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Objective:Glioma is the most common and fatal primary brain tumor that has a high risk

of recurrence in adults. Identification of predictive biomarkers is necessary to optimize

therapeutic strategies. This study investigated the predictive efficacy of a previously

identified radiosensitivity signature as well as Exportin 1 (XPO1) expression levels.

Methods: A total of 1,552 patients diagnosed with glioma were analyzed using

the Chinese Glioma Genome Atlas and The Cancer Genome Atlas databases. The

radiosensitive and radioresistant groups were identified based on a radiosensitivity

signature. Patients were also stratified into XPO1-high and XPO1-low groups based

on XPO1 mRNA expression levels. Overall survival rates were compared across

patient groups. Differential gene expression was detected and analyzed through

pathway enrichment and Gene Set Enrichment Analysis (GSEA). To predict 1-, 3-, and

5-years survival rates for glioma patients, a nomogram was established combining the

radiosensitivity gene signature, XPO1 status, and clinical characteristics. An artificial

intelligence clustering system and a survival prediction system of glioma were developed

to predict individual risk.

Results: This proposed classification based on a radiosensitivity gene signature

and XPO1 expression levels provides an independent prognostic factor for

glioma. The RR-XPO1-high group shows a poor prognosis and may benefit most

from radiotherapy-combined anti-XPO1 treatment. The nomogram based on the

radiosensitivity gene signature, XPO1 expression, and clinical characteristics performs

more optimally compared to the WHO classification and IDH status in predicting survival

rates for glioma patients. The online clustering and prediction systems make it accessible

to predict risk and optimize treatment for a special patient. The cell cycle, p53, and focal

adhesion pathways are associated with more invasive glioma cases.

Conclusion: Combining the radiosensitivity signature and XPO1 expression is a

favorable approach to predict outcomes as well as determine optimal therapeutic

strategies for glioma patients.
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INTRODUCTION

Glioma is one of the most common malignant primary brain
tumors in adults that is known for a high recurrence risk and
fatality. After surgery and adjunct therapies such as radiotherapy
and chemotherapy, the survival rates for patients diagnosed with
glioma vary widely (1). This variation has been considered to
result from histological grade. However, with progress in genetic
and molecular biology, molecular biomarkers were discovered
and the WHO classified gliomas based on histological and
molecular parameters (2). Due to the high heterogeneity and
intricacy, a single biomarker does not fully characterize tumor
properties for gliomas and more accurate predictions using
multi-parameter markers is required. Thus, a multivariate tool
is needed to predict the prognosis and to guide proper treatment
for glioma.

A “31-gene signature” identified from four different
published microarrays in NCI-60 cancer cell lines represents
radiosensitivity (3). This signature has been validated in many
malignancies including GBM and LGG cohorts (3–7). However,
the predictive significance of the 31-gene signature in glioma
patients is unclear and is not a signature currently applied in
clinical practice. Exportin 1 (XPO1) is a special specific carrier
protein that transports tumor suppressor proteins such as
p53, p73, FOXO, pRB, BRCA1, and PP2A. Expression levels
of XPO1 are elevated in cancer cells, which leads to excessive
nuclear export and dysfunction of tumor suppressor proteins.
XPO1 overexpression also correlates with poor prognosis and
radiotherapy resistance in some cancers (8–12). Therefore,
XPO1 has been identified as an oncogenic target and an inhibitor
against XPO1 has been approved for the treatment of multiple
myeloma. For glioma patients, XPO1 is a promising treatment
modality and is being tested in clinical trials (NCT02323880,
NCT01986348). However, further understanding is required to
develop effective clinical XPO1-targeted therapeutic strategies
against glioma.

This study aimed to establish a promising predictive tool for
glioma prognosis and to distinguish specific patients who can
benefit from combinational radiotherapy and XPO1 inhibition.

MATERIALS AND METHODS

CGGA and TCGA
Clinicopathological data and transcriptome sequencing data
for glioma samples were obtained from three publicly available
data sets including the Chinese Glioma Genome Atlas (CGGA
http://www.cgga.org.cn/), The Cancer Genome Atlas (TCGA
https://xenabrowser.net/), and GSE16011 data sets (GEO https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011).
Transcriptome sequencing data on CGGA for glioma samples
were generated using the Illumina Hiseq platform. After
excluding patients that did not have survival data (n = 81),
radiotherapy (n= 87), or histological type (n= 5) data recorded
as well as those that did not contain gene expression information
(n = 1), a total of 889 cases were included in the CGGA cohort.
For TCGA data, the gene expression profile was measured using
the Illumina HiSeq platform. After excluding cases that did

not contain survival data (n = 12) or intact gene expression
information (n = 6), a total of 663 cases were included in the
TCGA cohort. A total of 1,552 glioma samples informative for
overall survival were included in this analysis. After excluding
patients without follow-up information, a total of 264 cases were
included in GEO cohort.

Group Clustering
Based on the expression profile for the 31-gene signature (31-
GS), the CGGA and TCGA cohorts were divided into two groups
using the k-means method. Clusters with poor progress were
defined as the radioresistant group (RR groups) and the others
were considered as radiosensitive groups (RS groups).

XPO1 mRNA expression levels were analyzed to determine
XPO1 expression. The package “survivalROC” was used to divide
samples into XPO1 high-expression vs. XPO1 low-expression
group (13). Differences between XPO1-high and XPO1-low
groups were depicted using bar graphs. Clinicopathological
features between the two groups were compared. Furthermore,
samples were defined into additional cohorts including the
RR-XPO1-high, RR-XPO1-low, RS-XPO1-high, and RS-XPO1-
low groups. Overall survival (OS) was analyzed for all groups.
Multivariate analysis was used to identify independent factors
associated with prognosis.

Nomogram Building and Validating
The CGGA cohort was defined as the primary cohort and
the TCGA cohort and GEO cohort were identified as the
validation cohorts. A nomogram was established based on results
from the multivariate analysis conducted by the “rms” package
in R version 3.6. External validation was used to confirm
predictive accuracy of OS in the validation cohort. The C-
index was applied to assess the accuracy of three predictive
systems including the nomogram (CNSWHO classification) and
CNS WHO classification combined with the mutation status
of isocitrate dehydrogenase (IDH). Differences between the
predicted probabilities of the nomogram and actual outcomes
were evaluated using the calibration curve. To translate our
research into clinical application, we constructed an artificial
intelligence clustering system and a survival prediction system of
glioma. These tools are available online.

Discovery of Associated Biological
Pathways
To explore the underlying mechanisms linked to XPO1
expression and radiosensitivity, differentially expressed
genes (DEGs) between the RR-XPO1-high and RS-XPO1-
low groups were separately identified using the “edgeR” R
package. When there was a false discovery rate (FDR) q < 0.01
and fold change (FC) > 2.0, significant genes were defined
(Supplementary Images 1A,B). Similarities of significant
genes in both the CGGA and TCGA cohorts were classified
as significant DEGs (Supplementary Images 1C,D). Next,
upregulated and downregulated PPI networks were built
using Cytoscape software (version 3.6.0). The Cytoscape
plug-in Molecular Complex Detection (MCODE) was applied
to investigate modules in protein–protein interaction (PPI)
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FIGURE 1 | Identification of the radiosensitive (RS) and radioresistant (RR) groups. (A) A heatmap illustrating the 31-gene signature, XPO1 expression, ERGF

expression, IDH mutation status, and WHO classification in every sample from the CGGA cohort. Columns represent samples and rows represent gene expression

and clinical characters. (B) Differences in OS between the two clusters in the CGGA cohort. The cluster with more satisfactory OS was defined as the RS group (P <

0.0001). (C) A heatmap illustrating the 31-gene signature, XPO1 expression, ERGF expression, IDH mutation status, and WHO classification in every sample from the

TCGA cohort. (D) Differences in OS between the two clusters in the TCGA cohort. The cluster with more satisfactory OS was defined as the RS group (P < 0.0001).

networks. Another Cytoscape plug-in termed ClueGo was used
to detect corresponding Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways where genes in notable modules
were enriched. Gene Set Enrichment Analysis (GSEA) was
used to validate KEGG pathways uncovered using GSEA
software (version 4.0.1).

Statistical Analyses
Statistics were performed using the SPSS (version 23.0) and R
Studio software (version 1.1.453). Theχ

2 test or Fisher’s exact test
was used to compare categorical variables. Continuous variables
were compared using the t test when normally distributed and
the Mann–Whitney U test was used to compare continuous
variables with an abnormal distribution. Survival curves were
generated using the Kaplan–Meier method and analyzed using

the log-rank test. Cox regression analysis was used for
multivariate analyses.

RESULTS

Validation That the 31-Gene Signature Is
Related to Radiosensitivity in Glioma
The 31-gene signature was identified using an integrative meta-
analysis of published microarray data for NCI-60 cancer cells (3).
Based on the gene signature, all patients (N = 889) in the CGGA
cohort were divided into two clusters including cluster 1 (N =

442, 49.7%) and cluster 2 (N = 447, 50.3%) (Figure 1A). Patients
in cluster 2 showed prolonged OS compared to patients in cluster
1 (HR= 3.13, 95% CI: 2.60–3.76; P < 0.0001). Therefore, cluster
1 in the CGGA cohort was defined as the RR group and cluster
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FIGURE 2 | Relationship between XPO1 expression and clinicopathological

features. Association between XPO1 expression and different subgroups

stratified by WHO classification (A,B), IDH mutant status (C,D), and

radiosensitivity status (E,F) in the CGGA and TCGA cohorts (*P < 0.05, **P <

0.01, ****P < 0.0001, NSP ≥ 0.05).

2 was defined as the RS group (Figure 1B). However, in the
TCGA cohort (N = 662), 267 (40.3%) cases were divided into
cluster 1 and 395 (59.7%) cases were divided into cluster 2
(Figure 1C). Similarly, patients in cluster 2 exhibited prolonged
OS (HR = 4.92, 95% CI: 3.76–6.44; P < 0.0001). Thus, cluster
1 was nominated as the RR group and cluster 2 was nominated
as the RS group (Figure 1D). Clustering for GBM was shown in
Supplementary Image 3.

XPO1 Expression Levels and
Clinicopathological Features
To characterize the expression patterns of XPO1 in gliomas,
RNA-sequencing data from samples in the CGGA and TCGA
cohorts were analyzed. Glioblastoma (WHO IV) exhibited the
highest XPO1 expression levels compared to WHO II and
WHO III gliomas in the CGGA cohort (Figure 2A). Similarly,
glioblastoma (WHO IV) revealed a higher expression of XPO1
compared to WHO II gliomas, with no differences compared
to WHO III gliomas in the TCGA cohort (Figure 2B). These
results indicated a significant positive correlation between XPO1
expression and glioma malignancy. Notably, the RR group
showed significantly higher expression of XPO1 than the RS
group in the CGGA (Figure 2E). However, no significant
differences were found between the RR and RS groups in the
TCGA cohort (Figure 2F).

To explore the prognostic significance of XPO1 and define the
cutoff point, a time-dependent ROC curve was used to predict
3-years OS. The AUC of the ROC curve was 0.604 for 3-years
survival (Figure 3A), indicating the predictive accuracy of this
prognostic model in the CGGA cohort. The AUC of the ROC
curve for the TCGA cohort was 0.613 (Figure 3D). Based on
the cutoff point, samples were divided into XPO1-low expression
and XPO1-high expression groups. Next, the correlation between
XPO1 expression levels and clinicopathological features was
interrogated. As shown in Tables 1, 2, XPO1 levels did not
correlate with sex, age, and IDH mutation status, but a
correlation was confirmed between XPO1 levels and histological
and radiosensitivity types in the CGGA cohort. Tumors with
high XPO1 expression levels were enriched in higherWHO grade
tumors and the RR group. The results of the TCGA cohort
showed similar trends with XPO1 expression levels where there
were no correlations between expression levels and sex, age, and
IDHmutant status. Likewise, a correlation existed between XPO1
expression levels and histological grade. Interestingly, XPO1
expression did not correlate with radiosensitivity type in the
CGGA cohort.

Both XPO1 Expression and the 31-Gene
Signature Predict Overall Survival
As revealed by the Kaplan–Meier method, overexpression of
XPO1 predicted a poor prognosis in the CGGA and TCGA
cohorts (median survival: 18.9 months vs. 52.7 months, P <

0.0001 in the CGGA cohort; 40.7 vs. 94.3 months, P = 0.01
in the TCGA cohort) (Figures 3B,E). Furthermore, the Kaplan–
Meier curve for overall survival is shown in Figures 3C,F,
where the four subgroups are divided based on a combination
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FIGURE 3 | Prognostic significance of XPO1 expression and 31-GS in different subgroups. (A,D) Definition of XPO1-high and XPO1-low groups by the ROC curve in

the CGGA and TCGA cohorts. (B,E) Prognostic significance of XPO1 expression in the CGGA and TCGA cohorts. (C,F) Prognostic differences of subgroups stratified

by combining XPO1 expression and 31-GS in the CGGA and TCGA cohorts. (G,H) Prognostic significance of subgroups stratified by combining XPO1 expression and

31-GS for patients with and without RT. (I–L) Comparison of OS rates stratified by RT in the four subgroups stratified by combining XPO1 expression and 31-GS.
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TABLE 1 | Demographics and clinicopathologic characteristics for glioma patients

in the CGGA cohort.

Total XPO1 low XPO1 high P-value

expression expression

Sex

Male 530 (60%) 387 (73%) 143 (27%) 0.58

Female 359 (40%) 256 (71%) 103 (29%)

Age

<40 345 (39%) 237 (69%) 108 (31%) 0.065

≥40 543 (61%) 405 (75%) 138 (25%)

Missing 1 (0%) 1 (100%) 0 (0%)

IDH_mutant_status

Wild type 385 (43%) 269 (70%) 116 (30%) 0.59

Mutant 460 (52%) 330 (72%) 130 (28%)

Missing 44 (5%) 44 (100%) 0 (0%)

WHO_grade

WHO II 261 (29%) 209 (80%) 52 (20%) 0.0001

WHO III 294 (33%) 218 (74%) 76 (26%)

WHO IV 334 (38%) 216 (65%) 118 (35%)

Radiosensitivity

RR_group 442 (50%) 295 (67%) 147 (33%) 0.0002

RS_group 447 (50%) 348 (78%) 99 (22%)

Radio_status

Yes 741 (83%) 531 (72%) 210 (28%) 0.37

No 148 (17%) 112 (76%) 36 (24%)

Chemo_status

Yes 608 (68%) 435 (72%) 173 (28%) 0.87

No 259 (29%) 187 (72%) 72 (28%)

Missing 22 (2%) 21 (95%) 1 (5%)

of XPO1 expression levels (XPO1-high and XPO1-low) and
radiosensitivity types (RR and RS). Differences in overall survival
rates were shown for the four subgroups. (P < 0.0001) The RR-
XPO1-high group exhibited the worst overall survival, with a
median survival time of 12.7 months (95% CI: 10.2–15.4) in the
CGGA cohort and 17.5 months (95% CI: 15.9–19.4) in the TCGA
cohort. The best overall survival was shown for the RS-XPO1-
low group, with a median survival time of 98.5 months (95%
CI: 81.9–NA) in the CGGA cohort and 144.7 months (95% CI:
94.3–NA) in the TCGA cohort. The median survival of the RR-
XPO1-low and RS-XPO1-high groups was 22.8 months (95% CI:
18.0–27.5) and 52.1 months (95%CI: 36.4–106.2), respectively, in
the CGGA cohort and 25.1 months (95% CI: 14.7–75.0) and 79.8
months (95% CI: 57.8–113.8), respectively, in the TCGA cohort.
Multivariate analysis demonstrated that age of diagnosis, IDH
mutation status, histological grade, chemotherapy treatment,
and radiosensitivity treatment based on signature-combined
XPO1 expression status were independent risk factors for OS.
Univariate and multivariate analyses are listed in Table 3.

To investigate the efficacy of the predictive assay combining
31-GS and XPO1 expression, patients were divided into the
RT and no-RT groups and survival differences were analyzed
between the four subgroups defined by 31-GS and XPO1
expression. In the RT group, significant survival differences were

TABLE 2 | Demographics and clinicopathologic characteristics for glioma patients

in the TCGA cohort.

Total XPO1 low XPO1 high P-value

expression expression

Sex

Male 379 (57%) 137 (36%) 242 (64%) 0.87

Female 282 (43%) 100 (35%) 182 (65%)

Missing 1 (0%) 1 (100%) 0 (0%)

Age

<40 252(38%) 85 (34%) 167 (66%) 0.36

≥40 410 (62%) 153 (37%) 257 (63%)

IDH_mutant_status

Wild type 228(34%) 77 (34%) 151 (66%) 0.44

Mutant 419 (63%) 155 (37%) 264 (63%)

Missing 15 (2%) 6 (40%) 9 (60%)

WHO_grade

WHO II 248 (37%) 107 (43%) 141 (57%) 0.008

WHO III 261 (39%) 87 (33%) 174 (67%)

WHO IV 153 (23%) 44 (29%) 109 (71%)

Radiosensitivity

RR_group 267 (40%) 100 (37%) 167 (63%) 0.51

RS_group 395 (60%) 138 (35%) 257 (65%)

Radio_status

Yes 418 (63%) 138 (33%) 280 (67%) 0.044

No 244 (37%) 100 (41%) 144 (59%)

CHEMO_status

Yes 383 (58%) 122 (32%) 261 (68%) 0.011

No 279 (42%) 116 (42%) 163 (58%)

shown for the four subgroups in pairwise comparison (P <

0.05) (Figure 3G). However, in the no-RT group, there were
no obvious differences between survival conditions of the RS-
XPO1-high and RS-XPO1-low groups (P = 0.60), while there
were significant survival differences shown for other pairwise
comparisons (Figure 3H). Moreover, the beneficial value of
radiotherapy for patients in different subgroups was further
investigated (Figures 3I–L). As indicated by the data, only
patients in the RR-XPO1-high group were able to benefit from
radiotherapy (P = 0.00025).

A Nomogram to Predict OS in Glioma
Patients
Since the radiosensitivity signature and XPO1 expression proved
to be optimal in predicting the prognosis for glioma patients,
a nomogram combining the radiosensitivity signature, XPO1
expression, and clinical characteristics was next generated. The
CGGA cohort was defined as the training cohort and the
TCGA cohort was defined as the validation cohort. Multivariable
Cox regression analysis was used to determine independent
factors for OS. According to the data, histological grade, age,
chemotherapy, IDH status, radiosensitivity signature, and XPO1
expression were indicated to be predictors. A clinical survival
prediction model was constructed based on the data in the
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TABLE 3 | Univariate analysis and multivariate analysis of patients.

Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Sex

Female Reference

Male 1.057 0.914–1.224 0.453

Age

<40 Reference Reference

≥40 2.080 1.773–2.439 <2e−16 1.237 1.039–1.474 0.017

IDH_mutant_status

Mutant Reference Reference

Wild type 4.524 3.879–5.275 <2e−16 1.836 1.498–2.251 4.88e−09

WHO_grade

WHO II Reference Reference

WHO III 2.805 2.240–3.512 <2e−16 3.055 2.380–3.921 <2e−16

WHO IV 10.147 8.152–12.629 <2e−16 6.279 4.759–8.286 <2e−16

Radio_status

Yes Reference

No 1.189 0.9858–1.435 0.0702

CHEMO_status

Yes Reference

No 1.524 1.290–1.801 7.12e−07 0.691 0.576–0.830 7.36e−05

Radiosensitivity and XPO1 status

RR_XPO1_high Reference Reference

RR_XPO1_low 0.6473 0.5412–0.7742 1.91e−06 0.790 0.658–0.948 0.011

RS_XPO1_high 0.2483 0.1514–0.2311 <2e−16 0.583 0.451–0.754 3.75e−05

RS_XPO1_low 0.1871 0.1514–0.2311 <2e−16 0.433 0.340–0.552 1.39e−11

training cohort and presented in a nomogram for the prediction
of 1-, 3-, and 5-years survival rates (Figure 4A). Subsequently,
the nomogram was externally validated using the validation set
through comparison of the C-index of OS and calibration plots.
In the TCGA cohort, the independent C-index of histological
grade and the histological grade combined with IDH status
were 0.78 (95% CI: 0.76–0.81) and 0.83 (95% CI: 0.81–0.86),
respectively, which was sharply lower than the C-index of the
nomogram, which was 0.86 (95% CI: 0.84–0.88) (P < 2.2e−16).
The results for the GEO cohort were consistent with those
of the TCGA cohort. The independent C-index of histological
grade and the histological grade combined with IDH status
were 0.64 (95% CI: 0.61–0.67) and 0.66 (95% CI: 0.62–0.69),
respectively, which was sharply lower than the C-index of
the nomogram, which was 0.71 (95% CI: 0.67–0.75) (P <

2.2e−16). As indicated by Figures 4B–G, the calibration curves
for the 1-, 3-, 5-years OS rates were well-predicted in the
validation cohorts.

To translate our research into clinical application, we

constructed an artificial intelligence clustering system and a

survival prediction system of glioma. They are available at https://
online-survival-stratification-system-for-gliomas.shinyapps.io/
cluster_shiny/ and https://online-survival-stratification-system-

for-gliomas.shinyapps.io/dynnomapp/.

XPO1 Expression and Associated
Biological Processes
To explore the biological mechanisms associated with XPO1
overexpression in gliomas, DEGs were identified by comparing
the mRNA expression profiles between the RR_XPO1_high and
RS_XPO1_low groups. A total of 1222 DEGs in the CGGA
and 614 DEGs in the TCGA cohort were identified, where 579
DEGs overlapped. There were 290 DEGs that were upregulated
and 277 genes that were downregulated. Based on the SRTING
database, PPI networks were built for upregulated genes and
downregulated genes.

The upregulated gene network consists of a total of 250 nodes
and 2005 protein pairs (Figures 5A,C). Three modules with
scores >10 were detected by MCODE. Furthermore, enrichment
pathways and hub nodes of module 1, module 2, and module
3 are shown in Figures 5B–G. In module 1 (score: 29.667),
the cell cycle and p53 signaling pathway were identified as
significant (Figure 5C). In module 2 (score: 15.556), the IL-
17 and HIF-1 signaling pathways were identified as significant
(Figure 5E). In module 3 (score: 12.312), focal adhesion
and ECM–receptor interaction pathways showed significant
biological effects (Figure 5G).

As for the downregulated gene network, a total
of 232 nodes and 1645 protein pairs were included
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FIGURE 4 | Construction and validation of the nomogram based on clinical parameters and subgroups stratified by XPO1 expression and 31-GS. (A) Nomogram

based on clinical parameters and subgroups stratified by XPO1 expression and 31-GS. (B–D) Calibration curves for predicting patient survival at 1, 3, and 5 years in

the TCGA validation cohort. (E–G) Calibration curves for predicting patient survival at 1, 3, and 5 years in the GEO validation cohort.

(Supplementary Image 2A). Two modules with scores >10
were detected by MCODE (Supplementary Images 2B,D).
Interestingly, there were two pathways in module 1
(score: 21.071) (Supplementary Image 2C), including
pathways of nicotine addiction and synaptic vesicle
cycle, that showed overlap with pathways in module

2 (score: 10.167) (Supplementary Image 2E). Genes
in module 1 were also enriched in the GABAergic
synapse pathway.

To further investigate the KEGG pathway and its functional
roles, GSEA analysis was used to detect pathways that exhibited
significant differences between RR XPO1-high and RS XPO1-low
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FIGURE 5 | A PPI network of DEGs upregulated in the RR-XPO1-high vs.

RS-XPO1-low groups. Three significant modules were identified with an

MCODE score of >10. (A) A PPI network of GEDs that are up-regulated. (B)

Module 1, MCODE score = 29.667. (D) Module 2, MCODE score = 15.556.

(F) Module 3, MCODE score = 12.312. (C,E,G) Notable pathways where

DEGs are enriched in module 1, module 2, and module 3.

groups. As shown in Figure 6, the cell cycle, p53 signaling, and
focal adhesion pathways were confirmed to be the significantly
affected pathways.

DISCUSSION

This study established a prognostic predictor combining a 31-
gene signature and XPO1 expression, which stratified glioma
cases into four subgroups that were demonstrated with distinct
clinical outcomes. Furthermore, a nomogram was built and
proved more accurate and credible than conditional histological
class and even superior than the histological class combined
with IDH status when predicting the prognosis of glioma
patients. Based on the previous prognostic nomogram, the
study developed an artificial intelligence clustering system and
a survival predictive system for individual risk prediction.
These two systems were available and helpful to provide
precise individual survival prediction and improve individual
treatment decision-making. To our knowledge, it is the first
study that detects prognostic value of 31-GS and XPO1
expression and provides a classifying strategy to determine
optimal combinational treatments.

The Cancer Genome Atlas Research Network has concluded
that genetic status better correlates to disease prediction in lower
grade gliomas compared to histological class (14). Incorporation
of molecular parameters in pathological diagnosis have been
suggested by the 2016 CNSWHO classification (2). Classification
systems based on histological similarities are known to induce
high interobserver variation (15). In the histopathological
classification of diffuse glioma, unexpectable errors may be
improved due to incomplete sampling during surgery. These
confusions have brought difficulties for predictive outcomes and
processing of clinical decisions for glioma patients. Moreover, the
2016 CNS WHO classification is mainly based on one or two
molecular parameters. Since gliomas are highly heterogeneous,
the incorporation of multiple molecular signatures may be more
accurate than a single biomarker to present the features of unique
glioma types.

This study identified four non-overlapping molecular
subtypes with significant survival differences. Stratification based
on the 31-GS and XPO1 expression status proved to be an
independent predictive factor for glioma. The radiosensitivity-
XPO1 expression status and clinical factors were combined
to establish a nomogram, which could transform statistical
equations into simplified graphs, providing a reliable and
convenient method for risk quantification. The predication
based on our nomogram is more robust than histologic class and
even superior to histological class combined with IDH status. In
addition, it was also suggested by the data that more potential
molecular signatures need to be uncovered and incorporated
into the predictive model.

Several prognostic models have been built for predicting the
survival for glioma. However, most of them display prognostic
prediction for a subgroup, but fail to provide individual risk
prediction for a special patient. This study built available online
predictive systems, which were of clinical practical values for
optimizing individual medical decision-making.

The treatment of gliomas is highly individualized and
tests are available to guide the use of chemotherapy. For
example, O(6)-methylguanine-DNAmethyltransferase (MGMT)
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FIGURE 6 | KEGG pathways confirmed by GSEA analysis. (A–C) GSEA was performed to confirm KEGG pathways (cell cycle pathway, p53 signaling pathway, and

focal adhesion) in the CGGA cohort. (D–F) GSEA analysis for the three pathways in the TCGA cohort.

testing assesses drug resistance in temozolomide (TMZ)-
based chemotherapy (16, 17). However, there is a lack of a
diagnostic biomarker guiding adjuvant radiotherapy, in which
radiosensitivity is a possible factor. The 31-GS was established
to find patients who benefit from radiotherapy and has been
validated to be a predictor for OS only in GBM patients with RT.
Nevertheless, for prediction of radiosensitivity in LGG patients,
the 31-GS requires combination with other biomarkers (4, 6).
Our research, with the largest sample size of 1,552 patients,
confirmed that 31-GS is an independent prognostic predictor for
all glioma patients whether they received RT or not. However, the
results changed after including XPO1 expression status. In the RS
group, low XPO1 expression predicts prolonged OS in patients
with RT. However, the prediction does not remain significant
in the non-radiotherapy-treated group, which indicated that
XPO1 is a predictive radiosensitivity factor only for the RS
group. The XPO1-related radioresistant effect has been reported
by several studies and attributed to the aberrant subcellular
localization of critical proteins in apoptosis and DNA DSB
repair induced by XPO1. An XPO1 inhibitor has proven to
radiosensitize rectal cancer cells and GBM cells both in vitro and

in vivo (12, 18). Surprisingly, only the RR-XPO1-high group was
validated to benefit from RT, which conflicts with the previous
hypothesis excluding the RR group from RT benefiting patients.
A radiosensitivity predictor is aimed to stratify patients into
three groups including those that benefit from RT, those with
least aggressive tumors and favorable prognosis even without
RT, and those with the most aggressive tumors and discouraging
overall prognosis, which requires more intense of treatment. In
our study, patients in the RR-XPO1-high group belong to the
latter category. Obviously, 31-GS is not the only indicator leading
to the decision of RT treatment, but after integrating XPO1,
patients at high risk and who require a combinatory treatment
can be stratified.

Recently, Selinexor, an oral XPO1 inhibitor, has emerged
as a promising reagent for relapsed or refractory multiple
myeloma (https://www.accessdata.fda.gov/scripts/cder/daf/
index.cfm?event=overview.process&varApplNo=212306). As
for the treatment of glioma, preclinical trials have verified that
Selinexor possesses favorable CNS penetration abilities and
significantly prolongs animal survival by suppressing tumor
growth (19). Moreover, ongoing clinical trials are showing
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promising clinical value for Selinexor. One trial is a phase
I study analyzing the side effects and the optimal dose for
Selinexor in the treatment of younger patients with recurrent
solid tumors or high-grade gliomas (ClinicalTrials.gov identifier:
NCT02323880). Another trial is an open-label and multicenter
Phase II trial evaluating treatment efficacy and safety of Selinexor
in patients with recurrent gliomas (ClinicalTrials.gov identifier:
NCT01986348). This trial, widely known as the KING study,
has presented results at the 2019 ASCO annual meeting,
showing that 19% of patients achieved 6 months of PFS with
manageable side effects. However, the overall response rate of
Selinexor in this study was only 10% and further molecular
analyses need to be performed to identify enriched biomarkers.
Selinexor not only suppresses glioma growth but also acts as a
radiosensitizer, enhancing the radiosensitivity of rectal cancer
and GBM (12, 18). Nevertheless, no clinical study has been
performed combining radiotherapy and XPO1 inhibitors. The
current study provides an understanding of the potential clinical
value of radiosensitivity and XPO1 expression and investigates
biological mechanisms behind this that can be considered for
clinical trials.

In our study, poor outcomes have been confirmed in patients
in the RR-XPO1-high group compared to the RS-XPO1-low
group. To gain insight into intrinsic signaling pathways, DEGs
between the two groups were analyzed. As a result, up-regulated
DEGs in the subgroup with poor outcomes are enriched in
the cell cycle, p53, and focal adhesion pathways, which was
confirmed by both KEGG functional enrichment analysis and
GSEA analysis. The p53 signaling and cell cycle pathways have
been identified as glioma core signaling pathways (20, 21).
Interestingly, p53 is a cargo protein for XPO1. Recently, a
range of studies showed that inhibition of XPO1 renders p53
accumulation in the nucleus and induces apoptosis and cell cycle
arrest in gliomas (11, 22–24). In addition, focal adhesion is crucial
for the control of glioma cell morphology and invasion (25).
Moreover, focal adhesion has also been demonstrated to function
in radioresistance (26).

Despite these findings, certain limitations for this study
exist. First, samples were downloaded from TCGA, CGGA, and
GEO databases and information about the extent of tumor

section was not provided. Since the extent of tumor section
is a critical survival factor, further analysis with more detailed
clinical information should be performed in future studies.
Additionally, there is a possibility of selection bias as patients
that did not contain all relevant information were excluded from
this study.

CONCLUSION

This study developed an accurate nomogram based on the
combination of radiosensitivity and XPO1 expression for
prognosis prediction in glioma patients. Compared to WHO
stages, the nomogram exhibits superiority in accuracy and
capacity in identifying individual survival predictions. Two
accessible online tools, an artificial intelligence clustering system
and a survival predictive system based on the novel nomogram,
have been built to predict individual survival and optimize
treatment decision. Combining radiosensitivity and XPO1
expression is a promising method to discover patients that may
benefit from combinational therapy. As a potential strategy, the
Selinexor-combined radiotherapy for gliomas is worth studying
in prospective clinical trials.
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