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Previously, the majority of human embryonic stem cells and human induced pluripotent stem cells have been derived 
on feeder layers and chemically undefined medium. Those media components related to feeder cells, or animal products, 
often greatly affect the consistency of the cell culture. There are clear advantages of a defined, xeno-free, and feeder-free 
culture system for human pluripotent stem cells (hPSCs) cultures, since consistency in the formulations prevents 
lot-to-lot variability. Eliminating all non-human components reduces health risks for downstream applications, and 
those environments reduce potential immunological reactions from stem cells. Therefore, development of feeder-free 
hPSCs culture systems has been an important focus of hPSCs research. Recently, researchers have established a variety 
of culture systems in a defined combination, xeno-free matrix and medium that supports the growth and differentiation 
of hPSCs. Here we described detailed hPSCs culture methods under feeder-free and chemically defined conditions 
using vitronetin and TeSR-E8 medium including supplement bioactive lysophospholipid for promoting hPSCs pro-
liferation and maintaining stemness.
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Introduction 

  The first derivation in 1998 of human embryonic stem 
cell (hESC) line was achieved by culturing inner cell 
mass on mouse embryonic fibroblasts (mEF) in the me-
dium containing chemically undefined components such 
as fetal bovine serum (FBS) (1). Human induced pluri-
potent stem cells (hiPSCs) were also established in the 
same conditions as hESCs (2). These undefined culture 
conditions with animal-derived components hamper 
analysis of molecular mechanisms that control pluri-
potency, self-renewal and differentiation as well as the 
possible clinical application of human pluripotent stem 
cells (hPSCs) (3). Thus, the hPSC field gradually shifted 
to the development of chemically defined culture system 
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Table 1. Major improvements of hPSC culture protocols

hPSC 
types

Culture condition Point of improvement Reference

hESCs Feeder: Inactivated MEFs
Medium: DMEM12＋10%FBS

First establishment of human pluripotent stem 
cells

Thomson et al. 1998 (1)

hESCs Coating: Laminin (vs Matrigel)
Medium: MEF-CM

Feeder-free culture system
Replacement Matrigel to Laminin

Xu et al. 2001 (4)

hESCs Feeder: Inactivated human fetal and adult 
fibroblast

Medium: DMEM12＋20%FCS

Long-term propagation on human feeder cells Richards et al. 2002 (5)

hESCs Feeder: Inactivated human fetal and adult 
fibroblast

Medium: KO-DMEM12＋20%HS

First establishment and propagation of hESC 
line in xeno-free conditions

Richards et al. 2003 (6)

hESCs Coating: Human matrix (Laminin, Vitronectin, 
Collagen, Fibronectin)

Medium: TeSR1

Derivation and propagation in defined culture 
condition

Ludwig et al. 2006 (7)

hESCs
hiPSCs

Coating: Vitronectin
Medium: E8

Derivation and propagation in 
chemically-defined condition

Chen et al. 2011 (8)

hESCs
hiPSCs

Coating: Laminin, Vitronectin
Medium: E8＋Kenpaullone (0.75 μM)＋

ID-8 (0.5 μM)＋Tacrolimus (5∼200 pM)

Derivation and propagation in 
chemically-defined and growth factor-free 
condition

Yasuda et al. 2018 (9)

FCS: Fetal calf serum, HS: Human serum, KO: KNOCKOUT. 

by removal of feeder layers, serum and growth factors 
and replacement of Matrigel to human recombinant ma-
trices (See Table 1) (1, 4-9). Despite these innovative ad-
vances, hPSC cultures still exhibit phenotypic and func-
tional heterogeneity, and remain to be optimized for as-
surance of functionality and genetic stability over 
long-term maintenance (10, 11). Here, we describe the 
major improvements of hPSC culture system and chemi-
cally defined culture protocol for long-term maintenance. 
In addition, we briefly introduce the beneficial effect of 
bioactive lysophospholipid in maintaining hPSCs.

From feeder to feeder-free system for hPSCs culture
  The first establishment of hESCs has described by using 
with inactivated mEFs as feeder cells and FBS-containing 
culture medium (1). Feeder-cells such as mEFs support 
the self-renewal of hESCs by the secretion of essential 
growth factors, cytokines and extracellular matrices 
(ECM) such as transforming growth factor β (TGFβ), 
activin A, laminin-511 and vitronectin (12). Those feed-
er-dependent systems support the stem cells by the mim-
etic microenvironment. Like other hESCs, hiPSCs depend 
on the support of feeder cells such as mEFs (Fig. 1A) or 
human fibroblast. There are certain drawbacks to the feed-
er-dependent culture systems, most notably the in-
troduction of animal-derived cells to the human stem cell 
environment. Next, FBS (Fig. 1Aa) was replaced with 
knockout serum replacement (KSR) and basic fibroblast 

growth factor 2 (FGF2) (Fig. 1Ab). mEF was also changed 
with human feeder cells (13). Although the use of human 
feeder cells circumvented the use of animal-derived feeder 
cells, this culture system is fully dependent on the con-
dition of human feeder cells and the function of the hu-
man feeder cells in the hPSCs co-culture system was still 
not fully understood.
  The first major step in optimizing the hPSCs culture 
environment was to culture the stem cells independently 
from the feeder cells. To achieve reliable and safe pro-
duction of hPSCs, it is desirable to use reagents that are 
defined, qualified, and preferably derived from a non-ani-
mal source. Furthermore, it should need an appropriate 
matrix to achieve the feeder free system. Therefore, devel-
opment of feeder-free human PSCs culture systems has 
been an important focus of stem cell research. In 2006, 
researchers in WiCell reported that feeder-independent 
hESC culture that includes protein components solely de-
rived from recombinant sources or purified from human 
material. They described the derivation of new hESC lines 
in these defined culture conditions. This first defined me-
dium significantly improved hESC culture, and was com-
mercially released as TeSR1, becoming the most wide-
ly-published feeder-free medium, used in over 1,100 peer- 
reviewed publications. This media is composed of a 
DMEM/F12 base supplemented with human serum albu-
min, vitamins, antioxidants, trace minerals, specific lipids 
and cloned growth factors (7).
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Fig. 1. Application of feeder-free sys-
tem for hPSCs culture. (A) Phase con-
trast image of cultured hPSCs main-
tained in undefined medium on MEF 
feeder layer with 20% FBS (a) or 
20% KSR (b). (B, C) Phase contrast 
image of cultured hPSCs maintained 
in chemical defined medium on dif-
ferent kinds of coating matrix (a: 
Matrigel, b: Vitronectin XF, c: rhLa-
minin-521 and d: iMatrix511) at pas-
sage 1 (B) and 5 (C). All matrix ma-
terials were used according to the 
manufacturer's instructions. Scale 
bar, A: 100 μm; B: 200 μm.

  TeSR2 is a next version of mTeSR1 derived from TeSR1 
media family which provides improved culture conditions 
for feeder-free maintenance of hPSCs while enabling a 
more defined and xeno-free culture environment for basic 
research, high-throughput gene profiling studies and pre- 
clinical applications. TeSR2 combines the advantages of 
a feeder-free culture system with the added value of being 
free of xenogenic components. Complete TeSR2 contains 
recombinant human basic FGF and recombinant human 
TGF-β. Addition of further growth factors is not required 
(14). More recently, Thomson and coworkers developed 
chemically defined TeSR-E8 medium (E8 medium), which 
is a derivative of mTeSR1 containing eight components, 
that lacks both serum albumin and β-mercaptoethanol. 
This E8 medium, combined with EDTA passaging, may 
be suitable for culturing a broad range of hPSC lines, par-
ticularly to improve episomal vector-based reprogramming 
efficiencies as well as experimental consistency (8). 
Currently available commercial hPSC culture media and 
their components are listed in Table 2.

Matrices for feeder-free system 
  The ECM is synthesized, secreted, and structured by 
embryonic cells from initial steps of developmental pro-
cess. Composition, structure and function of ECM has 
been identified in detail recently and has revealed that the 
microenvironment including ECM is critically important 
for survival, cell growth, morphogenesis and differentia-
tion (15). The extracellular matrix of many (16, 17), if not 

all, composed of certain unique macromolecules, includ-
ing, laminin (18, 19), a heparan sulfate proteoglycan (20), 
type IV collagen (16) and entactin (21). Among those, 
Laminin is the first extracellular matrix protein expressed 
in two- to four-cell stage mouse embryos and is the main 
component of basement membranes of all basal laminae 
in mammals (22, 23). Interacting with integrin hetero-
dimers such as α1β1, α2β1, α3β1, α6β1, and α6β4 
on the cell surface, laminin induces signals for promoting 
cell adhesion, growth, and migration. Previous reports in-
dicated that the laminin receptor was found to be highly 
expressed on ESCs and embryonal carcinoma cells (24, 
25).
  1. Matrigel, which is a commercially available protein 
mixture extracted from a whole mouse sarcoma tissue, has 
been one of the most widely used extracellular compo-
nents for feeder-and serum-free culture of hPSCs (Fig. 1 
Ba, 1Ca). It contains mostly types I and IV collagens, lam-
inin, entactin, heparan sulfate proteoglycan, matrix metal-
loproteinases, undefined growth factors, and chemical 
compounds (26-29). Although it is widely used for re-
search applications, it is important to note that Matrigel, 
which is a semi-chemically defined, xenogeneic substrate, 
cannot be used for generation of clinical-grade hPSCs. 
Previous studies have shown that Matrigel contains vari-
ous growth factors including TGF-β, epidermal growth 
factor (EGF), insulin-like growth factor 1, bFGF, and pla-
telet-derived growth factor (PDGF). Despite its avail-
ability and ease of use, Matrigel is not ideal for potential 



Jung Jin Lim, et al: Human PSCs Culturing Methods  487

Table 2. Commercial media for hPSC culture

Medium Formula Extracellular matrix XF/CD Brand

mTeSRTM1 DMEM/F12, BSA, bFGF, TGFβ, Insulin, Transferrin, 
Cholesterol, Lipids, Pipecolic acid, GABA, 
β-mercaptoethanol

MatrigelⓇ, Vitronectin NA STEMCELL
Technologies

TeSRTM2 DMEM/F12, HSA, bFGF, TGFβ, Insulin, Transferrin, 
Cholesterol, Lipids, Pipecolic acid, GABA, 
β-mercaptoethanol

MatrigelⓇ, Vitronectin XF
CD

STEMCELL
Technologies

Essential 8TM DMEM/F12 bFGF, TGFβ, Insulin, Transferrin,
Selenium, Ascorbic acid

MatrigelⓇ, Vitronectin XF
CD

Thermo Fisher
Scientific

TeSRTM-E8TM DMEM/F12, bFGF, TGFβ, Insulin, Transferrin,
Selenium, Ascorbic acid

MatrigelⓇ, Vitronectin XF
CD

STEMCELL
Technologies

StemProⓇ DMEM/F12, BSA, bFGF, TGFβ, Activin, Transferrin, 
LR3-IGF1, HRG1β

GeltrexⓇ NA Thermo Fisher
Scientific

PluriSTEMTM DMEM/F12, HAS, Activin A, TGFβ1, bFGF, Lipids, 
Insulin, Transferrin, Selenium

Not defined XF Millipore

StemMACSTM 
iPS-Brew XF

DMEM/F12, NaHCO3, L-Ascorbic Acid, Selenium, 
Transferrin, Insulin, bFGF

MatrigelⓇ, GeltrexⓇ, Laminin-511, 
Lamin-521, iMatrix-511, Vitronectin

XF Miltenyi
Biotec

StemFitⓇ 
Basic02/03

DMEM/F12, NaHCO3, L-Ascorbic Acid, Selenium, 
Transferrin, Insulin, bFGF, 21 Amino acids, five 
trace minerals and growth factors (including bFGF)

iMatrix-511, MatrigelⓇ, GeltrexⓇ, 
Laminin-521

XF
CD

Ajinomoto 
Company

StemFlexTM Undisclosed GeltrexTM (for clump cell), 
rhLaminin-521 (for single cell)

NA Thermo Fisher
Scientific

CellartisⓇ 
DEF-CSTM

Undisclosed TaKara Clontech iMatrix-511, 
Corning Synthemax

XF
CD

Takara

NA: not available (neither XF nor CD), XF: xeno-free, CD: chemically defined medium.

clinical application of hPSCs because it is animal-derived 
and xenogenic pathogens can be transmitted through cul-
ture even though no feeder cells are present. In addition, 
it also varies extensively from batch to batch. 
  2. Vitronectin is an adhesive glycoprotein (75 kDa) of the 
hemopexin family which is abundantly found in humans such 
as serum, ECM, and bones (30, 31). It is composed of 459 
amino acid residues of human VTN gene and classed in three 
domains; which are B domain (N-terminal) and two hemopex-
in homology domains (central and C-terminal) (32). 
Vitronectin recognizes the cells expressing its receptors: in-
tegrins αvβ1, αvβ3, αvβ5 or αIIbβ3 (33). rhVitronectin 
(recombinant human vitronectin) is a recombinant, full or 
partial length human single-chain and monomeric protein. 
Recently, several studies of functionality of integrins on 
hESCs have revealed that integrin families are important for 
the attachment of hESCs in in vitro condition (34). 
Vitronectin also contains an RGD (5, 6, 9) sequence, which 
is a binding site for membrane-bound integrins, e.g., vi-
tronectin receptor, which serves to anchor cells to the ECM. 
In addition, vitronectin binds to the integrin αvβ5. 
Especially, the integrin αvβ5 of vitronectin receptor can fa-
cilitate cells not only in binding to the matrix, but also in 
maintaining human self-renewal and pluripotency, even when 

the cells are blocked from binding to integrin β1 (35). rhVi-
tronectin was a defined functional alternative to Matrigel or 
laminin for supporting sustained self-renewal and pluri-
potency of hiPSC. When used with Essential 8 medium, rhVi-
tronectin has demonstrated the ability to maintain pluri-
potency and the normal growth characteristics in multiple hu-
man PSCs (Fig. 1Bb, 1Cb). rhVitronectin also has shown to 
support hiPSCs growth for a long-term cultivation without 
any karyotypic abnormalities and to maintain the pluri-
potency (36). 
  3. Laminin, which is a major component of the ECM 
of all basal laminae in vertebrates, can support the pluri-
potency of hPSCs. The combination of a human laminin 
coating with defined medium supplements, such as re-
combinant bFGF and the additional growth factors SCF, 
and LIF, was shown to support the growth and main-
tenance of undifferentiated hESCs (37). Laminin (LN)-511 
and -521 are a key cell adhesion protein and widely ex-
pressed in the body, such as cells from muscle, vascular, 
nervous, and inner cell mass of the embryo (38, 39). It 
has been reported that hiPSCs self-renew on the recombi-
nant LN-511 fragment. This fragment contains the C-ter-
minal end of LN-511 that contains an integrin-binding 
site. Plating of human iPSCs at the same densities on 
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Fig. 2. hPSCs culture on vitronectin 
in chemically defined media. Phase 
contrast image of cultured hPSC main-
tained on Vitronectin XF in different 
kinds of chemically defined medium 
(a: mTeSR1, b: TeSR-E8, c: iPS-Brew 
XF and d: StemFit) at subculture pas-
sages 2 (upper) and 4 (lower). All 
culture media were used according 
to the manufacturer's instructions. All
scale bar, 200 μm.

LN-521 has revealed that more cells survive on LN-521, 
suggesting that other parts of these large multi-domain 
laminin molecules interact with, and influence, the cells 
(40). Both LNs also have strong interaction with the in-
tegrin α6β1, which regulate focal adhesion kinase (FAK) 
signaling in hPSCs, and disruption of this pathway results 
in hPSC differentiation (41). We have confirmed that 
hiPSCs can be maintained in an undifferentiated state on 
recombinant LN-521-coated plates after dissociation and 
passaging (Fig. 1Bc, 1Cc). However, LN-521 can be used 
in fully animal-component-free and efficient culture sys-
tems for hiPSCs, LN-521 still remains with a high price 
and possible batch-to-batch variation.

Test of chemically defined system for hPSCs culture
  Without feeder cells, the culture is entirely dependent 
on the quality of the medium for maintenance and pro-
liferation of healthy stem cells. The first chemically de-
fined medium formulation TeSR1 (7) substantially im-
proved the culture of human PSCs, and was commercially 
released as mTeSR1 (Fig. 2 upper a, lower a). The combi-
nation of mTeSR1 medium and Matrigel substrate creates 
a rich environment to support hPSCs. However, mTeSR1 
medium contains animal-derived components and relies 
on substantial amounts of bFGF to maintain undifferen-
tiated hPSCs (Table 1). Recently, a more streamlined me-
dium for feeder-free cell culture was developed, called 
NutriStem (Corning, USA), iPS-Brew XF (Miltenyi Biotec, 
USA), StemFit hPSC Medium (AJINOMOTO, Japan). 
Those hPSCs medium are more defined, xeno-free, and 
contains very low levels of growth factors and other pro-
teins and/or HSA, including bFGF (Fig. 2 upper cd, lower 
cd, Table 1). The low protein composition avoids potential 
bias, inhibition, or other effects on subsequent differ-
entiation of the cells. TeSR-E8 medium which developed 
by Chen et al. (8) is a complete defined, feeder-free me-
dium compare to mTeSR1 or NutriStem formulation for 
the growth and expansion of human PSCs. TeSR-E8 me-

dium contains only the eight components most needed to 
maintain pluripotent stem cells. Cultures are grown com-
plete with their vitronectin (VTN-N) substrate, which to-
gether with TeSR-E8 medium make an effective feed-
er-free culture system for pluripotent stem cells (Fig. 2 
upper b, lower b, Table 1). As mentioned above, rhVi-
tronectin (VTN-N) has been shown to support human 
PSCs attachment and survival better than wild-type vitro-
nectin. Combination of recombinant biomaterials and 
complete chemically defined medium may offer a fully de-
fined culture system with a lower cost and higher con-
sistency. In this study, we described detailed protocols to 
support the culture of hPSCs using TeSR-E8 medium on 
rhVitronectin-coated culture plate with small addition of 
bioactive lysophospholipid.

Supplement of bioactive lysophospholipid for 
improving proliferation of hPSCs 
  A lipid mediator sphingosine-1-phospahate (S1P) is 
known to exert multiple responses, such as proliferation, 
survival and cytoskeletal rearrangement, via its G pro-
tein-coupled receptor (GPCR) in many cell types (42, 43). 
Enhancement of PSCs growth rate under fully defined 
conditions is an important goal to facilitate the robust pro-
liferation of cells to a clinical standard and to enable con-
trolled differentiation of human PSCs (44). Previous stud-
ies have implicated S1P as a valuable component of de-
fined culture medium to maintain PSCs. Supplementing 
S1P in the defined culture system led to a dose-dependent 
reduction in the level of apoptosis in PSCs while increas-
ing their proliferation rate (45). Phytosphingosine-1-phos-
phate (P1P) is derived from plants, and is structurally 
similar to S1P, an endogenous signal lipid in mammalian 
cells (46, 47). Here we show that an enhanced synthetic 
sphingolipid, O-cyclic phytosphingosine-1-phosphate (cP1P), 
has a potential role in increment of proliferation and de-
crease of apoptosis and/or modulate self-renewal potential 
of the hPSCs. cP1P treatment appears to improve pro-
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Fig. 3. Supplementation of cP1P for 
improving proliferation of hPSCs. 
cP1P treatment appears to regulate 
proliferation of hPSCs by the ex-
pansion of total cell populations as-
sociated with cell cycle progression. 
(A) Bright-field (top) and AP staining 
images (bottom) of hPSC plated on 
vitronectin-coated plate in the ab-
sence (Con) and presence of cP1P 
(100 mM). All scale bar, 200 μm. 
On day 7, the hPSC cultures were 
analyzed for total cell count (B), cell 
viability test (C) and cell cycle (D). 
(E) Protein expression of pluripotent 
markers (REX-1, OCT4, and KLF4) 
between Con and cP1P-treated group
were analyzed by western blot.

liferation of PSC by the expansion of total cell populations 
associated with cell cycle progression (Fig. 3A∼D). cP1P 
also enhances protein expression of pluripotency markers 
(OCT4, REX-1, and KLF4) (Fig. 3E).  
Materials and Methods

Cell lines
  • hESCs (H9, WiCell Research Institute, USA; CHA- 

hES 15, CHA Stem Cell Institute, Korea). 
  ►Note: These cell lines were initially derived and ex-

panded on mEF cells and later adapted to culture on 
vitronectin.

  • hiPSCs (CMC-hiPSC-003, Catholic Medical Center, 
Korea; Registered in National Stem Cell Bank at Korea 
National Institute of Health). 

  ►Note: This cell line was generated by non-integrating 
Sendai virus encoding OCT4, KLF4, SOX2 and c-MYC 
and propagated on vitronectin.

Reagents
  • ROCK Inhibitor Y-27632 (Tocris, 10 mg, cat. no. 1254, 

UK)
  • Vitronectin XFTM (STEMCELL Technologies, 2 ml, 

cat. no. 07180, Canada)
  • CellAdhereTM Dilution Buffer (STEMCELL Technol-

ogies, cat. no. 07183, Canada)
  • TeSRTM-E8TM Kit for hESC/hiPSC Maintenance 

(STEMCELL Technologies, 05940, Canada) contains 
TeSRTM-E8TM Basal Medium (cat. no. 05991) and 

TeSRTM-E8TM 25X Supplement (cat. no. 05992)
  • DPBS (PAN BIOTECH, cat. no. P04-36500, Germany)
  • Cryostor CS10 (STEMCELL Technologies, cat. no. 

07930, Canada)
  • TrypLETM Select Enzyme (Life Technologies, cat. no. 

12605-010, US)
  • Gentle Cell Dissociation Reagent (STEMCELL Tech-

nologies, cat. no. 07174, Canada)
  • STEMdiffTM Trilineage Differentiation kit (STEM-

CELL Technologies, 05230, Canada)
  • O-cyclic Phytosphingosine-1-phosphate (cP1P, AXCESO 

BIOPHAMA, Korea)
  • 70% Ethanol (MERCK, cat. no. 1.00974.1011, Germany)
  • Isopropanol (MERCK, cat. no. 1.09634.2511, Germany)

Equipment
  • Safety bench, Class II (ILJIN HI-TECH, Korea)
  • Refrigerator
  • Freezer, −20/−80℃ (Panasonic, MDF-u54v-pk, Japan)
  • Micropipettes (GILSON, USA)
  • Sterile pipette tips, 100, 200 and 1,000 μl (SARS-

TEDT, Germany)
  • CO2 incubator (Thermo Scientific, HERA CELL 

240i, USA)
  • Water bath, 37℃ (SAMHEUNG ENERGY, WB- 

11GDN, Korea)
  • Centrifuge (Eppendorf, 5810R, Germany)
  • Hood equipped with stereomicroscope (OLYMPUS, 

SZ61, Japan)
  • Light microscope (OLYMPUS, CKX41, Japan)
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  • Liquid nitrogen storage tank (CRYO Industries, 
USA)

  • Conical tube, 15 ml (SPL, cat. no. 50015, Korea)
  • Conical sterile polypropylene tube, 50 ml (SPL, cat. 

no. 50050, Korea)
  • Sterile serological pipettes, 5, 10 and 50 ml (SPL, cat. 

no. 91005, 91010 and 91050, Korea)
  • 35×10 mm dish (BD FALCON, cat. no. 353001, 

USA)
  • 6-well plate (CORNING, cat. no. CT-3516, USA)
  • Cryogenic handling gloves (Honeywell, USA)
  • Forceps (WORLD PRECISION INSTRUMENTS, 

USA)
  • Isopropanol freezing containers (Thermo Scientific, 

cat. no. 5100-0001, USA)
  • Cryovials, 2.0 ml (CORNING, cat. no. CC-430488, 

USA)
  • Cryo 1℃ freezing container (Nalgene, cat. no. 52100- 

0001)

Equipment setup
  Complete TeSRTM-E8TM medium: Thaw TeSRTM-E8TM 
25× supplement at room temperature (15∼25℃) or over-
night (2∼8℃). Add 20 ml of TeSRTM-E8TM 20× supple-
ment to 480 ml of TeSRTM-E8TM Basal Medium and mix 
them thoroughly. Store the complete medium at 2∼8℃  
for up to 2 weeks. If not used immediately, divide the me-
dium into aliquots and store at −20℃ for up to 6 months.
  ►Note: We make 45 ml aliquots of the complete me-

dium in 50 ml sterile polypropylene conical tube. The 
aliquots may vary depending on the scale of the culture. 
Once thawed, use within 2 weeks and do not re-freeze.

  cP1P: Dilute cP1P (MW: 415.92) powder in DMSO or 
NaOH to reach 10 μM stock solution. Divide the stock 
solution into aliquots (25∼100 μl/tube) and stored at −
20℃. For use, thaw the stock solution at room temper-
ature and dilute to obtain the desired concentration in 
complete TeSRTM-E8TM medium. In general, cP1P activity 
may appear at concentrations of 1∼1000 nM in hPSCs. 
However, the optimal concentration should be determined 
according to cell lines or culture conditions.
  Vitronectin XFTM: Vitronectin XFTM is supplied as a 
250 μg/ml concentrated stock solution. Thaw the vial of 
Vitronectin XFTM at room temperature (15∼25℃) and di-
lute in CellAdhereTM dilution buffer or DPBS to reach a 
final concentration of 10 μg/ml (i.e. dilute 2 ml of 
Vitronectin XFTM stock solution in 48 ml of dilution buf-
fer). If the entire vial will not be used immediately, divide 
the stock solution into aliquots and store at −20℃ or 
−80℃ for long-term storage.

  ►Note: A 10 μg/ml of working concentration is suffi-
cient to support most of hPSC lines. However, the opti-
mal concentration may vary depending on the cell line.

  ►Note: We make 240 μl aliquots of the stock solution 
in 1.5 ml sterile effendorf tube for coating one 6-well 
plate (1 ml/well). The aliquots and coating volume may 
vary depending on the scale of the culture and culture-
ware. Once diluted, use immediately within 1 week and 
do not re-freeze.

  ROCK inhibitor: Aseptically add 3.12 ml DPBS (pH 
7.2) or sterile water to the 10 mg vial of ROCK inhibitor 
(MW: 320.26) and mix it thoroughly by pipetting. Aliquot 
into a vial the stock solution (10 mM) in appropriate 
working volumes depending on the culture conditions and 
the scale of the culture. Stock solution is stable at −20℃  
for up to 6 months.
  ►Note: If MW of material is not 320.26, dilute appro-

priately to achieve 10 mM solution. Batch specific MWs 
may vary from batch to batch due to the degree of hy-
dration, which will affect the solvent volumes required 
to prepare stock solution.

  ►Note: Normally we do not recommend the use of 
ROCK inhibitor. This could be an option for users to 
enhance cell survival after single cell dissociation for 
passaging or during initial thawing of cryopreserved 
hPSCs, as it has been reported. Stock solution should 
be diluted into culture medium immediately before use.

Procedure
  Matrix and medium preparation (outlining how to 
coat six wells of non-tissue culture-treated 6-well 
plate): 1) Thaw an aliquot (240 μl) of Vitronectin XFTM 
stock solution at room temperature.
  ►Note: Avoid additional freeze-thaw cycle.
  2) Dilute 240 μl of Vitronectin XFTM stock solution in 
5.76 ml of CellAdhereTM Dilution Buffer or DPBS to make 
6 ml of a working solution (10 μg/ml) and mix gently 
(Do not vortex).
  3) Add 1 ml of diluted working solution to the center 
of each well of 6-well plate and gently rock the plate to 
evenly distribute the solution across the surface.
  4) Incubate the plate at room temperature for a mini-
mum 2 h prior to use.
  ►Note: If not used immediately, the plates can be pre-

pared for later use. The plates must be sealed tightly 
with ParafilmⓇ to prevent evaporation and stored at 2∼
8℃ for up to 1 week. Allow stored coated plates to come 
to room temperature for 30 min prior to proceeding.

  5) While incubation of the coated plates, warm com-
plete TeSRTM-E8TM medium at room temperature (15∼
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25℃). Do not warm medium in a 37℃ water bath.
  ►Note: The complete TeSRTM-E8TM medium is light 

and temperature sensitive. Do not leave medium at 
room temperature for longer than 2 h and avoid ex-
posure to light to prevent degradation of medium com-
ponents.

  6) To prepare the plates for passaging or thawing of 
hPSCs, remove the excess vitronectin from the plates and 
wash with CellAdhereTM dilution buffer or DPBS.
  7) Aspirate wash solution and add 2 ml of pre-warmed 
TeSRTM-E8TM medium per well.
  8) Place the plates in a 37℃, 5% CO2 incubator 1 h 
before thawing or passaging.
  Thawing hPSCs: 1) Take the cryovial out of liquid ni-
trogen and move them to the tissue culture room on ice.
  2) Quickly thaw the cells by gently swirling the vial in 
a 37℃ water bath.
  3) When only a small particle of ice is left in the vial, 
wipe the outside of the cryovial with 70% (v/v) ethanol 
to disinfect, dry and bring it under a biosafety cabinet.
  4) Gently transfer the aggregates suspension into a 15 
ml conical tube using a 1 or 2 ml serological pipette to 
minimize breakage of cell aggregates.
  5) Add 5∼7 ml of pre-warmed TeSRTM-E8TM medium 
in a drop-wise manner to the tube.
  ►Note: While adding drops, gently rock the tube back 

and forth to minimize osmotic shock to the cells.
  6) Centrifuge the mixture at 150 g for 3 min at room 
temperature.
  7) Discard the supernatant and re-suspend the ag-
gregates in 1 ml of pre-warmed TeSRTM-E8TM medium.
  ►Note: While slowly adding warm TeSRTM-E8TM me-

dium, gently tap the tube to dislodge the cell pellet.
  8) Plate the aggregates into one to two wells of vi-
tronectin-coated plate and gently move the plate side to 
side, back and forth to distribute the aggregates evenly.
  ►Note: Supplement the medium with a stock solution 

of ROCK inhibitor to maintain 10 μM final concen-
tration (add 1 μl of 10 mM ROCK inhibitor for 1 ml 
of medium) for enhancing cell survival after plating.

  9) Incubate the plate at 37℃, 5% CO2 incubator and 
do not disturb the plates for 24 h after plating.
  Passaging of hPSCs: The following are the instructions 
for passaging hPSCs maintained in TeSRTM-E8TM medium 
in cell aggregates (1. Passaging as cell aggregates) or single 
cell suspensions (2. Passaging as single cell suspensions). 
hPSC cultures can be passaged when they are 70∼100% 
confluent. Before passaging, we recommend removal of 
spontaneously differentiating area of any colonies using a 
pipette tip (Fig. 4A).

  1. Passaging as cell aggregates 
  Prepare vitronectin-coated plate 1 day before passaging 
(see Procedure section. Matrix and medium preparation).
  1) Remove spent medium from the culture vessel and 
rinse with DPBS.
  2) Add 1 ml of Gentle Cell Dissociation Reagent 
(GCDR) solution and incubate for 2∼6 min at room tem-
perature (15∼25℃).
  ►Note: Observe cells under microscope during in-

cubation to remove the GCDR solution before the colo-
nies are completely detached. The incubation times may 
vary depending on cell lines.

  3) Aspirate the GCDR solution and rinse with 0.5 ml 
of pre-warmed TeSRTM-E8TM medium.
  4) Add fresh 1 ml of warm TeSRTM-E8TM medium.
  5) Gently scrape the colonies with a 5 ml serological 
pipette or cell scraper and transfer the detached aggre-
gates to a 15 ml conical tube using a 2 ml serological pi-
pette.
  6) Triturate the aggregates to create appropriate size 
(approximately 50∼200 μm) for plating with a 200 μl 
or 1 ml pipette tips.
  7) Plate the small aggregates at the desired density onto 
vitronectin-coated plates containing the complete TeSRTM- 
E8TM medium.
  ►Note: The split ratio should be determined depending 

on the confluency at the day of passaging and the 
growth rates of cell lines.

  8) Gently move the plate side to side, back and forth 
to distribute the aggregates evenly.
  9) Incubate the plate at 37℃, 5% CO2 incubator and 
do not disturb the plates for 24 h after plating.
  10) Feed daily with fresh medium and observe regularly 
cell growth and morphology (Fig. 4B).
  2. Passaging as single cell suspensions
  1) Remove spent medium from the culture vessel and 
rinse with DPBS.
  2) Add 1 ml of pre-warmed TrypLE to wells and in-
cubate for 5 min at 37℃, 5% CO2 incubator.
  3) Aspirate the TrypLE solution and rinse with 0.5 ml 
of pre-warmed TeSRTM-E8TM medium.
  ►Note: The rinsing should be done carefully as the col-

onies are loosely attached after the TrypLE treatment 
for 5 min.

  4) Add fresh 1 ml of warm TeSRTM-E8TM medium and 
break the colonies to single cell suspensions by gentle trit-
uration with a 1 ml pipette tip.
  5) Count the cells using a hemocytometer. Plate the 
cells at densities of 30,000∼50,000 cells per cm2 onto vi-
tronectin-coated plates containing the complete TeSRTM- 
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Fig. 4. hPSC passaging in cell ag-
gregates and single cell suspensions. 
(A) Before starting to subculture, 
highly differentiated colonies or the 
differentiated section of colonies can 
be removed by swirling or scratch-
ing off with a pipette tip under a dis-
secting microscope. Black arrows in-
dicate the differentiated section of 
hPSCs. (B, C) Representative bright 
field (BF) images of hPSCs passaged 
in cell aggregates (B) and single cell 
suspensions (C) during cultures. All 
scale bar, 200 μm.

E8TM medium.
  ►Note: Addition of 10 mM ROCK inhibitor (1 μl of 

10 mM ROCK inhibitor per 1 ml of medium) is recom-
mended when plating single cell suspensions for en-
hancing cell survival.

  ►Note: Seeding density is critical for the outcome of 
the passaging. Thus, optimal seeding density should be 
adjusted empirically for each culture condition (matrix, 
medium, and culture ware) and each cell line.

  6) Gently move the plate side to side, back and forth 
to distribute the single cell suspensions evenly.
  7) Incubate the plate at 37℃, 5% CO2 incubator and 
do not disturb the plates for 24 h after plating.
  8) Feed daily with fresh medium and observe regularly 
cell growth and morphology (Fig. 4C).
  Freezing of hPSCs (outlining how to freeze hPSCs 
that maintained under above culture conditions in cell 
aggregates): Cultures must be cryopreserved when in 
their log phase of growth (approximately 70∼80% con-
fluent) to enhance survival upon thawing. We recommend 
freezing the cell aggregates from one well of one 6-well 
plate per cryovial. Keep the freezing container and cry-
oprotectant in a refrigerator 1 day before freezing.
  1) Remove spent medium from the culture vessel and 
rinse with DPBS.
  2) Add 1 ml of GCDR and incubate for 6∼12 min at 
37℃, 5% CO2 incubator.
  ►Note: Observe cells under microscope during in-

cubation to remove the GCDR before the colonies are 

completely detached. The incubation times may vary 
depending on cell lines.

  3) Aspirate the GCDR and add fresh warm TeSRTM- 
E8TM medium.
  4) Gently scrape the colonies with a 5 ml serological 
pipette or cell scraper.
  ►Note: Do not use a pipette to avoid breaking the cell 

aggregates into small pieces or single cells. Leave the 
aggregates as large as possible.

  5) Gently transfer the aggregates suspension into a 15 
ml conical tube using a 1 or 2 ml serological pipette to 
minimize breakage of cell aggregates.
  6) Centrifuge at 150 g for 3 min at room temperature.
  7) Gently aspirate the supernatant and re-suspend the 
aggregates in 1 ml of cold CryoStorⓇ CS10.
  ►Note: While slowly adding cryopropectant, gently tap 

the tube to dislodge the cell pellet. Care must be taken 
to minimize the breakup of the aggregates.

  8) Transfer the 1 ml suspension of aggregates in a cryo-
vial using a 1 or 2 ml serological pipette.
  9) Immediately place the cryovials into a pre-chilled 
freezing container and keep the aggregates at −20℃ for 
2 h, followed by −80℃ for 2 h.
  10) Transfer the aggregates into a liquid nitrogen tank 
for long-term storage.
  ►Note: A standard slow rate-controlled cooling protocol 

can be used for freezing (i.e. Reduce temperature at ap-
proximately −1℃/min, followed by long-term storage 
in liquid nitrogen).
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Fig. 5. Characterization of hPSCs cultured in chemically defined medium. (A) Representative BF images of hPSCs grown on vitronectin-coated 
plate in TeSRTM-E8TM medium for 5 days and typical colony morphology of hPSCs with positive AP staining. (B) Immunofluorescence staining 
of hPSCs for pluropotency markers (OCT3/4, red; SOX2, green). Cell nuclei were counterstained using DAPI (blue). All scale bars, 100 
μm. (C) Flow cytometry analysis of cultured hPSC for REX-1, E-Cadherin, and OCT3/4. (D) hPSCs were differentiated into three germ-layers 
using the STEMdiffTM Trilineage Differentiation Kit. During differentiation, the shape of each differentiated cell types was clearly different 
(a: Endoderm, b: Mesoderm and c: Ectoderm lineage). On day 7, the cultured and differentiated-hPSCs were analyzed by immuno-
fluorescence staining (E) and flow cytometry (F). All scale bar, 100 μm. Flow cytometry analysis of differentiated-hPSCs for AFP (endodermal 
lineage), Brachyury (mesodermal lineage) and MAP2 (ectoderm lineage).

  Routine characterization for long-term maintenance 
of hPSCs: The longer hPSCs are maintained, the more 
likely they have some defects in terms of growth, devel-
opmental capacity and genomic stability. Defects in devel-
opmental capacity refer to changes in the pluripotency of 
the cells that may occur with time in long-term culture. 
Thus, it is useful to check periodically hPSC cultures to 
ensure maintenance of pluripotency during long-term cul-
ture using several methodologies. Here, we briefly describe 
commonly used in vitro approaches to assess the pluri-
potency of hPSCs.
  1. Pluripotency marker expression by immunofluore-
scence staining (Fig. 5A, 5B)
  1) Aspirate the spent medium.
  2) Fix the cells with 4% PFA in PBS pH 7.4 for 10 min 
at room temperature.
  3) Incubate the samples for 10∼30 min with PBS con-
taining 0.1∼0.4% Triton X-100. Optimal percentage of 
Triton X-100 should be determined for each protein of 
interest.
  4) Incubate cells with 1% BSA in PBS for 1 h to block 
unspecific binding of the antibodies. Alternative blocking 

solution may use 1∼10% serum from a goat or donkey; 
see antibody datasheet for recommendations.
  5) Incubate cells in the diluted primary antibody with 
blocking solution in a humidified chamber for 1 h at room 
temperature or overnight at 4℃.
  6) Discard the solution and wash the cells three times 
in PBS, 5 min each wash.
  7) Incubate cells with the secondary antibody in PBS 
for 1 h at room temperature in the dark.
  8) Repeat step 6.
  9) Counter staining with 0.1∼1 μg/ml Hoechst or 
DAPI for 5 min in the dark.
  10) Rinse with PBS.
  11) Analyze samples. 
  2. Pluripotency marker expression by flow cytometry 
(Fig. 5C)
  1) Harvest, wash the dissociate cells (1∼5×106 cells/ml) 
that were fixed in 100 μl of 1% PFA with 0.1∼0.4% 
Triton X-100 or Tween 20 in cold PBS to each sample, 
then mix gently and incubate for 10∼15 min. 
  2) Cell down (centrifuge 400∼600 ×g for 5 min at 
room temperature) and discard the supernatant.
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  3) Incubate cells with 1% BSA in cold PBS for 1 h to 
block unspecific binding of antibodies on ice.
  4) Repeat step 2.
  5) Re-suspend the cell pellet in 100 μl of 1% BSA-PBS 
with directly conjugated primary antibody and incubate 
for 30∼60 min at room temperature. Protect form light.
  6) Repeat step 2.
  7) Re-suspend stained cells in an appropriate volume of 
PBS or FACS buffer.
  8) Analyze samples.
  3. In vitro differentiation potential
  The hPSCs have the potential to form derivatives of all 
three embryonic germ layers. In vitro, the hPSCs were di-
rectly differentiated to all three germ layers using the 
STEMdiffTM Trilineage Differentiation Kit (see manu-
facturer’s instructions at https://www.stemcell.com/stem-
diff-trilineage-differentiation-kit.html), which is commer-
cially available and provides a simple culture assay (ecto-
derm, mesoderm and endoderm) (Fig. 5D). Immunofluo-
resencel staining and flow cytomethry analysis showed 
that ATF (endoderm), Brachyury (mesoderm) and MAP2 
(ectoderm) were strongly expressed in differentiated 
hPSCs (Fig. 5E, 5F). 

Anticipated Results

  In this protocol report, we have tested various culture 
mediums, ECMs and agents for improving hPSCs culture 
and suggest that xeno-free and chemically defined 
TeSRTM-E8TM in combination with rhVitronectin is suit-
able for stable maintenance of hPSCs. In addition, the 
supplementation of bioactive lysophospholipid (cP1P) to 
the culture conditions improves the proliferation of 
hPSCs. Xeno-free and chemically defined culture con-
ditions described in this protocol is ideal for reducing 
lot-to-lot variation and increasing reproducibility, which 
can ensure consistency for the use of hPSCs in both basic 
research and clinical applications. Long-term maintenance 
of hPSCs without compromising safety and functionality 
in this defined culture system would reduce the economic 
burden for large-scale expansions for various applications. 
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