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Abstract Enhancers constitute one of the major components of regulatory machinery of

metazoans. Although several genome-wide studies have focused on finding and locating enhancers

in the genomes, the fundamental principles governing their internal architecture and cis-regulatory

grammar remain elusive. Here, we describe an extensive, quantitative perturbation analysis

targeting the dorsal-ventral patterning gene regulatory network (GRN) controlled by Drosophila

NF-kB homolog Dorsal. To understand transcription factor interactions on enhancers, we employed

an ensemble of mathematical models, testing effects of cooperativity, repression, and factor

potency. Models trained on the dataset correctly predict activity of evolutionarily divergent

regulatory regions, providing insights into spatial relationships between repressor and activator

binding sites. Importantly, the collective predictions of sets of models were effective at novel

enhancer identification and characterization. Our study demonstrates how experimental dataset

and modeling can be effectively combined to provide quantitative insights into cis-regulatory

information on a genome-wide scale.

DOI: 10.7554/eLife.08445.001

Introduction
Developmentally expressed genes in metazoans are regulated by diverse cis-regulatory elements,

including distally-acting sequences termed enhancers (Levine, 2010; Smith and Shilatifard, 2014;

Heinz et al., 2015). Despite more than three decades of progress, surprisingly little is known about

constraints on internal structural organization of binding sites (’grammar’) within these elements

(Dickel et al., 2013). Some enhancers show little evolutionary variation, and permit no change in

transcription factor binding sites without catastrophic effects on function (Thanos and Maniatis,

1995; Kim and Maniatis, 1997). Many developmental enhancers, however, demonstrate a more

flexible deployment of binding sites, thus functionally conserved elements can exhibit a large degree

of evolutionary variation (Junion et al., 2012). Although high-throughput studies have dramatically

increased our knowledge of genome-wide transcription factor occupancy and transcript expression,

we have a limited ability to interpret the functional relevance of quantitative aspects of protein bind-

ing or DNA sequence variation. A quantitative understanding of the internal enhancer grammar of

cis-regulatory elements will provide researchers with powerful tools to better understand the
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significance of genetic variation that is observed within and between species, critical for exploitation

of burgeoning genomic resources. Thermodynamic models employ tools from statistical physics to

model gene activity, providing a framework for understanding transcription factor interactions with

specific DNA sequences to regulate gene expression (Bintu et al., 2005; Ay and Arnosti, 2011;

Dresch and Drewell, 2012) Previous efforts at thermodynamic modeling in eukaryotic systems have

demonstrated that diverse types of data can be fit, providing at least a qualitative level of prediction

(Zinzen et al., 2006; Segal et al., 2008; He et al., 2010; Drewell et al., 2014). However, earlier

studies relied on heterogeneous and low-resolution datasets, inherently limiting modeling effective-

ness. In addition, few types of models were tested, reducing the chance that essential properties of

transcription factor interactions will be captured.

Here, we tested the hypothesis that an in-depth and quantitative analysis of key transcriptional

regulators on an archetypal enhancer would reveal common transcriptional behaviors of these pro-

teins for genome-wide analysis. To harness the potential of thermodynamic modeling approaches,

we developed an in-depth enhancer perturbation analysis that takes advantage of the quantitative

setting of the Drosophila blastoderm embryo. The rhomboid (rho) enhancer directs gene expression

in the presumptive neuroectoderm under the control of the activator Dorsal, a homolog of NF-kB.

The Twist activator and Snail repressor provide additional essential inputs (Figure 1A). To extract

fundamental information from this data set, we created and fit a comprehensive set of thermody-

namic models designed to capture likely interactions between transcription factors as they interact

with the enhancer. An extensive set of other coordinately-regulated Dorsal/Twist/Snail target genes

was then used to assess the power of this modeling approach for interpretation of cis-regulatory

variation.

eLife digest DNA contains regions known as genes, which may be “transcribed” to produce the

RNA molecules that act as templates for building proteins and regulate cell activity. Proteins called

transcription factors can bind to specific sequences of DNA to influence whether nearby genes are

transcribed. For example, so-called enhancer regions of DNA contain several binding sites for

transcription factors, and this binding activates gene transcription. Little is known about how the

transcription factor binding sites are organized in enhancer regions, which makes it difficult to use

DNA sequence information alone to predict the regulation of genes.

A transcription factor called Dorsal controls the activity of a network of genes that plays a crucial

role in the development of fruit fly embryos. Dorsal binds to the enhancer region of a gene called

rhomboid, which has been well studied and is known to be a fairly typical example of an enhancer

region.

To understand the regulatory information encoded in the DNA sequences of enhancers, Sayal,

Dresch et al. have now used a technique called perturbation analysis to investigate the interactions

that are likely to occur between Dorsal and other transcription factors as they bind to the rhomboid

enhancer. This technique involves systematically mutating the enhancer to remove different

combinations of transcription factor binding sites and quantitatively investigating the effect this has

on gene activity. A large set of mathematical models were then trained using this data and shown to

correctly predict the activity of a range of other gene regulatory regions. The collective predictions

of the models identified new enhancer regions and revealed details about how different types of

transcription factor binding sites are arranged within enhancers.

As we enter an era where the DNA sequences of entire human populations are increasingly

accessible, we would like to know the functional significance of changes in gene regulatory regions.

Sayal, Dresch et al. show that the regulatory properties of specific control proteins are accessible by

employing quantitative experiments and mathematical models. Similar studies will be required to

learn how mutations found across the genome may alter gene expression, leading to better

diagnosis and treatment of disease.

DOI: 10.7554/eLife.08445.002
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Figure 1. Experimental deep perturbation analysis of a neuroectoderm-specific enhancer. (A) rhomboid (rho)

enhancer with footprinted Dorsal activator sites shown in green, Twist activator sites in yellow, and Snail repressor

sites in red. (B) Drosophila embryo stained to measure rho reporter readout in the neuroectoderm with

quantitative expression measured using confocal laser scanning microscopy. The embryo is oriented anterior up

and dorsal to the right. rho-lacZ mRNA is shown in red, seven even-skipped mRNA stripes in green, and snail

mRNA in the mesoderm (left) also in green. Average expression after normalization over embryos containing the

wild-type enhancer in the region of interest (white box) is plotted in black at right; dashed red line indicates

standard error; vertical dotted line indicating dorsal-most boundary of sna expression. (C) Effects on expression of

removal of single activator sites – expression levels decrease by a similar extent when either Dorsal or Twist

Figure 1 continued on next page
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Results

Generation of a quantitative deep perturbation dataset
rho is first expressed in two lateral stripes in the presumptive neurogenic ectoderm of the Drosoph-

ila embryo under cooperative activation by Dorsal and Twist (Ip et al., 1992; Hong et al., 2008).

Expression is excluded from the mesoderm (ventral region) by Snail, a short-range repressor that

interferes with activators located within ~100 bp of a Snail binding site (Gray et al., 1994). We sys-

tematically mutated all activator and repressor binding sites in rho neurectodermal enhancer, remov-

ing Dorsal or Twist sites individually or in pairs to diminish activation, and removing multiple Snail

sites to reduce repression (Figure 1, Figure 1—figure supplement 1, and Supplementary file 1).

All 38 enhancers were cloned and integrated into the fly genome using a site-specific integration

vector (Bischof et al., 2007). We measured the transcriptional output using fluorescent in situ

hybridization (FISH) and confocal laser scanning microscopy, and analyzed gene expression data

using an image-processing pipeline (Ay et al., 2008). Expression data from a total of 935 images - a

minimum of ten embryos per construct - was normalized and combined to provide average expres-

sion patterns for each enhancer variant (Figure 1B, Figure 1—figure supplement 1, and

Supplementary file 2).

Mutation of any single Dorsal or Twist activator binding site resulted in a measurable reduction of

peak intensity and retraction of the rho stripe from the dorsal region, where activators Dorsal and

Twist are present in limiting concentrations (Liberman et al., 2009; Rushlow et al., 1989). Strikingly,

despite the differences in predicted binding affinities and relative positions of the motifs, the elimi-

nation of any site individually had similar quantitative effects, reducing gene expression to approxi-

mately 60% of the peak wild-type level (Figure 1C, Figure 1—figure supplement 1, and

Supplementary file 2). In contrast to this uniform picture, the impact of mutation of combinations of

two Dorsal or Twist binding sites was highly variable, ranging from slightly lower expression to

almost complete loss of activity (Figure 1D, Figure 1—figure supplement 1, and

Supplementary file 2). Overall, the double activator site mutagenesis revealed a complex picture of

the contributions of activator sites to gene expression. We hypothesize that the variable effects of

different pairwise mutations, as opposed to the rather similar effects of individual site loss, indicates

that there are multiple and distinct thresholds for specific biochemical events occurring on the

enhancer. In contrast to the perturbation of Dorsal and Twist elements, removal of Snail repressor

binding sites revealed stark differences in the significance of individual motifs for overall activity.

Mutation of all four Snail sites caused pervasive expression in the mesoderm, as expected, while con-

structs with a single intact Snail2 or Snail3 site showed substantial but not complete repression (Fig-

ure 1—figure supplement 1 and Supplementary file 2). Snail1 and Snail4 motifs were not nearly as

effective at mediating repression, although these have similar binding affinities (Figure 1E, Fig-

ure 1—figure supplement 1, and Supplementary file 2). Snail4 and Twist2 sites overlap, which may

impair Snail binding and reduce repression efficiency.

Thermodynamic modeling of rho enhancer perturbation dataset
Direct examination of the data described above showed that the inter-relationships among activator

and repressor sites were complex, and mutant phenotypes were not simply additive. Such complex-

ity is a familiar facet of cis-element mutagenesis studies (Swanson et al., 2010; Evans et al., 2012).

To extract the non-intuitive, quantitative information about transcription factor function and

Figure 1 continued

activator sites are removed. (D) Effects of double activator site mutation – expression levels are variably impacted

depending on which pairs of sites are affected. (E) Effects on expression of removal of pairs of Snail repressor

sites, leading to partial depression in ventral regions, or no derepression. For panels C–E, solid black lines indicate

wild-type enhancer expression; solid blue lines indicate expression of the tested rho enhancer; dashed red lines

indicate standard error; n = number of embryos imaged for the given construct shown (in top right of each panel).

DOI: 10.7554/eLife.08445.003

The following figure supplement is available for figure 1:

Figure supplement 1. Quantitative perturbation analysis of rho neuroectodermal enhancer.

DOI: 10.7554/eLife.08445.004
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interactions from these results, we created an extensive set of quantitative models. Based on the

likely importance of cooperativity (Kazemian et al., 2013), we tested models that incorporated a

variety of conceptions of distance-dependent homotypic and heterotypic cooperativity, as well as

different distance-dependent ’quenching’ or repressive interactions between repressors and activa-

tors (Veitia, 2003; Wagner, 1999; Kulkarni and Arnosti, 2005; Arnosti et al., 1996; Barolo and

Levine, 1997). We systematically tested continuous and step functions to determine possible dis-

tance relationships affecting interactions. In all, 15 formulations for cooperativity and eight formula-

tions for quenching were employed (Table 1). Combining these two types of formulations resulted

in 120 different models, which were trained on the quantitative expression data of the 38 enhancer

variants. Parameters were estimated using CMA-ES, a global genetic algorithm, and overall perfor-

mance was calculated from the fit to all constructs, using root mean square error (RMSE) as the

objective function (Hansen et al., 2003). Examination of model performance at three levels – global

Table 1. Parameters in each model. Number of parameters in cooperativity and quenching model combinations. 3 scaling factor

parameters for Dorsal, Twist, and Snail are included in all models. Column 1 contains the nomenclature and number of parameters (in

parentheses) for all 15 cooperativity models. Columns 2–9 in Row 2 contain nomenclature and number of parameters (in parentheses)

for 8 quenching models. Each cooperativity and quenching scheme is described in the materials and methods section. The

parameters being fitted for continuous functions are clearly laid out in this section. The following example illustrates the parameters in

binned cooperativity and quenching functions. Model C14Q5: Parameters 1–3 are scaling factors for Dorsal, Twist, and Snail

respectively. Parameters 4–15 reflect cooperativity (separate parameters existing for each type of protein-protein interaction)–

parameters 4–6 represent Dorsal-Dorsal cooperativity (at 1–60 bp, 61–120 bp, and 121+ bp between bound Dorsal proteins), likewise

parameters 7–9 represent Twist-Twist cooperativity, parameters 10–12 represent Dorsal-Twist cooperativity, and parameters 13–15

represent Snail-Snail cooperativity. Paramters 16–23 reflect quenching – parameters 16–19 represent Snail quenching Dorsal (at 1–25

bp, 26–50 bp, 51–75 bp, and 76+ bp between bound proteins), likewise parameters 20–23 represent Snail quenching Twist.

Quenching Model

Cooperativity Model Q1 – MSB (0) Q2 – Linear (2) Q3 – Logistic (2) Q4 – Gaussian (2) Q5 – Binned
4_25 (8)

Q6 – Binned
4_35 (8)

Q7 – Binned
4_45 (8)

Q8 – Binned
10_10 (20)

C1 – Linear (4) 7 9 9 9 15 15 15 27

C2 – Logistic (4) 7 9 9 9 15 15 15 27

C3 – Gaussian (4) 7 9 9 9 15 15 15 27

C4 – Binned
2_25 (4)

7 9 9 9 15 15 15 27

C5 – Binned
2_50 (4)

7 9 9 9 15 15 15 27

C6 – Binned
2_75 (4)

7 9 9 9 15 15 15 27

C7 – Binned
3_50 (6)

9 11 11 11 17 17 17 29

C8 – Binned
3_60 (6)

9 11 11 11 17 17 17 29

C9 – Binned
3_70 (6)

9 11 11 11 17 17 17 29

C10 – Protein Binned
2_25 (8)

11 13 13 13 19 19 19 31

C11 – Protein Binned
2_50 (8)

11 13 13 13 19 19 19 31

C12 – Protein Binned
2_75 (8)

11 13 13 13 19 19 19 31

C13 – Protein Binned
3_50 (12)

15 17 17 17 23 23 23 35

C14 – Protein Binned
3_60 (12)

15 17 17 17 23 23 23 35

C15 – Protein Binned
3_70 (12)

15 17 17 17 23 23 23 35

DOI: 10.7554/eLife.08445.005
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Figure 2. Performance of 120 thermodynamic models. (A) Heat map representation of results of thermodynamic modeling of rho perturbation dataset;

the performance of each model is represented by a rectangle. Models were globally fit using Root Mean Square Error (RMSE), scale shown at right.

Each model employs a distinct repression (quenching) scheme represented on horizontal axis, and a protein-protein cooperativity scheme on vertical

axis. (B) Construct-by-construct performance ranking of 120 thermodynamic models ranked top to bottom. Vertical features are indicative of specific

constructs that showed overall better or worse fit. (C) Examples of fitting of individual constructs by models ranking high (C14Q5; 1st overall), medium

(C8Q7; 96th overall), or low (C4Q4; 120th overall). Black points indicate measured average mRNA levels; red lines are model predictions. The high-

ranking model correctly predicts both low expression (repression) in mesoderm and activation in neuroectoderm, medium model exhibits modest

deviations in prediction of both repression and activation, and the low-ranked model exhibits particularly poor fits for repression activity.

DOI: 10.7554/eLife.08445.006

The following figure supplement is available for figure 2:

Figure supplement 1. Cross validation of thermodynamic models.

DOI: 10.7554/eLife.08445.007
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RMSE, construct-by-construct RMSE, and specific portions of the expression patterns - provided

complementary insights into the nature of how the training data are fit, and the potential utility of

the models on other enhancer sequences.

At a global level, the performance of the models was clearly co-dependent on both the coopera-

tivity and repression formulations (Figure 2A). Overall cooperativity formulation performance varied

according to the type of quenching formulation; the best quenching scheme for one cooperativity

scheme was not necessarily optimal for other cooperativity schemes. Such interactive effects are

likely a reflection of parameter compensation. Models with more parameters tended to outperform

those with the fewest, as expected, but it was notable that this was not a strict correlation; the mod-

els with the most parameters were not as effective as those with fewer. Additionally, there were

measureable differences between models with identical numbers of parameters, suggesting that the

different formulation of the schemes was interrogating aspects of enhancer grammar critical for the

rho enhancer variants we were fitting. Best overall fits were observed using a model with cooperativ-

ity values parameterized in three ’bins’ of 60 bp (scheme C14) and quenching in four small 25 or 35

bp bins (schemes Q5 and Q6).

To examine construct-specific performance, we plotted a heat map illustrating individual con-

struct fits for all 120 models (Figure 2B). The models, represented by rows, were ranked from best

to worst based on global performance, and individual fits for each of the 38 rho enhancer variants

were plotted in columns. The higher ranked models (blue rows) have generally lower RMSEs across

all constructs, and groups of models with similar structures had similar patterns of better or worse

performance on particular constructs. Some constructs were fit generally less well by most models.

Those constructs containing the wild-type ensemble of activators (columns 1, 25, 28, 32) were

among those that were less well fit than the bulk of constructs, from which we had removed activator

sites; apparently the generally narrower neuroectodermal expression pattern of those constructs

with some activator sites removed drove overall parameter fitting. Individual plots of the measured

and predicted activity of individual enhancer modules show that some error arises from the models

underestimating the activator potential specifically in more dorsal regions of the embryo, where acti-

vator concentration is limiting (Figure 2C; e.g. construct 1: DMRW). The lower quality fit for these

constructs does not represent a model failure; rather, these constructs are likely to be especially

informative for activator function, and a modeling effort that entirely lacks these types of constructs

would be more over-fit and less informative than the present one. Further examination of individual

plots for specific genes provides additional insight into the nature of which features influence RMSE

scores the most (Figure 2C). A top-ranking model (C14Q5) accurately captures high and low levels

of Snail repression, deviating only in underestimating the expression of rho in regions most limiting

for Dorsal and Twist. An intermediate-scoring model (C8Q7) was partially successful in capturing

general trends of activation with occasional overestimation of activity. This model misestimated Snail

repression in some cases as well. The lowest performing model (C4Q4) suffered from poor estima-

tion in Dorsal/Twist activity, as well as a general absence of repression by Snail.

Thermodynamic models calculate protein occupancy on an enhancer using descriptions of bind-

ing preferences distilled from position weight matrices (PWMs), which can incorporate in vitro or in

vivo protein-DNA interaction data. A number of studies have tested DNA-binding preferences of

Dorsal, Twist, and Snail, therefore we tested the effects of different PWMs on model performance.

Three similar but non-identical PWMs were tested for each factor, and all possible combinations of

these PWMs were utilized in refitting the data set with a selection of 24 of the entire set of models,

including most of the top performers. Overall ranks of model performance remained similar,

although RMSEs were lowest using the PWM of Snail that was employed in the global analysis in Fig-

ure 2; this PWM predicted all four sites previously identified by in vitro footprinting (Figure 3). Thus,

the biophysical information about protein-DNA interactions for the transcription factors in this sys-

tem appears to be sufficiently complete to provide a robust platform for thermodynamic modeling.

In addition to information about biophysical parameters of the system, model performance can

be dramatically influenced by the nature of the perturbations studied. We used cross-validation, a

statistical technique in which segments of the data set are left out during model fitting, to reveal

possible overfitting, and determine the impact of certain portions of the data set on overall success

in fitting. We performed cross-validation for the 24 models studied above both by leaving out spe-

cific parts of the dataset with common attributes (e.g. all Dorsal or Snail site mutations) as well as by

randomly removing portions of the dataset. We used these two complementary approaches to not
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Figure 3. Effect of PWM settings on model performance. (A) Three versions of each binding site were considered

as discussed in Materials and methods, drawing from previously reported in vitro or in vivo binding studies. (B)

The correspondence between previously identified bindings sites from DNAseI footprinting studies (colored

squares) and predicted binding sites using the diverse PWMs (circles) is superimposed on the structure of the rho

enhancer. The size of the circles indicates the significance of the match using the particular PWM for that factor;

Figure 3 continued on next page
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only test how much data is needed for the model fitting to be successful, but also to emphasize how

important experimental design is in a study such as this one. Some studies rely on rely on saturation

mutagenesis to achieve the same effect, but testing thousands of variants is impractical in this sys-

tem, so a targeted survey was called for (White et al., 2013). As anticipated, models were in general

less able to fit constructs that were left out of the dataset, indicating the contribution that these par-

ticular enhancer constructs made to the fitting (Figure 2—figure supplement 1). Despite similar per-

formance on the entire dataset, individual models showed differing levels of sensitivity to changes in

the scope of the data set used for model fitting. For instance, RMSE values for C13Q5 were mod-

estly increased by either systematic or random leave-sets-out treatment, while C11Q4 was more dra-

matically impacted. In general, removal of entire classes of constructs had a more profound impact

than removal of randomly selected constructs.

To better understand how specific constructs contribute to model performance, we analyzed how

leaving out certain sets of constructs affects model predictions on each individual construct, includ-

ing those used for fitting and those left out (Figure 2—figure supplement 1). The most profound

effects were seen with the omission of the Snail repressor site constructs, where almost all models

had striking increases in RMSE for all Snail constructs. Evidently, the elimination of activator sites

alone is not sufficient to provide insights into how Snail affects the enhancer’s expression. Collec-

tively, the scope of mutations assayed, targeting recognized Twist, Dorsal, and Snail sites, was suffi-

cient to provide the required information to the modeling effort. The different effects of activator

and repressor site mutations illustrate the importance of perturbation of each of these elements to

fully explore the functional terrain of the enhancer; for a small number of constructs, a random per-

turbation of cis-regulatory sequences may not uncover the most informative changes related to tran-

scriptional relationships (Patwardhan et al., 2012; Sharon et al., 2012; Smith et al., 2013).

All thermodynamic models used here characterized transcription factor activity by estimating

parameters for activation and repression potential, as well as the distance-dependence of coopera-

tivity and repression. Several broad trends emerged from analysis of parameter values across many

model types, revealing possible biological implications for the modeled enhancer (Figure 4, Fig-

ure 4—figure supplement 1, Supplementary file 3). First, overall model performance was improved

by specifying separate parameters for activator and repressor cooperativity (Figure 2A; C1-9 vs.

C10-C15). In these latter models, repressor-repressor cooperativities were consistently small, imply-

ing that different Snail sites did not show more than additive contributions, a finding that is consis-

tent with the induction of localized chromatin compaction by this class of short-range repressor,

which may interfere with simultaneous interactions by repressors (Li and Arnosti, 2011). Activator-

activator cooperativities were in contrast uniformly high, and in general did not show sharp distance

dependencies. Such interactions may represent indirect interactions among activators, and may

reflect joint repulsion of nucleosomes, or cooperative attraction of coactivators important for engag-

ing the transcriptional machinery. The loose cooperative interactions of activators would explain the

need for clustering of these proteins’ binding sites without strong constraints on their exact position-

ing, a flexibility that is seen with many developmental enhancers (Figure 4B; Arnosti and Kulkarni,

2005). This long-distance cooperativity contrasts with the short-range interactions often included in

thermodynamic descriptions of transcription factor cooperativity (Segal et al., 2008). A second

trend noted in many but not all models was the distance-dependence of transcriptional repression, a

feature inferred from previous studies of the Knirps, Snail, and Giant short-range repressors

(Gray et al., 1994; Arnosti et al., 1996; Hewitt et al., 1999); (Figure 4—figure supplement 1B;

Supplementary file 3). Thus, the overall landscape of estimated parameters both reflects certain

known aspects of repression, and sheds light on activator cooperativity, which may involve primarily

indirect, not rigidly constrained interactions in this system.

Figure 3 continued

Twist sites in green, Dorsal in blue, and Snail in red. (C) Heatmap showing global performance of 24 selected

models using 27 different PWM combinations for Dorsal, Twist and Snail. Results were clustered by performance;

columns of PWM settings were arranged with lowest average RMSE values to the left, then rows of models were

arranged with lowest global RMSE towards the top. (D) PWMs used for different settings are denoted by ‘X’s;

Snail3 PWM (used in the rest of this study) shows strong correlation with best model fitting.

DOI: 10.7554/eLife.08445.008
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As we noted in previous studies, estimated parameters from thermodynamic models show differ-

ent levels of sensitivity due to the structure of models and of data (Dresch et al., 2010). We tested

the set of 24 models with synthetic data sets to determine sensitivities, and determined that most

parameters showed extensive mutual dependence and compensation, evidenced by the low first-

order and high second-order sensitivities (Figure 4—figure supplements 1 and 2). The observed

convergence of cooperativity and quenching parameters for a number of models during our data fit-

ting thus suggests that although first-order sensitivities are low, there is important information inher-

ent in these values.

The objective of our study was to develop a quantitative understanding of novel enhancer

sequences, using our models in a predictive mode. To test their efficacy, we first asked whether the

perturbation analysis and modeling of rho was capable of uncovering a key property of modular

enhancers in the embryo, namely the short range of transcriptional repressors that prevents ’cross-

talk’ with other nearby elements (Gray et al., 1994; Courey and Jia, 2001; Payankaulam et al.,

2010). Previous work showed that Snail protein is representative of this major functional class of

repressors, in studies that involved moving Snail binding sites within transcriptional regulatory

regions (Gray et al., 1994). Our perturbation dataset did not involve moving Snail binding sites

around, however, the top third of models in our test set were able to accurately capture the effects

Figure 4. Estimated model parameters suggest biological properties of long-distance activator-activator cooperativity and weak repressor

cooperativity. (A) Representative estimated cooperativity parameters for Dorsal and Twist transcriptional activators show a trend of high levels of

cooperativity with little distance dependence, consistent with indirect, long-range effects i. Dorsal-Dorsal, ii. Dorsal-Twist, iii. Twist-Twist, and iv. Snail-

Snail cooperativity values of model C13Q3. Low values estimated for repressor cooperativity are consistent with weak interactions between Snail

proteins. One of the five runs for fitting this model had significantly higher RMSE than the other four; the corresponding parameters are indicated by a

gray line. Other runs produced similar RMSE and parameters (magenta and blue). (B) Illustration of how global long-range cooperative interactions

between activators permit relaxed constraints on binding site arrangement, while distance-dependent repressor positioning anchors Snail sites to

activator sites.

DOI: 10.7554/eLife.08445.009

The following source data and figure supplements are available for figure 4:

Figure supplement 1. Global trends observed for parameter values and evidence of compensation.

DOI: 10.7554/eLife.08445.010

Figure supplement 2. Model sensitivity analysis.

DOI: 10.7554/eLife.08445.011

Figure supplement 2—source data 1. Sensitivity analysis.

DOI: 10.7554/eLife.08445.012
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of loss of Snail sites from a 700 bp native rho element, as well as correctly characterize modified

enhancers in which novel Snail sites were inserted into active as well as inactive locations

(Figure 5A–C). To determine whether modeling from rho can be broadly extended to other regula-

tory elements, we measured the quantitative output of other enhancers targeted by Dorsal and

Twist, and compared their expression patterns with the predictions of a spectrum of our models.

Heterologous elements from D. melanogaster and homologous rho enhancers from other Drosophila

species were successfully modeled by the models trained on the rho dataset (Figure 5D and

Figure 6).

The previous assays tested the models on elements already known to act as Dorsal response ele-

ments and to bind Dorsal/Twist. To determine whether models would be able to identify and cor-

rectly quantitatively score enhancers embedded in general genomic sequences, we tested the panel

of models on 30–40 kb regions flanking a number of developmental genes. The regions were tiled in

500 bp overlapping sequences and predictions generated with parameters from the rho dataset fit-

ting. Analysis of the neuroectodermal brk and sog genes, as well as the more widely expressed twi

gene showed that most intergenic sequences did not give rise to any appreciable predicted

Figure 5. Application of rho cis-regulatory ’grammar’ to heterologous regulatory elements. Discovery of short-

range repression from modeling of rho perturbation dataset. (A) High ranking model C13Q6 (3rd overall) correctly

predicts distance-dependent significance of Snail sites within enhancer element; specifically, the third but not

fourth construct positioned ectopic Snail binding sites (purple balls) close enough to Dorsal 1 and Dorsal 4 motifs

to repress the expression in ventral-most parts of the embryo. (B) lower ranking model C2Q7 (78th overall) correctly

predicts activation potential, but fails to detect distance effects impacting repression by Snail. (C) Shows cartoons

of the qualitative expression found by Gray and colleagues and the reporter genes tested in embryos (Gray et al.,

1994). (D) Correctly predicted expression patterns of cis-regulatory elements i. D. melanogaster vnd enhancer, ii.

D. melanogaster twi proximal element, iii. D. erecta rho enhancer, and iv. D. ananassae rho enhancer. X-axis

denotes distance from ventral end of the embryo, and Y-axis denotes expression values. Predictions of model

C14Q5 (ranked 1st overall) are shown as red lines; measured average transgene expression in black points.

DOI: 10.7554/eLife.08445.013
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expression (Figure 7 and Figure 7—figure supplement 1). To help one visualize how well the mod-

els agreed (or disagreed) on particular regions, average predictions from all 24 models were also

generated for each 500 bp window, and plotted along with the standard deviation above and below

the mean. A strong consensus among the 24 models for activity was found in two regions flanking

the brk gene; these regions include mapped embryonic enhancers (primary and shadow) that are

known to bind Dorsal and Twist in vivo (Figure 7A). Some regions were less uniformly predicted by

the models, and in these cases there was less uniformity about the prediction for mesodermal or

Figure 6. Thermodynamic models predict quantitative outputs of additional, non-rho enhancers in D. melanogaster and putative rho enhancers from

related drosophilids. (A, B) neuroectodermal elements scored for repression by Snail and activation by Dorsal and Twist, respectively. (C, D)

mesodermal elements scored for lack of repression by Snail and preferential activation in mesoderm, respectively. Lowest ranked models performed

poorly for correct prediction of Snail activity on neuroectodermal enhancers, but were also not liable to make a false positive call on Snail activity for

mesodermal elements (A, C). The D. erecta rho element was correctly called by most models, while some sog, vn, vnd, and brk constructs were less

well fit by most models, indicating that there are likely enhancer-specific features of these elements that are not sampled by rho variations. For

mesodermal elements derived from snail and twist proximal regions, those models that correctly scored Snail activity as low were able to produce more

’mesoderm-specific’ type patterns. No model scored consistently highly across all constructs, but many performed well in a complementary fashion,

suggesting that individual models are not overfit in identical manners. Activity of regulatory elements was experimentally measured in transgenic D.

melanogaster, and output compared with the predicted expression from 24 models thermodynamic models fit on D. melanogaster rho expression.

Fitting for predicted vs. measured expression was assessed using quantitative measures for correct expression as described in Materials and Methods.

Lower scores represent better fits. D.erecta, D.ananassae, D.mojavensis, D.grimshawi, and D.virilis putative rho elements were assayed (sequences

indicated in Supplementary file 1).

DOI: 10.7554/eLife.08445.014
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Figure 7. A panel of models fit on rho enhancer predicts additional neuroectodermal enhancer elements. (A)

Predicted expression activity of a genomic region (36 kb) flanking the neurectodermal brk gene, using a panel of

24 models, including 21 higher and three lower performing models. Blue marks indicate predicted mesodermal

pattern, red neuroectodermal. The transcribed area for brk is indicated by the black rectangle; green peaks

indicate in vivo binding for Dorsal, Twist, and Snail; previously mapped embryonic enhancers are indicated by gray

Figure 7 continued on next page
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neuroectodermal expression, indicating that Snail activity was variably predicted. These predictions

tended to agree well with genomic protein occupancy information, although there were some

regions predicted as enhancers where there was no protein occupancy measured. In contrast, there

were fewer predicted active elements in the region surrounding even-skipped (eve) locus, which is

expressed in an anterior-posterior pattern independent of Dorsal/Twist. In addition, for intergenic

regions flanking eve, there was greater variability among models in predicted expression levels, pat-

terns of expression, and whether an element was even likely to be active (Figure 7B). Similar results

were noted for neuroectodermal and mesodermal-specific short gastrulation (sog) and twist (twi)

genes respectively, as well as the non-target gene fushi tarazu (ftz) (Figure 7—figure supplement

1). The use of multiple models as a predictive ’jury’ may help overcome the overfitting that is inher-

ent in modeling, as the effects of such bias for a given model may be more or less prominent in dif-

ferent contexts. The ensemble approach of averaging the 24 model predictions provides a

convenient metric for transcriptional potential predictions, yet the graphic display of the individual

models also serves an important role, to highlight particular regions where there is a high degree of

uniformity about the prediction (e.g. primary and shadow brk enhancers) and those in which the

models diverge sharply (eve proximal region).

Discussion
Bioinformatic sequence analysis and direct comparison of chromatin features have been used to

identify cis regulatory elements in metazoan genomes, however the significance of patterns of bind-

ing sites within such elements remains obscure. Many models simply rely on the number of sites to

infer some level of activity (Kazemian et al., 2010; Heintzman et al., 2009; Bonn et al., 2012). Our

study indicates that the arrangement and quality of transcription factor binding sites contains an

essential common ’grammar’ of cis-regulatory regions that is shared across distinct regulatory ele-

ments; this stands in contrast to recent studies suggesting that in some cases transcription factors

may recognize their target sequences primarily through protein-protein rather than protein-DNA

interactions (Kulkarni and Arnosti, 2005; Junion et al., 2012). Our models were biologically con-

strained, leading to structural similarities between the different model formulations. Although this

may contribute to the clustering of parameter values we have observed, given the overall quality of

predictions across the genome, we believe these models and parameter values to be biologically

informative. Predictions of enhancer activity from sequence alone remain a challenge, but our study

clearly shows that with a suitable training set, there are identifiable aspects of enhancer composition

that allow for functional insights of mesodermal and neuroectodermal genes of the Dorsal regulon.

Models such as these can guide future studies that mine population- and species-level variation of

genomic sequences (Mackay, 2010).

Two features were important for the successful implementation of this thermodynamic modeling:

development of a high quality perturbation dataset, which in our case involved several dozen care-

fully designed constructs whose transcriptional output was measured quantitatively, and exploration

of a variety of model structures. As we determined when applying these models to genome discov-

ery, using a panel of models provides a more robust platform for interpreting possible regulatory

information; the particular parameter sets developed from fitting the rho perturbation data may rep-

resent a certain level of overfitting with respect to all potential Dorsal/Twist target enhancers. These

Figure 7 continued

rectangles. Rows of plots below the gene show expression patterns of: first row – top model, second row –

composite of all 24 model predictions, third row – average of all 24 model predictions in solid black with standard

deviation from the mean shown above and below in dotted black lines. Note that the average plot is similar to a

plot of a weighted average using RMSEs or AICs to weight each model’s output. (B) Similar scan of the even-

skipped locus (32 kb), which is not regulated by Dorsal, and where few areas are consistently identified as

potential Dorsal/Twist/Snail enhancers.

DOI: 10.7554/eLife.08445.015

The following figure supplement is available for figure 7:

Figure supplement 1. A panel of models fit on rho enhancer predicts additional neuroectodermal enhancer

elements around sog and twi, with lower scores around ftz control region.

DOI: 10.7554/eLife.08445.016
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errors are partially cancelled out when the predictions of several dozen models can be evaluated,

providing in effect a type of ’weather report’ showing a certain chance of regulation at each ele-

ment. Here, we have also used an ensemble approach to combine these predictions, averaging

model predictions; an approach similar to that which was implemented in a recent study by Samee

et. al. (Samee et al., 2015). However, in their work they use a single thermodynamic model formula-

tion and average the predictions obtained from different parameter sets with similar fits to their per-

turbation data.

In addition to recapitulating known facets of cis-regulatory grammar in Drosophila including the

distance-dependent activity of repressors, this modeling approach identified critical quantitative fea-

tures of activator and repressor interactions at enhancers. Specifically, for Dorsal and Twist, key reg-

ulators of dorsal-ventral polarity in the early embryo, our modeling predicts strong distance-

independent homo- and heterotypic cooperativity between activators, but weak cooperativity

between the Snail short-range repressors. These effects are likely linked to chromatin-based activi-

ties of these proteins (Li and Arnosti, 2011). Previous, simpler models suggest that direct protein-

protein interactions within a range of ~50 bp are likely to dominate such functional interactions

(Segal et al., 2008). The extensive survey of model structure allowed us to reject assumptions this

simplifying assumption. These predicted properties of transcription factor activity were robustly

observed for differently structured models, making us confident that they are biologically relevant

and not the result of overfitting, and the initial application of models to genomic sequences points

to the future use of these models in genomic characterization of the Dorsal-Twist regulon. Our ability

to gain insight into the transcriptional landscape of this network is a proof of concept demonstrating

the utility of such a modeling approach for identifying regulatory relationships in other systems.

Our modeling approach was focused on three main regulators of rho activity, and did not take

into account additional factors affecting cis-regulatory elements, such as intrinsic chromatin occu-

pancy, modification of transcription factor activity by signaling, or additional proteins involved in

regulation of some of the enhancers. Nonetheless, future models will incorporate such additional

layers of information in more complex treatments, such as including basal chromatin patterns to bias

the accessibility of transcription factor sites (Bryant et al., 2008; Floer et al., 2010). Our study has

addressed only a fraction of the diversity of factors present in the fly embryo; we deliberately

focused on the early Dorsal regulon for the richness of quantitative resources available to it, includ-

ing transcription factor concentrations, binding specificity of trans-acting factors, and genomic data

on in vivo targets. With continuing advances in genomics and high-throughput technologies, quanti-

tative modeling can extend our knowledge of other regulons, building on extensive descriptions of

gene and protein expression, genomic protein occupancy, and genomic variation. A greater promise

for modeling the quantitative grammar of genomes will be in ’personalized genomics’, in which

investigators predict the effects of sequence variation in human populations, and their physiological

relevance in development and disease (Corradin and Scacheri, 2014; Newman and Young, 2010).

Materials and methods

Reporter gene constructs
The 318-bp rhomboid neurectodermal enhancers were cloned into AgeI and FseI restriction sites of

the pHonda1 pattB-based targeted integration vector (Ip et al., 1992; Sayal et al., 2011). Enhancers

were assembled from 40–60 bp overlapping synthetic 5’-phosphorylated oligonucleotides with 10

bp overhangs, which were annealed, and then ligated into pHonda1. The footprinted binding sites

for Dorsal, Twist and Snail, as well as two predicted E-box motifs thought to be bound by bHLH fac-

tors, were mutated as follows using sequences previously shown to affect rho enhancer activity

(Ip et al., 1992; Jiang et al., 1991):

Dorsal1 - GGGAAAAACAC to TTTAAAAACAC

Dorsal2 - CGGAATTTCCT to CGTCAGTTAAT

Dorsal3 - GGGAAATTCCC to TCTAGATTATC

Dorsal4 - GGGAAAGGCCA to AGGCCTGGTCA

Twist1 - CGCATATGTT to ACGCGTTGTT*

Twist2 - AGCACATGTT to ACGCGTTGTT

Snail1 – CAACTTGCGG to CAGAGCTCGG
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Snail2 - CACCTTGCTG to CAGGAGCTTG*

Snail3 – CCACTTGCGCT to CCGCCGGCGT*

Snail4 – GCACATGTTT to GCATATGTTT

bHLH1 - CATTTG to TGATTC*

bHLH2 - CAAGTG to TAGCGA*

(*novel mutations developed for this study)

The bHLH1 and bHLH2 sites were mutated simultaneously. The mutations are predicted to

reduce the binding score for each transcription factor to near background values. Additional wild-

type enhancers for other genes were created by PCR amplification from genomic DNA or by assem-

bly using oligonucleotides as indicated above. We used the Clusterdraw bioinformatics tool to iden-

tify putative rhomboid regulatory sequences in non-D. melanogaster genomes (Small et al., 1992;

Papatsenko, 2007). Supplementary file 1 contains details of rhomboid and other genes’ enhancer

sequences and their nomenclature. All constructs were integrated into the same site on chromosome

2 (chromosomal location 51D; Bloomington stock center’s stock #24483). DNA microinjections were

performed in-house and by Rainbow Transgenic Flies, Inc. Transgenic lines were made homozygous,

and only embryos from homozygous fly lines were used for confocal microscopy.

Immunofluorescent in situ hybridization
Embryos were collected and fixed as previously described (Small et al., 1992; Kosman et al., 2004;

Janssens et al., 2005). Immunofluorescent in situ hybridization was done essentially as previously

described with some modifications (Kosman et al., 2004; Janssens et al., 2005). All washes were

done in 1 ml volume. About 50 ml of fixed embryos stored at -20˚C in methanol were briefly washed

six times with 100% ethanol, followed by a wash in xylenes for 30 min, and lastly, six times again

with 100% ethanol. The embryos were then washed four times with 50%methanol-50%phosphate

buffer-0.1%-Tween 80 (PBT; 137 mM NaCl, 4.3 mM Na2HPO4, and 1.4 mM NaH2PO4) and then with

PBT four times, each for 2 min with continuous rocking. Embryos were washed in (1:1, v/v ratio)

PBT/ hybridization solution (hybridization solution: 50% formamide, 5X SSC [0.75M NaCl and 75 mM

Na-citrate], 100 mg/mL sonicated salmon sperm DNA, 50 mg/mL heparin, and 0.1% Tween 80) for

10 min, and then briefly in hybridization solution for 2 min. New hybridization solution was added,

and the tubes were placed for 1 hr in a water bath at 55˚C. Previously titrated antisense RNA probes

of digU-labeled lacZ and biotin-labeled eve and sna were heated in 65 mL hybridization solution at

80˚C for 3 min and directly placed on ice for 1 min; hybridization solution was completely removed

from the embryos, and the probes were added to the embryos in a final volume of 65 mL in each

tube, and incubated at 55˚C overnight. After incubation, 1 mL of 55˚C hybridization solution was

added to each tube; all tubes were rocked at room temperature for 1 min, hybridization solution

was changed, and tubes were incubated for another 1 hr at 55˚C, followed by four washes with

hybridization solution for 15 min each at 55˚C and with hybridization solution and PBT (1:1, v/v ratio)

two times at room temperature for 15 min. Five more washes were done with PBT for 10 min with

rocking at room temperature. The embryos were washed with a blocking solution consisting of a

mixture of PBT and 10% casein in maleic acid buffer (Western Blocking Reagent;

Roche, Indianapolis, IN 11921673001) (4:1, v/v ratio). 0.5 ml of a 4:1 v/v mixture of PBT and 10X

blocking solution containing primary antibodies (3 ml of sheep anti-digoxigenin, (Roche

11333089001); 1 ml of mouse anti-biotin (Invitrogen 03–3700) was added, and the tubes were rocked

at 4˚C overnight. Embryos were washed four times each with PBT for 15 min at room temperature.

0.4 ml of mixture of PBT and 10% casein blocking reagent and PBT (4:1 v/v), containing 8.0 ml of

each secondary antibody (donkey anti-sheep Alexa 555 (Invitrogen A-21436) for detection of lacZ

mRNA and donkey anti-mouse Alexa 488 (Invitrogen A-21202) for detection of eve and sna mRNA)

Secondary antibodies that had been pre-absorbed for at least 2 hr against fixed yw embryos in PBT

and 0.4 ml of TOPRO-3 DNA dye (Invitrogen, T3605) were also added to each vial. Tubes were cov-

ered with aluminum foil to protect them from light and incubated overnight with rocking at 4oC.

Embryos were then washed with PBT four times at room temperature for 5 min. with rocking, and

washed in glycerol-PBT (7:3, v/v ratio) for 2 hr until the embryos settled to the bottom of the tubes.

The embryos were then resuspended in 0.4 mL glycerol-PBT (9:1, v/v ratio) and 0.2 mL of Perma-

fluorTM mounting medium (Fisher TA-030FM), mounted on labeled slides, and covered with large

rectangular Corning cover slips (No. 1.5; 24 X 50 mm). The slides were protected from light and

stored flat at room temperature until the embryos were imaged.
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Confocal laser scanning microscopy
An Olympus Spectral FluoView FV1000 Confocal Laser Scanning Microscope (Olympus, Center Val-

ley, PA) configured on an IX81 inverted microscope was used for capturing the confocal fluorescent

images. For each scan of mounted embryos on a particular day of imaging, the same microscope

settings for wild-type rho transgenic embryos were employed to all images to allow for direct com-

parison of intensities. The 488 nm argon laser was used for excitation of the Alexa 488; the 559 nm

solid-state laser was used for excitation of the Alexa 555, and the 635 nm solid-state laser was used

for excitation of the TOPRO-3. Emitted fluorescence was detected using a 500–545 nm band pass fil-

ter for detection of the Alexa 488, a 570–625 nm band pass filter for detection of Alexa 555, and a

655-755 nm band pass filter for detection of TOPRO-3. The pinhole aperture was set to 1.0 Airy

unit. PMT voltage was set at maximum for images obtained from embryos transgenic for the wild-

type rhoNEE enhancer, avoiding saturation of signal intensities. Other constructs were imaged sub-

sequently on a single day without changing any of the microscope settings. Embryos were imaged

at a scan speed of 12.9 s/scan and a Kalman average of 2. A total of 21–30 confocal images through

the Z thickness were acquired for each embryo with a Z-step interval of 1.16 mm per step. CLSM

image data was stored as three separate stacks and projections of images for each channel. The sec-

tion dimensions were 333 mm in length and width, and 1.73 mm in depth. Fluorescence pixels were

recorded as 12-bit images and stored as TIFF files. To control for fading of signal post-staining, rho

constructs containing the wild-type ensemble of activators were stained in parallel and used to nor-

malize overall signal intensity for each imaging day. Stained embryos were imaged within a week to

minimize loss of signal. Differences in probe bleaching, laser intensity, gain settings of the CCD etc.

all impact overall signal intensity. For the 348 control images captured over 53 imaging sessions, the

range of average peak intensities, prior to any background subtraction or normalization, was 56.8 –

255 units (only 3 were at 255, saturation value). The mean was 138.0, with a standard deviation of

36.8. Thus, for the large majority of captured signals, the day-to-day differences in intensities were

not very great, and normalization procedures were not changing values by large factors. The back-

ground signals from non-expressing portions of the embryos were 52.4 +/- 23.8 (S.D.), thus consid-

erably (2X) below the signal; and in all cases the strong signals measured on any day were well

above background measured on any day.

Image processing
All confocal microscopy images were processed in a six-step procedure involving binary image gen-

eration, rotation, resizing, background subtraction, normalization and intensity-value extraction.

Binary image generation, rotation and resizing were done as described previously

(Myasnikova et al., 2005; Ay et al., 2008). The area of interest for all embryos comprised a region

spanning from 40–60% egg length on the anterior-posterior axis. Ten samples, uniformly spaced,

were taken from this region, plotted together and averaged along the dorsal-ventral axis (as is illus-

trated in Figure 1). For background subtraction, analysis of background signals from non-transgenic,

yw flies showed a parabolic-shape (Bergman et al., 2005; Myasnikova et al., 2005), therefore a

quadratic function was fit to the region of the signal representing the dorsal ectoderm, where rho is

not expressed, and subtracted from the raw fluorescent signal. To normalize signals, values from

each image were normalized to the average peak (>95%) wild-type signal obtained during the same

imaging session. This procedure allows for images to be compared for a single construct imaged on

multiple days, as well as to compare intensity from one construct to another. The average intensity

profiles, along with standard error calculations are given in Figure 1—figure supplement 1 and

Supplementary file 2.

For model fitting, we discretized the continuous expression data. We did this by taking the data

in the region from 0–40% of the DV axis (approximately 102 pixels in each image), and averaging

every 6 pixels to result in 17 data points corresponding to this region; hence a data point every 2.5%

of egg height (as is illustrated in Figures 2 and 5). We excluded the dorsal ectoderm from our

modeling efforts, as we wanted to focus our attention on the areas of the embryo with varying

expression levels across mutant constructs.
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Confocal image dataset
For the 59 constructs analyzed, a total of 935 embryo images were taken, with a minimum of 10

images per construct. Late stage 5 (pre-gastrulation) cellularizing embryos were used for analysis,

and eve expression was used to select the embryos in a narrow age range. Embryos were also

selected based on their rotation, so that the rhomboid lateral stripe was near the center of the

image, with a sufficient number of pixels in the dorsal region of the embryo for background

estimation.

Sequence analysis
Because there are slight differences in the reported PWMs for Dorsal, Twist, and Snail, we consid-

ered information from a variety of sources. For Dorsal, PWMs were obtained from two sources: a

PWM generated by MEME analysis (with default settings) of footprinted binding sites found in

FlyReg (Bergman et al., 2005; Noyes et al., 2008), herein referred to as DL1, and bacterial one-

hybrid experiments (Zinzen et al., 2006; Noyes et al., 2008; Ozdemir et al., 2011), referred to as

DL2. The two position probability matrices were then averaged, and the log values calculated from

this averaged matrix were used to yield a third hybrid PWM for Dorsal, DL3. For Twist, PWMs were

used from two different SELEX experiments (Zinzen et al., 2006; Ozdemir et al., 2011), herein

referred to as TW1 and TW2 respectively. Subsequently, averaging the two PWMs as described

above for Dorsal then derived a third hybrid PWM, referred to as TW3. For Snail, three different

sources were used: SELEX data from BDTNP (http://bdtnp.lbl.gov), SELEX data from a previously

published study (Zinzen et al., 2006), and a PWM generated by MEME analysis of footprinted bind-

ing sites found in FlyReg (Bergman et al., 2005; Bailey et al., 2009), herein referred to as SN1, SN2

and SN3 respectively. For analysis of enhancer sequences, we used the MAST program from the

MEME software suite to identify putative binding sites (Zinzen et al., 2006; Bailey et al., 2009). The

thresholds used in thermodynamic modeling were evaluated by recovery of known footprinted bind-

ing sites, although for some settings not all PWMs were able to find all footprinted sites. P-values

for binding sites used in Figure 2–5 were set at p=0.001 for all factors. PWMs used were: DL1, TW3

and SN3.

Quantitative data for dorsal, twist, and snail concentrations
Quantitative values for concentrations of Dorsal, Twist and Snail were obtained for early Drosophila

embryo (stage 5) from a previously published study (Fakhouri et al., 2010; Zinzen et al., 2006). The

published data consisted of 1000 average concentrations for each protein uniformly distributed

along the DV axis. Since we were only concerned with the portion of the embryo in the ventral

region, we took the region from 0 – 40% of the DV axis and chose a subset of the 1000 data point

(17 uniformly distributed data points corresponding to this region; hence a data point every 2.5% of

egg height) as our Dorsal, Twist, and Snail concentration gradients. The data used for modeling is

given below:

Dorsal: 0.85326 0.77516 0.68914 0.59981 0.51152 0.42792 0.35175 0.28472 0.22757 0.18021

0.14193 0.11165 0.08811 0.07001 0.05618 0.0456 0.03746

Twist: 0.93224 0.88219 0.81279 0.70658 0.54216 0.34085 0.17674 0.08318 0.03873 0.01842

0.00892 0.00433 0.00208 0.00097 0.00044 0.00019 0.00008

Snail: 0.985 0.976 0.967 0.957 0.902 0.441 0.043 0.005 0.001 0 0 0 0 0 0 0 0

Structure of models
The modeling approach implemented in this study is a thermodynamic-based modeling approach,

similar to models used in previous studies (Zinzen et al., 2006; Segal et al., 2008; Fakhouri et al

2010; He et al., 2010;). These models are derived using the law of mass action and thermodynamic

equilibrium assumptions. They take information regarding the number and arrangement of TF bind-

ing sites, as well as TF concentrations, and output predicted levels of gene expression.

Here, we use thermodynamic models that assume RNA polymerase (RNAP) is recruited by bound

TFs, and thus model transcriptional output as proportional to the probability of the enhancer being

in an ‘active state’. Other assumptions used by all models tested in this manuscript include:

. An ‘active state’ is defined as any state of the enhancer with at least one activator bound and
any repressor(s) bound are not actively repressing (quenching) the bound activator(s),
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. TF binding affinities are directly proportional to PWM scores obtained using MAST, with one
proportionality (scaling) constant per TF,

. interactions (i.e. cooperativity and quenching) only occur between adjacently bound TFs,

. and TFs can not bind simultaneously to overlapping binding sites; competitive binding occurs.

To test different hypotheses about biochemical mechanisms of transcription factor activity on

enhancers, several different schemes involving transcription factor cooperativity and short-range

repression were implemented in our modeling effort. To create models that considered the diverse

cooperativity and repression (referred to as quenching) relationships we propose, all possible pair-

wise combinations of the fifteen cooperativity and eight quenching approaches were considered,

generating 120 different models.

For short-range repression, we used three continuous functions (Linear-Q2, Logistic-Q3 and

Gaussian Decay-Q4) to describe change in repressor activity the percentage of time that the repres-

sor is actively repressing (or quenching) an adjacently bound activator, as a function of the distance,

d, in base pairs, from the repressor binding site to the activator binding site.

1. Linear f(d)= a+bd
2. Logistic Decay f(d) = 2a/(1+e(d/b))
3. Gaussian Decay f(d) = ae(-dd/b)

When implemented, a=1 and b>0 is a model parameter for quenching functions. For cooperativ-

ity functions, ‘a’ and ‘b’ are both model parameters. An alternative approach involved ’binning’ dis-

tances between activators and repressors. We fit quenching parameters (Q) for each of the bins. We

also used the non-monotonic ’quenching’ function (Q1) derived from our analysis of short-range

repression by the Giant protein in synthetic enhancer constructs (Hansen et al., 2003;

Fakhouri et al., 2010; Suleimenov et al., 2013).

The binned quenching schemes are described as follows. The distances between binding sites

were calculated from the center of the binding sites. Because of minimal center-to-center distances

between Snail and Twist or Dorsal, the actual minimal distance possible is 11 bp in the wild-type rho

enhancer sequence.

Scheme Q5: q1: 1–25 bp, q2: 26–50 bp, q3: 51–75 bp, q4: 76–100 bp

Scheme Q6: q1: 1–35 bp, q2: 36–70 bp, q3: 71–105, q4: 106–140 bp

Scheme Q7: q1: 1–45 bp, q2: 46–90 bp, q3: 91–135, q4: 136–180 bp

Scheme Q8: q1: 1–10 bp, q2: 11–20 bp. . . q9: 81–90 bp, q10: 91–100 bp

For cooperativity functions, we use the same functions as above (1–3) to describe the multiplica-

tive effect of cooperative binding between two adjacently bound activators, as a function of the dis-

tance, d, in base pairs, between the activator binding sites. When implemented as cooperativity

functions, a>0 and b>0 are both model parameters.

We considered two different ways of estimating cooperativity between transcription factors: het-

erotypic (between Dorsal and Twist) and homotypic (Dorsal-Dorsal, Twist-Twist, or Snail-Snail). We

tested three different continuous functions (Linear-C1, Logistic-C2 and Gaussian Decay-C3), which

were parameterized with a single pair of parameters for all homotypic interactions, and separate val-

ues for Dorsal-Twist cooperativity. Additional models with ’binned’ distances were also considered.

For each of the binned schemes, we used a simpler form in which all homotypic interactions are

parameterized with the same values, and a more complex form where each type of protein interac-

tion for a given bin size receives distinct parameters. Each of these schemes therefore generates

two model forms – binned and protein-binned respectively.

Schemes C4 and C10: c1: 1–25 bp, c2: >25 bp

Schemes C5 and C11: c1: 1–50 bp, c2: >50 bp

Schemes C6 and C12: c1: 1–75 bp, c2: >75 bp

Schemes C7 and C13: c1: 1–50 bp, c2: 51–100 bp, c3: >101 bp

Schemes C8 and C14: c1: 1–60 bp, c2: 61–120 bp, c3: >121 bp

Schemes C9 and C15: c1: 1–70 bp, c2: 71–140 bp, c3: >141 bp

For a summary of parameters in each model, see Table 1.

Parameter estimation
A global parameter estimation strategy, CMA-ES (Covariance Matrix Adaptation - Evolutionary Strat-

egy) was applied to estimate the parameters (Hansen et al., 2003; Segal et al., 2008;
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Fakhouri et al., 2010; Suleimenov et al., 2013). Root mean square error (RMSE) was used as a mea-

sure of performance of different cooperativity and quenching schemes, as described previously

(Matsumoto and Nishimura, 1998; Segal et al., 2008; Fakhouri et al., 2010). This RMSE was calcu-

lated using the 17 discrete expression points, as described above, and corresponding data points

coming from the model predictions. Note that we used these 17 points, taken from 0–40% of the

DV axis, and RMSE which gives each point equal weight, because we wanted to focus on the region

of the embryo in which varying expression levels were observed and use the same scoring method

with no bias across all construct. Due to the stochastic nature of starting points and fixed maximum

number of runs for CMA-ES, estimations were run five times, which was empirically found to be suffi-

cient to produce similar, minimal RMSE values for at least three of the runs in at least 47% of cases.

Model comparison
Since we tested a number of different model formulations, to evaluate the performance of an

ensemble of models, we used multiple different approaches. In one approach (results shown in Fig-

ure 7 and Figure 7—figure supplement 1), we calculated the average expression profiles of a panel

of models on 500 bp fragments from genomic sequences flanking a number of developmental

genes. We also investigated ensemble approaches using weighted averages, including an average

weighted by the model’s performance (one minus the RMSE), and an average weighted by the mod-

el’s AIC (Akaike Information Criteria), a fitness measure which penalizes for the number of model

parameters. The results obtained from these three ensemble approaches were similar. Therefore,

only the unweighted average expression profiles are shown in Figure 7 and and Figure 7—figure

supplement 1.

Computations
All image processing was done using ImageJ and MATLAB. Binding site locations were determined

using the MAST algorithm in the MEME suite (Bailey et al., 2009). All thermodynamic modeling was

done using code written in C++ and run on the HPCC (High Performance Computational Cluster) at

Michigan State University. Scripts to run MAST, create input files and run multiple versions of the

model were written in C++ and Python. The C++ source code for the thermodynamic models used

is available at http://www.github.com/arnosti-lab/ThermoModel, the MEME suite is available at

http://meme.ebi.edu.au/meme/doc/download.html, and the C-source code for the CMA–ES algo-

rithm is available at http://www.lri.fr/ ~hansen/cmaes_inmatlab.html#cpp (Bailey and Gribskov,

1998; Hansen et al., 2003).

Cross validation
Systematic cross-validation
Constructs were divided into five sets based on the type of mutation as follows; constructs are num-

bered as shown in Supplementary file 1.

Dorsal site knockouts: Constructs 2,3,6,7,8,11,12,15,16

Twist site knockouts: Constructs 4,5,17

Dorsal and Twist site knockouts: Constructs 9,10,13,14,18,19,20,21

Snail site knockouts: Constructs 23–33

bHLH site knockouts: Constructs 34–38 (see Supplementary file 1 for construct details).

Parameter estimation was performed using 24 selected models while leaving out data from each

of the five sets of constructs. Expression was subsequently predicted for all 38 constructs using

parameters obtained, and RMSE over the constructs left out as well as over all 38 constructs was

used to analyze the effects of data provided by each set of constructs to the model.

Random, five fold cross-validation
The 38 constructs to be fitted were separated into 5 randomized partitions of size eight (three parti-

tions) and seven (two partitions). The partitions were computer-generated using the Python random.

shuffle method, which is based on the Mersenne Twister algorithm (Zinzen et al., 2006;

Matsumoto and Nishimura, 1998; Dresch et al., 2010). This process was repeated five times to

give five different partitioning schemes. All 38 constructs were then predicted using parameters

from each run, and average RMSE of the constructs left out was considered.
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Sensitivity analysis
Sensitivity analysis was performed for the 24 selected models as previously described (Zinzen et al.,

2006; Dresch et al., 2010). Uninformative parameters, i.e., those with empty bins, were excluded

from the analysis. First-order relative sensitivity denotes the sensitivity of model to changes in values

of a particular parameter, while second-order sensitivity denotes the sensitivity of model to changes

in values of a parameter in combination with other parameters. A parameter with high first-order rel-

ative sensitivity is likely to be informative on its own, whereas a parameter with high second-order

relative sensitivity implies that the model may have high predictive power, but the parameter values

are not informative on their own due to inter-parameter dependencies.

Scoring of predictions from experimentally measured enhancers cloned into pHonda1 that were

not included in the model fitting shown in Figure 6.

For neurectodermal enhancers, a four-point scheme was applied to score Snail repression as well

as neurectodermal activation. Snail repression was measured at nucleus 4. Snail repression was

scored as:

1. wild-type, complete repression (expression below 0.1, where 1.0 represents signal in neuroec-
todermal regions)

2. moderate levels of repression (expression 0.1-0.3)
3. weak repression (expression 0.3-0.5)
4. very weak repression (expression 0.5-1.0)

Neurectodermal activation was scored at the peak in a four-point scheme:

1. Difference between predicted and measured peak expression is less than 0.2
2. Difference between predicted and measured peak expression is between 0.2 and 0.5
3. Difference between predicted and measured peak expression is between 0.5 and 0.7
4. Difference between predicted and measured peak expression is greater than 0.7

For mesodermal enhancers, scoring was done on a five-point scale for activation and four-point

scale for Snail activity. The activation score is given below:

1. Mostly mesoderm activation, difference between predicted and measured peak expression is
less than 0.2

2. Mostly mesoderm activation, difference between predicted and measured peak expression is
between 0.2 and 0.4

3. Mostly mesoderm activation, difference between predicted and measured peak expression is
between 0.5 and 0.7

4. Low mesoderm activation, high neurectoderm activation, low dorsal ectoderm activation
5. Low mesoderm activation, high neurectoderm activation, high dorsal ectoderm activation

Snail repression scale is given below:

1. No Snail activity; putative mesoderm activation is equal to >1.5 times peak neurectoderm
expression

2. Some Snail activity; mesoderm activation = peak neurectoderm expression
3. High snail activity; mesoderm activation< neurectoderm activation
4. Highest snail activity; low expression in mesoderm (<0.1 intensity value)
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