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ABSTRACT

5-hydroxytryptamine (5-HT, serotonin) is an important neurotransmitter in the 
modulation of the cognitive, behavioral and psychological functions in animals and 
humans. Among the fourteen subtypes of 5-HT receptor, 5-HT1A receptor has been 
extensively studied. Tandospirone, an azapirone derivative with strong and selective 
agonist effect on 5-HT1A receptor, has been used for the treatment of anxiety 
disorders especially generalized anxiety disorder for decades. Recently, tandospirone 
showed the efficacy in relieving the syndromes of social anxiety disorder and post-
traumatic stress disorder as well as in potentiating the effect of antidepressants in 
the treatment of depression in both preclinical and clinical studies. More impressively, 
the beneficial effect of tandospirone has been revealed on improvement of motor 
dysfunction of Parkinson’s disease and cognitive deficits of schizophrenia either in 
monotherapy or in combination with other drugs. This review discusses the superiority 
of tandospirone in the treatment of the disorders and associated mechanisms in 
central nervous system from the literature.

INTRODUCTION

5-hydroxytryptamine (5-HT, serotonin), a biogenic 
amine, acts as a neurotransmitter and is discovered in 
wide variety of sites in the central and peripheral nervous 
system [1]. In brain, 5-HT neurons are mainly located 
in the raphe nuclei, whose relatively small number of 

neurons by projections innervate almost all brain areas 
as diverse as the limbic areas, cerebral cortex, basal 
ganglia, diencephalon and spinal cord. Thus, 5-HT binds 
to different receptors to execute significant effects on 
generation and modulation of cognitive, behavioral and 
psychological functions in the central nervous system 
(CNS) in animals and humans [2, 3].
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The distinct receptors of 5-HT comprise seven main 
families (5-HT1 to 5-HT7) with at least fourteen subtypes 
on the basis of their pharmacological responses to specific 
ligands, sequence similarities at gene and amino acid 
levels, gene organization and second messenger coupling 
pathways [4, 5]. Except for 5-HT3 receptor, which is 
assigned into the ionotropic receptor family, the rest of the 
hitherto identified receptors (5-HT1-2, 5-HT4-7) belong 
to the seven-transmembrane domain G-protein coupled 
receptor (GPCR) family [6]. Among these receptors, 
5-HT1A receptor is thought to be the most important and 
has been extensively studied.

2 5-HT1A RECEPTOR AND ITS 
AGONISTS

5-HT1A receptor

The 5-HT1A receptor is the first subtype to be 
cloned and sequenced among all the serotonin receptors 
[7]. Analyzing the sequence of this genomic clone showed 
that 50% of amino acids were homologous with the β2-
adrenergic receptor in the transmembrane domain [8]. 
Furthermore, the 5-HT1A receptor gene is located on 
human chromosome 5q11.1-q13 and the encoded protein 
consists of 421 amino acids in human and mice while 
422 amino acids in rats [9, 10]. More importantly, it was 
accessible to visualize the sites of 5-HT1A receptor in 
various regions of brain at the sub-cellular level by the 
polyclonal antibodies [11]. The 5-HT1A receptor has been 
detected in limbic forebrain regions (e.g. hippocampus, 
raphe nuclei, amygdala) with high density, while in 
extrapyrimidal areas (e.g. basal ganglia, substantia nigra) 
with low density [12]. They are present on the soma and 
dendrites of 5-HT neurons isolated from raphe nuclei as 
presynaptical autoreceptors to inhibit the firing rate of 5-HT, 
and on postsynaptic neurons such as hippocampus and 
amygdala innervated by 5-HT neurons as heteroreceptors, 
where they also attenuate firing activity [13].

Since the crystal structures of 5-HT1B and 5-HT2B 
receptors have been well studied [14], a homology 
model of 5-HT1A receptor using the crystal structure of 
the 5-HT1B receptor (PDB ID: 4IAQ) was established 
to explore the structure basis of the stereoselectivity of 
a prototypical GPCR [15]. Using molecular interaction 
fingerprints, it was discovered that the agonist of 5-HT1A 
receptor could mobilize nearby amino acid residues to 
form a continuous water channel via molecular switches, 
while the antagonist of 5-HT1A receptor maintained 
stabilization in the binding pocket [16]. Although 
the accurately targeted site of 5-HT1A receptor by 
tandospirone is still unknown, it is rational to speculate 
that as a partial agonist of 5-HT1A receptor, tandospirone 
may act through forming a continuous water channel by 
mobilizing nearby amino acid residues.

5-HT1A receptor agonists

5-HT1A receptor agonists are one sort of the ligands 
which is able to activate the 5-HT1A receptors. According 
to different intrinsic activities, 5-HT1A agonists are 
clarified in two categories, namely full agonists such as 
8-OH-DPAT, F-11440 and flesinoxan, as well as partial 
agonists such as ipsapirone, gepirone, buspirone and 
tandospirone [17–20]. Tandospirone is highly potent 
among partial agonists of 5-HT1A receptor and has 
a Ki value of 27 ± 5 nM. Moreover, tandospirone is 
approximately two to three orders of magnitude less potent 
at 5-HT2, 5-HT1C, α1-adrenergic, α2-adrenergic and 
dopamine D1 and D2 receptors (Ki values ranging from 
1300 to 41000 nM) than at 5-HT1A [21]. Taken together, 
unlike other azapirones such as buspirone and ipsapirone 
with moderate-to-high affinity for the dopamine D2 
receptor and α1- adrenergic receptors, respectively, 
tandospirone has a potent and selective agonist effect on 
5-HT1A receptor [22, 23]. Specifically, tandospirone is 
characterized as a full agonist at 5-HT1A autoreceptors in 
the raphe nuclei as well as a partial agonist at postsynaptic 
5-HT1A receptors in the forebrain areas receiving 5-HT 
input [24, 25].

Tandospirone Citrate (Sediel) was firstly synthesized 
by Dainippon Sumitomo Pharmaceuticals in 1980 and 
marketed in 1996 in Japan. It was available in China in 
2004. In both countries, tandospirone was permitted for 
the treatment of anxiety disorder especially generalized 
anxiety disorder and anxiety associated with primary 
hypertension or peptic ulcer. Besides, tandospirone 
showed the efficacy in treating other CNS disorders such 
as depression, Parkinson’s disease and schizophrenia in 
recent clinical and preclinical studies.

TANDOSPIRONE IN THE TREATMENT 
OF CNS DISORDERS

Tandospirone in the treatment of anxiety 
disorders

Anxiety disorders are the most common psychiatric 
disorders with lifetime prevalence up to 14%, and have 
enormous burden on both society and individuals [26–30]. 
To date, there are seven recognized anxiety syndromes: 
panic disorder, agoraphobia, social anxiety disorder 
(SAD), generalized anxiety disorder (GAD), specific 
phobias, obsessive compulsive disorder (OCD) and 
post-traumatic stress disorder (PTSD). Pharmacological 
treatments for anxiety disorders are benzodiazepines, 
tricyclic antidepressant drugs, selective serotonin 
reuptake inhibitors (SSRIs), serotonin and noradrenaline 
reuptake inhibitors (SNRIs) and partial 5-HT1A receptor 
agonists. Because of low selectivity to diverse receptors, 
benzodiazepines (BZP) exert a series of adverse effects 
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such as sedation, muscle relaxation, dependence and 
cognitive impairment [31, 32]. SSRIs, a first-line 
treatment for many anxiety disorders, have received 
reduced acceptability in clinical practice due to a delayed 
onset of action, possible side effect of sexual dysfunction 
and even transiently increased anxiety [33].

Tandospirone showed anxiolytic action in variety 
of animal models [25, 34] and has been widely used in 
treatment of anxiety disorders especially in GAD [13, 
35, 36]. Because of high selectivity to 5-HT1A receptor, 
tandospirone exerts definitely anxiolytic effect without 
benzodiazepines-like side effects such as sedation and 
muscle relaxation. Although the role of presynaptic 
5-HT1A receptor is still uncertain, tandopirone shows 
its anxiolytic profile by activating postsynaptic 5-HT1A 
receptor coupled with G-protein (Gi/o). On the one hand, 
tandospirone inhibits the activity of adenylate cyclase 
by coupling with Giα, resulting in reduction of cAMP 
formation and consequently inhibition of protein kinase 
A (PKA)-mediatied protein phosphorylation. On the other 
hand, it activates G-protein-gated inwardly rectifying 
potassium (GIRK) channels by releasing Gβγ subunits, 
leading to efflux of intracellular K+, hyperpolarization 
of targeted neurons and ultimately inhibition of neuronal 
activity [37–39]. As described above, postsynaptic 
5-HT1A receptors are mainly located in the limbic areas 
such as hippocampus, amygdala as well as septum. 
Furthermore, tandospirone is capable of inhibiting the 
firing of hippocampal and lateral septal neurons by 
activating GIRK channels [24, 40, 41]. Thus, it may be 
anticipated that tandospirone alleviates anxiety through 
inhibiting the activity of hippocampus and amygdala 
which are associated with the induction of anxiety as well 
as the lateral septum referring to anxiety transmission. 
(Figure 1) However, short half-time and one- or two-week 
delayed onset are the major disadvantages of tandospirone 
in the treatment of anxiety [40].

Studies with double-blind, randomized clinical trials 
have proven that oral administration of tandospirone was 
equivalently effective as oral diazepam or clonidine in 
reducing preoperative anxiety in patients with elective 
otolaryngologic surgery [42, 43]. In the rat contextual 
conditioned fear stress model, tandospirone or SSRIs 
(e.g. paroxetine, fluvoxamine, citalopram) significantly 
inhibited the conditioned freezing in a dose-dependent 
manner, respectively, and the combination therapy 
was addictive for fluvoxamine facilitating anxiolytic 
effect of tandospirone via CYP3A4 inhibition [44–46]. 
Moreover, tandospirone exhibited therapeutic potential 
for facilitating fear extinction to alleviate anxiety, and 
the effect was mediated by enhancing cortical dopamine 
neurotransmission indirectly via the ventral tegmental area 
(VTA)-hippocampus dopaminergic loop and improving 
synaptic efficacy in the extinction processes in the animal 
model of PTSD [47, 48]. More recently, tandospirone 
has been proven to be safe and effective and it appeared 

non-inferior to sertraline for treating SAD in youths in 
an eight-week randomized open-label trial [49]. Taken 
together, tandospirone may be an alternative agent in 
relieving anxiety in the treatment of PTSD and SAD.

Tandospirone in the treatment of depression

Depressive disorder (major and minor) is a chronic, 
highly recurrent, and debilitating mental disease with 
highly suicide rate and has a lifetime prevalence of 
up to 20% [50]. Depression was the leading cause of 
disability globally by a recent WHO announcement [51]. 
Over the past 50 years, pharmacological approaches for 
the treatment of depression have updated from tricyclic 
antidepressants and monoamine oxidase inhibitors, to 
SSRIs and SNRIs. Nonetheless, these advances are 
far from optimistic because of suboptimal treatment 
response and low remission rates. For instance, the pooled 
response rates were 37% and 54% for placebo and drug, 
respectively, in a meta-analysis of 182 antidepressant 
randomized controlled trials (RCTs, n = 36,385) [52].

The dysfunction of 5-HT system, such as 5-HT 
deprivation, has been widely accepted to play a crucial 
role in the pathogenesis of depression [53]. Tandospirone 
had shown its antidepressant effect in several forced 
swimming tests in an animal model of depression [54–
57]. Acute administration of tandospirone decreased 
the releasing of 5-HT in the nerve terminal region, the 
dendrites and cell body region, while chronic treatment 
induced desensitization of somatodendritic 5-HT1A 
autoreceptors, relieving 5-HT neurons from autoreceptor-
mediated self-inhibition, eventually tonically activating of 
5-HT neurons and counteracting the serotonergic deficit. 
On the other hand, the sensitivity of postsynaptic 5-HT1A 
receptors was non-altered even after repeated treatment 
of tandospirone [13, 40]. It is putative that the duration of 
desensitizing of presynaptic 5-HT1A autoreceptors in the 
raphe nuclei is sufficient for tandospirone’s antidepressant 
activity, and it also explains the late onset of action of 
tandospirone treatment. Several clinical studies have 
proven that co-treatment of tandospirone and SSRIs 
synergistically facilitated the desensitization of 5-HT1A 
autoreceptors, thus exhibiting a more rapid onset of action 
and/or augmenting the antidepressant actions [44, 58, 59]. 
Furthermore, an increasing body of research evidence has 
shown that the antidepressant activity of tandospirone 
may be associated with other pharmacodynamics effect. 
Clinical studies showed that tandospirone potentiated the 
efficacy of fluoxetine, a SSRI, in the treatment of major 
depressive disorders. In animal studies, tandospirone 
augmented fluoxetine-induced increase in extracellular 
dopamine level in dialysates of medial frontal cortex 
in rat with 200% or 380% of basal levels for fluoxetine 
alone or for fluoxetine in combination with tandospirone, 
respectively [60]. Furthermore, increased hippocampal 
neurogenesis is implicated in the action mechanism 
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of antidepressants [61]. In two recent studies, chronic 
treatment of tandospirone reversed the decrease in the 
density of doublecortin (DCX)-positive cells, a marker 
protein of newborn neurons, in the dentate gyrus of 
hippocampus in intermittent social defeat rat or directly 
increased the number of the DCX-positive cells in normal 
rats, indicating that chronic tandospirone treatment exerted 
antidepressant action also via increasing hippocampal 
neurogenesis [57, 62]. In terms of energy metabolism, 
the footshock stress-induced increment of extracellular 
lactate concentrations in the prefrontal cortex of rats was 
suppressed by chronic treatment of tandospirone, but it is 
still in debate whether this effect of tandospirone is related 
to ameliorating anxiety and depression or not [63].

A randomized, controlled clinical trial for evaluation 
of the efficacy of clomipramine alone and in combination 
with tandospirone or diazepam for 6 weeks in 36 
untreated outpatients with major depressive disorder was 
conducted, and no statistically significant differences in 
improvement of major depressive disorders were observed 
in the terms of the Hamilton Depression Rating Scale and 
the Hamilton Anxiety Rating Scale scores among the 
three groups. However, tandospirone may induce early 
antidepressant effects in augmentation of clomipramine 
[64]. Given the small sample capacity, a larger randomized 
controlled trial is needed to confirm the conclusion. 

Besides, the superiority of tandospirone in the treatment 
of depression also lies in following circumstances. 
Primarily, antidepressants such as tricyclic antidepressants 
with anticholinergic activity may induce severe intestinal 
dysfunction and delirium, while monotherapy of 
tandospirone significantly ameliorated the depressive 
mood, agitation and anxiety of senile patients with 
dementia with little anticholinergic activity [65]. Secondly, 
eighty to ninety percent of patients with major depression 
are suffering from sleep disturbance, which is widely 
accepted as a risk factor and/or prodromal symptom of 
depression [66–69], while tandospirone could markedly 
improve sleep disturbance induced by Adrenocorticotropic 
hormone (ACTH) in a rat model [70]. Finally, since SSRIs 
are still the first choice for the treatment of patients with 
depression, the side effect of SSRIs could not be ignored. 
A case report in Japan showed systematic administration 
of tandospirone could effectively treat paroxetine-induced 
bruxism by increasing dopamine release in the prefrontal 
cortex [71].

Tandospirone in the treatment of Alzheimer’s 
disease

Alzheimer’s disease (AD) is one of the most 
common neurodegenerative diseases and characterized 

Figure 1: A proposed scheme of tandospirone and its signal transduction pathway in the treatment of anxiety disorders. 
Tandospirone activats postsynaptic 5-HT1A receptor coupled with G-protein (Gi/o), resulting in inhibition of protein kinase A (PKA)-
mediated protein phosphorylation and neuronal activity.
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by impairments in cognition and behavior, eventually 
resulting in decline in activities of daily living. Nearly 
80% of patients with AD have suffered behavioral 
and psychological symptoms of dementia (BPSD) in 
the course of the illness. The International Psychiatric 
Association defines Behavioral and Psychological 
Symptoms of Dementia (BPSD) as non-cognitive 
symptoms such as behaviors (e.g. agitation, aggression, 
wandering, and screaming) and psychiatric disturbances 
(e.g. hallucination, delusion, depression, anxiety, and 
insomnia). Classical drug therapy for AD consists of 
acetylcholinesterase (AChE) inhibitors (e.g. donepezil 
and galantamine etc.) and N-methyl-D-aspartate (NMDA) 
receptor antagonist (e.g. memantine), these drugs have 
shown moderate efficacy in relieving cognitive and 
functional symptoms. However, the biggest challenge 
for AD treatment is to discover and develop novel drugs 
that could substantially slow disease progression or even 
cure the disease. For the treatment of BPSD, common 
psychotropic agents and atypical neuroleptics only have 
moderate efficacy with increased mortality [72], therefore, 
it is imperative to develop safer and more effective agents.

Together with dysfunction of cholinergic and 
glutamatergic system, abnormal serotonergic system is also 
thought to contribute to learning and memory impairment 
in AD patients. It was found decreased radioligand [11C]
WAY100635, a potent antagonist of 5-HT1A receptor, 
binding to 5-HT1A receptor in hippocampus and cortex 
in patients with AD compared with healthy volunteer. On 
the other hand, there were negative correlations between 
5-HT1A density and aggressive behavior of AD patients 
from a post-mortem study [73]. Taken together, 5-HT1A 
receptor antagonists were speculated to be effective for 
the treatment of memory impairment in AD patients [74]. 
However, none of such 5-HT1A receptor antagonists were 
available for clinical use up to date. A preliminary open-
label study showed that tandospirone was effective in the 
treatments of BPSD in thirteen outpatients with DSM-IV 
of AD or vascular dementia [75]. Significant improvement 
of psychological symptoms such as depression, anxiety 
and irritability/lability and behavioral symptoms such 
as agitation and aggression without serious adverse 
effects were observed, suggesting that tandospirone is 
a promising medicine for the treatment of BPSD with 
remarkable tolerability and improvement of cognitive and 
memory deficits, and its effectiveness may not only be 
simply correlated with the density or binding potential to 
5-HT1A receptors [75].

Tandospirone in the treatment of Parkinson’s 
disease

Parkinson’s disease (PD) is a prevalent, late-
onset neurodegenerative disease, which is due to lesions 
of nigro-striatal dopamine neurons or depletion of 
dopamine. PD has a wide spectrum of clinical features 

including extrapyramidal motor symptoms (e.g. akinesia/
bradykinesia, tremor, rigidity and postural defect) as 
well as various non-motor symptoms (e.g. cognitive 
impairment, mood disorders, autonomic dysfunction and 
sleep disorders) [76]. After nearly 40 years, the dopamine 
precursor L-3,4-dihydroxyphenylalanine (levodopa or 
L-DOPA) is still the golden-standard treatment for PD. 
Other antiparkinsonian agents are dopamine D2/D3 
agonists (e.g. bromocriptine, cabergoline, pramipexole), 
dopamine releasers (e.g. amantadine), along with 
muscarinic acetylcholine (mACh) receptor antagonists 
(e.g. trihexyphenidyl and biperidene). Inhibitors of 
monoamine oxidase-B (MAO-B) (e.g. selegiline) or 
catechol-O-methyltransferase (COMT) are useful 
adjunctive drugs to potentiate the effect of L-DOPA. 
However, there are still clinical unmet needs, such as 
reduction of levodopa-induced dyskinesias (LIDs) and 
motor fluctuation (e.g. on-off or wearing-off phenomena) 
after chronic treatment of L-DOPA, non-motor symptoms 
(e.g. cognitive impairments and affective disorders), as 
well as lack of substitutes for L-DOPA.

Since 5-HT1A receptor was discovered to be 
involved in regulating the motor functions such as 
extrapyramidal motor symptoms, tandospirone has shown 
antiparkinsonian action in both preclinical studies and 
clinical trials. Tandospirone improved walking stability 
and activity of daily life in approximately 40% patients 
with PD [77]. An eight-week open clinical study revealed 
that tandospirone exhibited antiparkinsonian effect 
evaluated by Simpson Angus Extrapyramidal Symptom 
Scale (SA-EPS) scores [78]. Furthermore, tandospirone 
had been reported to ameliorate pure akinesia in a patient 
with resistance to noradrenergic precursor L-threo-DOPS 
[79]. Along with the clinical studies, numerous preclinical 
studies have been conducted and shown that tandospirone 
induced contralateral rotation behaviors in dopaminergic 
hemilesioned rats evoked by 6-hydroxydopamine (6-OH-
DA), ameliorated haloperidol-induced catalepsy and 
bradykinesia, and reserpine-induced hypolocomotion 
in dopamine-depleted rats [80–83]. It should be noted 
that the ameliorative effect of tandospirone in above 
animal models was nearly fully antagonized by pre/
co-administration of WAY-100635, a potent 5-HT1A 
receptor antagonist, but not haloperidol, a D2 antagonist, 
indicating that the antiparkinsonian effect of tandospirone 
is associated with direct activation of 5-HT1A receptor 
and independent of dopaminergic activity. Intrastriatal 
injection of 5-HT at doses compatible to those of 
dopamine (5-HT, 25–100 μg; dopamine, 50–100 μg) 
caused a contralateral circling behavior in rats, implying 
that the striatal 5-HT1A receptors played a role in 
antiparkinsonian effects [84]. Moreover, inactivation of 
5-HT neurons by p-chlorophenylalanine did not alter the 
antibradykinesia effect of 8-OH-DPAT [83]. In general, 
it was the action of postsynaptic 5-HT1A receptor 
that tandospirone elicited its antiparkinsonian effects. 
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Furthermore, several studies have indicated that there 
was an increase of releasing glutamate in the regions 
such as entopeduncular nucleus and striatum as well as 
an enhancement of Fos expression in the shell and core 
regions of nucleus accumbens, dorsolateral striatum, and 
lateral septal nucleus in dopaminergic hemilesioned rats 
or dopamine-depleted rats [85]. 5-HT1A receptor agonists 
inhibited the cortico-striatal glutamate pathway and 
reduced extracellular glutamate levels in the striatum, and 
tandospirone significantly reduced haloperidol-induced 
Fos expression in the dorsolateral striatum [86, 87]. Thus, 
it was proposed that after activating the postsynaptic 
receptors, tandospirone inhibited cortico-striatal glutamate 
pathway, reduced the releasing of glutamate and decreased 
the activity of glutamate neurons and the expression 
of Fos, resulting in the effect of ameliorating motor 
dysfunction.

Unlike the antiparkinsonian effect, tandospirone 
showed only limited effect for alleviating L-DOPA-
induced dyskinesia (LID) in several studies. Tandospirone 
has been tested in 10 patients with LID, and results showed 
that L-DOPA-induced dyskinesia was considerably 
alleviated in half of tested patients but Parkinson-like 
features were slightly worsened in 6 out of 10 patients. In 
other words, the effect of tandospirone of ameliorating LID 
was probably at the expense of worsening parkinsonism 
[88]. In a recent study, tandospirone attenuated L-dopa 
induced peak abnormal involuntary movements (AIM) 
scores by about 40% at the highest dose (2.5 mg/kg) but 
failed to significantly reduce the total AIMs scores in one 
testing session [89]. In the same study, tandospirone (0.16 
mg/kg, 0.63 mg/kg, and 2.50 mg/kg) did not improve the 
effect of L-dopa in cylinder and rotational behavior test, 
and decreased the effect of L-dopa in rotarod performance 
at the highest dose. Given the limited literature, more 
studies should be conducted to define the definite effect 
of tandospirone on LID.

Nearly 40% patients with PD also suffer depression 
(major or minor), and anxiety (e.g. GAD, panic disorder). 
Thus, depression and anxiety are common in the patients 
with PD. As stated above, tandospirone is an effective and 
safe anxiolytic and antidepressant, so it is reasonable to 
use tandospirone for the treatment of affective disorders 
in the patients with PD [90, 91].

Tandospirone in the treatment of schizophrenia

Schizophrenia is a holergasia with unknown 
etiology and characterized by positive symptoms (e.g. 
hallucinations, delusion, and excitation), negative 
symptoms (e.g. apathy, social and emotional withdrawal), 
cognitive impairments, and mood disturbances (e.g. 
anxiety and depression) [92, 93]. Classical antipsychotics 
(e.g. phenothiazine, butyrophenone, and haloperidol) 
mainly blocking D2 receptor have contributed to control 
of positive symptoms of schizophrenia but induced 

severe extrapyramidal side effects (EPS). Since atypical 
antipsychotics (e.g. clozapine, risperidone, ziprasidone, 
perospirone, olanzapine, and quetiapine), the second 
generation of antipsychotics, became the first line 
treatment for schizophrenia, positive symptoms, negative 
symptoms, and typical antipsychotics induced EPS have 
been ameliorated. Nonetheless, there are still clinical 
unmet in the treatment of schizophrenia, such as cognitive 
dysfunction, affective disorders, and antipsychotic-
induced EPS.

Apart from beneficial effect on affective disorders 
and EPS demonstrated above, tandospirone also has 
therapeutic potential for improvement of schizophrenia-
associated cognitive deficits. Cognitive functions including 
memory, executive function and attention are impaired in 
most patients with schizophrenia, and secondary verbal 
memory and executive function have been reported to be 
predominant index for outcome measurement [94, 95]. 
Some studies have shown that atypical antipsychotics 
modestly improve cognitive function with various 
mechanisms, and a 5-HT1A-dependent mechanism may 
be involved to promote the release of dopamine from 
the cortex [96, 97]. Thus, it is logical to postulate that 
5-HT1A agonists have beneficial effect on improvement 
of cognitive function. Indeed, numerous clinical 
studies have shown that chronic adjunctive treatment 
of tandospirone with typical or atypical antipsychotics 
significantly improved the cognitive function in patients 
with schizophrenia. Specifically, a preliminary open-
label clinical study revealed the beneficial effect of 
combined use of tandospirone (30 mg/day) and moderate 
doses of haloperidol in enhancing attentive function in 
schizophrenia patients [98]. Subsequently, a similar study 
with 11 patients with schizophrenia and same number of 
healthy volunteers as control indicated that the addition of 
tandospirone with small to moderate doses of haloperidol 
improved secondary verbal memory in the patients with 
schizophrenia [99]. In another study, the effectiveness 
of tandospirone for ameliorating cognitive impairment, 
especially for executive function and secondary verbal 
memory, was also confirmed in 26 patients with 
schizophrenia after tandospirone was added to ongoing 
treatment with typical antipsychotic drugs for 6 weeks 
[100]. In two single case reports, tandospirone improved 
cognitive performance and quality of life when combined 
with atypical antipsychotics olanzapine or perospirone, 
respectively [101, 102]. However, it was also reported that 
acute (60 min) administration of tandospirone impaired 
explicit verbal memory in healthy volunteers in a dose-
dependent manner [103]. The treatment regimen (acute 
vs. chronic) and/or subjects studied (health controls vs. 
schizophrenia patients) may account for the discrepancy 
between these studies.

Data from animal studies also revealed the 
superiority of tandospirone in the treatment of 
schizophrenia. Novel object recognition (NOR) deficits 
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could be induced by subchronic treatment of phencyclidine 
(PCP), a N-methyl-D-aspartate (NMDA) receptor 
antagonist, and NOR is an analog of declarative memory 
and its deficits were often observed in animals and 
patients of schizophrenia with cognitive impairment [104]. 
Tandospirone alone or co-treatment with lurasidone for 
15 days significantly reversed PCP-induced NOR deficits 
[105]. There was an increased release of 5-HT in the 
cortex or 5-HT1A receptor binding potential in the medial- 
and dorsolateral-frontal cortex, when PCP was acute or 
subchronic administrated [106, 107]. Similar findings 
were also confirmed in patients with schizophrenia by 
postmortem and positron emission tomography [108, 109]. 
The evidence suggests that tandospirone could reverse 
NOR deficits, probably related to its 5-HT1A agonist 
properties, diminishing 5-HT release, and normalizing 
5-HT1A receptor binding potential. Besides, tandospirone 
improved cognitive deficits by monotherapy or in 
combination with blonanserin, an atypical antipsychotic, 
assessed by executive function in marmosets using 
object retrieval with detour (ORD) task [110]. This study 
also revealed that the D1 receptor agonist SKF-81297 
improved the marmosets performance in ORD task. It 
has also been reported that tandospirone increased the 
extracellular dopamine level in the prefrontal cortex [60]. 
Thus, it is possible that tandospirone actives the 5-HT 
autoreceptor in the raphe nuclei, inhibits the firing of 5-HT 
neurons, disinhibits the DA neurons, increases the release 
of DA, and ultimately improves the executive function. 
Interestingly, augmentation use of tandospirone and 
haloperidol showed no beneficial advantages in executive 
function in this study while the combination treatment had 
shown its beneficial effect on memory function in clinical 
trial as stated above [98, 99, 110]. Furthermore, another 
NMDA receptor antagonist, dizocilpine (MK-801), 
were transiently administrated to the neonatal rats and 
suppressed stress-induced increment of lactate production, 
and chronic treatment of tandospirone attenuated the 
suppressive effect induced by dizocilpine via elevating 
lactate production [111]. These data indicate that lactate 
production may play an important role in ameliorating 
cognitive impairment in schizophrenia.

Study also showed that tandospirone decreased 
locomotor activity in the rats with or without dizocilpine 
treatment but the efficacy was only observed with the 
dose of tandospirone at 5 mg/kg not at the low dose of 
0.05 mg/kg, indicating that tandospirone at high dose 
could be effective to relieve positive symptoms of 
schizophrenia [112]. It is of interest that this inhibitory 
effect of tandospirone could be augmented by acute 
administration of 5-HT1A antagonist WAY 100635, 
suggesting the underlying mechanism may be associated 
to its metabolites or other neurotransmitter systems. 
Tandospirone is metabolized to 1-(2-pyrimidinyl)-
piperazine (1-PP) in rodents and humans, and as an α2-
adrenoceptor antagonist, 1-PP induced hypolocomotion 

in mice and rats [113, 114]. Therefore, it is possible that 
the α2-adrenoceptor-antagonistic effect of 1-PP was 
responsible for the efficacy of tandospirone in decreasing 
locomotion. However, in the same study, tandospirone 
exacerbated dizocilpine-induced prepulse inhibition (PPI) 
of the acoustic startle response. This phenomenon was 
observed by measuring the deficits in sensorimotor gating 
and frequently occurred in patients with schizophrenia. 
Another study showed that tandospirone suppressed 
impulsive action in a dose-dependent manner, while 
higher impulsivity is often observed in the patients with 
schizophrenia [115]. Moreover, the suppressive effect 
of tandospirone could not be reversed by WAY100635 
either at 0.3 mg/kg or higher dose 1 mg/kg, in contrast, 
WAY100635 even strengthened the suppressive effect 
of tandospirone. It is speculated that as a partial agonist 
for 5-HT1A receptor, tandospirone may also act as an 
antagonist, however, there is no clear evidence to prove 
it so far. In summary, tandospirone could be a promising 
candidate for the treatment of schizophrenia.

ASSOCIATED MECHANISM OF 
TANDOSPIRONE IN THE TREATMENT 
OF CNS DISORDERS

Activating signal transduction pathway

It is generally believed that tandospirone acts 
on 5-HT1A receptor in membrane of dorsal raphe 
nucleus and limbic area to activate G-protein-activated 
inwardly rectifying K+ (GIRK) channels. This process 
will arouse some changes as follows: on the one hand, 
hyperpolarization of target neurons by potassium efflux 
and consequently inhibition of neuronal firing [116]; 
on the other hand, inactivation of adenylyl cyclase for 
subsequently inhibition of the cAMP-PKA cascade. 
Alternatively, tandospirone increases the phosphorylation 
of extracellular signal-regulated kinase (ERK) in both 
hypothalamic paraventricular nucleus and the dorsal 
raphe nucleus, and these responses could be blocked by 
the 5-HT1A antagonist WAY 100635, suggesting the 
involvement of mitogen-activated protein (MAP) signal 
pathway [117]. Study has shown that chronic treatment of 
tandospirone desensitized 5-HT1A receptor on the dorsal 
raphe nucleus and hypothalamic paraventricular nucleus 
but not hippocampus of brain [118], the ERK signal 
pathway may underlie the difference.

Elevating dopamine level

Tandospirone treatment (5 mg/kg) ameliorated the 
synaptic dysfunction before and after extinction trials in a 
rat model of juvenile stress [aversive footshock (FS) rat] 
[47]. Extinction processes contains extinction training and 
extinction retrieval, which are associated with synaptic 
efficacy in the hippocampal CA1 and medial prefrontal 
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cortex (mPFC), respectively. Tandospirone increased 
extracellular dopamine levels in mPFC after extinction 
retrieval in the non-FS rats (control). Based on the fear 
extinction study, the effectiveness of tandospirone for 
the treatment of patients with anxiety especially PTSD, 
may rely on improving synaptic efficacy associated 
with extinction processes by elevating dopamine release 
[47]. Simultaneous administration of tandospirone and 
fluoxetine significantly increased dopamine release 
compared to monotherapy in the medial frontal cortex 
of rats measured by microdialysis. In addition, pre-
administration or local perfusion of WAY 100635 
suppressed tandopirone-induced increment of extracellular 
DA. These results suggest that tandospirone elevates 
extracellular dopamine by stimulating 5-HT1A receptors 
in mPFC and it may have potential to modulate refractory 
depression in addition to SSRI [60]. Tandospirone showed 
beneficial effects on executive function in marmosets 
in ORD task, and increased extracellular dopamine 
level in mPFC in previous study [110]. In addition, it is 
hypothesized that 5-HT1A receptor agonist improves 
cognitive function in patients with schizophrenia through 
enhancement of cortical dopamine neurotransmission 
[119–121]. In the same study, the D1 receptor agonist 
SKF 81297 improved marmosets’ performance in ORD 
task [110]. Taken together, tandospirone has beneficial 
effect on the improvement of cognitive dysfunction in 
patients with schizophrenia and the possible mechanistic 

action may be associated with increased dopamine 
neurotransmission (Figure 2).

Maintaining hippocampal neurogenesis and 
synaptic plasticity

Chronic treatment of tandospirone reversed the 
decrease in the density of doublecortin (DCX)-positive 
cells in the dentate gyrus of hippocampus both in patients 
with major depressive disorder and stress-induced social 
defeat rats [57, 62]. However, no difference was observed 
between vehicle and tandospirone-treated groups using 
marker Ki-67 in the animal study [62]. Adult hippocampal 
neurogenesis had been reported to relate to stress-induced 
pathophysiology of depressive disorder and one of the 
mechanistic actions of antidepressants such as SSRI 
[122, 123]. Moreover, hippocampal neurogenesis plays a 
role in maintenance of the function of dentate gyrus and 
hippocampal circuitry, and cognitive function affected by 
AD [124]. Thus, tandospirone has beneficial effects on 
anxiety and depressive disorders as well as AD, from the 
standpoint of hippocampal neurogenesis.

Tandospirone treatment showed no reduction in 
hippocampal long-term potentiation (LTP) compared to 
diazepam in mossy fiber-CA3 and perforant path-dentate 
gyrus synapses, except in Schaffer collateral-CA1 [125]. 
Hippocampal synaptic plasticity such as LTP is regarded 
as the electrophysiological basis of synaptic mechanism 
and the molecular basis of learning and memory [126]. 

Figure 2: The underlying mechanism of tandospirone in elevating dopamine level. Tandospirone activates 5-HT1A receptor 
in the raphe nucleus or mPFC, directly or indirectly excites and/or disinhibits DA neuron in VTA and increases DA release.
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These facts indicate that tandospirone is superior to 
benzodiazepine in the improvement of learning and 
memory impairment.

Normalizing lactate production

Although glucose is the major substrate for energy 
supply in the brain, lactate gradually shows its significance 
in energy metabolism in acute neural activation [127, 
128]. According to the astrocyte-neuron lactate shuttle 
hypothesis, glucose supplied from the blood circulation 
is converted to lactate by astrocytes accompanied 
by glutamate uptake. Specifically, the activation of 
nerve cells leads to the release of the neurotransmitter 
glutamate. Glutamate is actively taken up into astrocytes 
by glutamate transporters (GLT-1) and is converted 
into glutamine. The uptake of glutamate into astrocytes 
increases glucose uptake from surrounding capillaries via 
glucose transporters and aerobic glycolysis. Lactate is then 

released to the extracellular space and utilized by activated 
neurons (Figure 3). More importantly, recent studies 
suggested that the brain prefers lactate over glucose 
for energy supply in the state of acute neural activation 
and lactate has definitely neuroprotective effect [129–
131]. Both acute and chronic treatment of tandospirone 
attenuated footshock stress-induced extracellular lactate 
concentrations (eLAC) increment in mPFC [63, 132]. 
Acute treatment of tandospirone reduced the firing rate of 
5-HT neurons in the raphe nuclei, subsequently reduced 
5-HT release in the mPFC, and consequently provided 
a negative feedback to the raphe nuclei, which could 
reduce energy demand in the state of neural activation 
[13, 132]. On the other hand, chronic administration of 
tandospirone leads to desensitize the somatodendritic 
5-HT1A autoreceptor and normalizes 5-HT releasing. 
As a 5-HT1A partial agonist, tandospirone also activates 
postsynaptic receptor, leading to counteracting the 
increased 5-HT concentrations, resulting in decreasing 

Figure 3: The astrocyte-neuron lactate shuttle hypothesis—mechanism of lactate production on glutamate release. 
Glucose (Glc) from the blood circulation is converted to lactate by astrocytes accompanied by glutamate (Glu) uptake.
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energy demand in the mPFC. Since lactate is produced 
in a neural activity-dependent manner, decreased energy 
demand results in decrease of eLAC in footshocked 
rats. However, 1-(2-pyrimidinyl)- piperazine (1-PP), a 
metabolite of tandospirone exerts an α2-adrenoceptor 
antagonist effect [114] and increases the firing rate of 
5-HT neurons, it may compromise the beneficial effect of 
tandospirone. As stated above, the production of lactate is 
also mediated by glutamate uptake. In addition, infusion of 
5-HT1A agonists into the PFC results in reversing NMDA 
receptor antagonist-induced glutamate release [133]. 
Thus, it is speculated that the effect of tandospirone on 
decreasing footshock-induced increment of eLAC may be 
mediated by inhibition of glutamate release.

Furthermore, tandospirone reversed the decrease of 
eLAC induced by transient blockade of NMDA antagonist 
in response to stress [111]. NMDA receptor antagonists 
(MK-801 or PCP) led to long-term impairment of 
cognitive function in schizophrenia in rodents determined 
by the delayed spatial alteration task and set-shifting task 
[134, 135]. Besides, the NMDA receptor antagonists also 
enhance neuronal apoptosis and neuronal degeneration, 
and reduce spine density in the frontal cortex [136, 137]. 
These facts suggest that MK-801 in decrease of eLAC 
level may be due to decreasing the numbers of neurons 
and/or astrocytes. Besides, systemic administration 
of 5-HT1A receptor agonists could inhibit the action 
potentials of GABA neurons, consequently disinhibit 
glutamate neurons resulting in glutamate release and 
increment of eLAC [119, 138] (Figure 2). It is putative 
that the effect of tandospirone on restoration of MK-
801-induced eLAC decrease in response to physical 
stress may be mediated by modulation of glutamatergic 
neurotransmission via 5HT1A receptors on GABAergic 
interneurons. Interestingly, a completely opposite result 
was reported by a study in 2014, which showed that high 
dose of tandospirone (5 mg/kg) suppressed footshock-
induced eLAC elevation in rats treated with MK-801 
[139]. One of the explanations for the different results 
could be the timing and regimen differences with MK-801 
administration, e.g. acute vs chronic administration and/or 
at neonatal vs young adult rats. Taken together, the effects 
of tandospirone on brain energy metabolism especially 
in lactate production may be a novel mechanism in the 
treatment of Schizophrenia.

CONCLUSION

Tandospirone, a partial 5-HT1A receptor agonist, 
has been commonly used in the treatment of anxiety 
disorders, especially in China and Japan. This review 
provides evidence that tandospirone has beneficial effect in 
the treatment of other CNS disorders such as Alzheimer's 
disease, Parkinson's disease, and schizophrenia. Along 
with better understanding of the associated mechanisms 

of tandospirone in the treatment of these diseases, it is 
anticipated that tandospirone could be more frequently 
utilized in the treatment of the patients with CNS disorders 
besides anxiety.
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