture of growth factors derived from a biological source

and now seeks to optimize this agent for potential therapeutic use.

Compared to other pleiotropic strategies for neuroprotection, the non-invasive, intranasal

dosing of ST266 offers pharmacokinetic advantages which highlight the importance for opti-

mization of this route. Local diffusion along the olfactory nerves or lymphatic channels is sus-

pected to play a role in the accumulation of ST266 to the vitreous and optic nerve based on

radiotracer studies showing optic nerve accumulation as soon as 30 minutes after nasal dosing

in the rat [4]. Furthermore, prior studies showed isolated benefits of ST266 to the optic nerve

and not the spinal cord, suggesting that effects are primarily local and not systemic [4]. Alter-

natively, the absorbed dose may not have been sufficient to attenuate EAE paralysis. CNS drug

delivery intranasally has been demonstrated even with large growth factors [27]. We have

shown here that removing proteins >50 kDa may not preserve all effects of ST266, and future

strategies for drug delivery should likely focus on the delivery of the full complement of ST266

biomolecules.

In this study, the initial optic neuritis experiment (Figs 2–4) showed the degree of ST266

treatment effect was somewhat less than prior reports [4, 5] which is likely due to the mild

severity of EAE disease induced. EAE is an inherently variable disease and in this case pro-

duced only limited optic nerve pathology, which provides important data showing that even

with mild disease, ST266 can still provide benefits. It has been shown that optic neuritis can

occur unilaterally (>40%), bilaterally (>40%) or not at all (15%) in EAE mice [28]. Thus, for

this and subsequent experiments, each eye was analyzed as an independent data point similar

to prior studies [4, 5, 16, 23]. To further assess ST266 treatment effects in mice with more typi-

cal mild-moderate disease severity, we analyzed data from cohorts of mice with mobility scores

greater than zero (at least some mobility deficit) and less than 60 (cumulative EAE scores over

42 days). As intranasally-delivered ST266 treatment has previously been shown not to affect

EAE spinal cord disease, EAE paralysis scores were used as a way to independently adjust for

variability in disease severity in mice. Using this approach, we demonstrated that ST266 effects

are similar to prior reports in terms of RGC survival and functional vision preservation as

measured by OKR [4, 5]. Lower molecular weight ST266 (<50 kDa) showed strong trends but

not a significant benefit compared with sham treated animals and thus may retain some neuro-

protective properties but appears to be less useful than full complement ST266.
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Overall, results here further support intranasal ST266 as a candidate neuroprotective ther-

apy for optic neuritis, and suggest that development of strategies to deliver the full complement

of biomolecules present in ST266 will be important for future clinical applications.
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