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Individuals exposed to chronic adverse experiences in childhood and adolescence are
at increased risk of developing neuropsychiatric illnesses such as mood and anxiety
disorders. Symptoms of anxiety disorders can often be reduced through exposure
therapy, which is based on the process of extinction. Although chronic stress in
adolescence is known to exacerbate the impaired extinction of learned fear during
this period of development, it remains unclear whether exposure to stressors in
adolescence qualitatively affects the mechanisms underlying fear extinction. Brain-
derived neurotrophic factor (BDNF) and its principle receptor, tropomyosin receptor
kinase B (TrkB), are involved in neuroplasticity underlying fear extinction. The small-
molecule TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) improves fear extinction and
reduces fear relapse (reinstatement) in adult mice when administered prior to extinction
training but its effects in younger ages are unknown. In this study we tested whether
7,8-DHF enhances extinction retention and leads to less renewal in both stressed
and non-stressed adolescent rats. Pre-extinction injection of 7,8-DHF led to lower
levels of CS-elicited freezing in both the extinction and conditioning contexts in non-
stressed adolescent male rats, but not in those given 7 days of corticosterone. These
findings indicate that chronic stress interferes with the effectiveness of pharmacological
agonism of TrkB in enhancing fear extinction in adolescence. A greater understanding
of the mechanisms underlying extinction in adolescence and the effect of chronic
corticosterone exposure on those mechanisms may inform a deeper understanding of
the etiology and treatment of pediatric stress-related disorders.

Keywords: adolescent, extinction, rat, tropomyosin receptor kinase B, 7,8-dihydroxyflavone, chronic stress

INTRODUCTION

Adolescence is often termed a period of “storm and stress” (Buchanan and Hughes, 2011). Further,
stress-sensitive areas of the brain, such as the prefrontal cortex, hippocampus, and amygdala,
undergo substantial modification during adolescence (Teicher et al., 2016), as do several hormonal
systems, including the system primarily involved in responding to acute and chronic stressors [i.e.,
the hypothalamic-pituitary-adrenal (HPA) axis; Romeo, 2013]. These brain regions and hormonal
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systems play an integral part in emotion regulation, a facet of
cognition that is undergoing substantial development during
adolescence (Hartley and Phelps, 2009). Hence, it is perhaps
unsurprising that this period of development is one in which
many psychiatric disorders, including anxiety disorders, first
emerge (Beesdo et al., 2009). Furthermore, for adolescents
exposed to adversity before the age of 18, the vulnerability of
developing a stress-related disorder, either during adolescence
or later in life, is increased (Edwards et al., 2003; Cabrera et al.,
2007; Cloitre et al., 2019). It has been suggested that the link
between adverse experiences in childhood and adolescence and
the later development of psychiatric disorders like anxiety may
be mediated by disruptions in an individual’s capacity to regulate
their emotions when faced with later stressors (Burns et al.,
2010; Barlow et al., 2017; Cloitre et al., 2019). Moreover, the
neural and physiological systems affected by chronic stress are
also those involved in emotion regulation (McEwen et al., 2015).
Given that adolescence is a period of development in which the
neural systems important for emotion regulation are undergoing
maturation, exposure to chronic stress may have particularly
profound effects on the mental health of adolescents (Tottenham
and Galván, 2016). Unfortunately, many adolescents are exposed
to such adversity, with Kessler et al. (2010) reporting that 40%
of people are exposed to chronic stress before adulthood. While
there has been increased interest in the learning and memory
processes involved in emotion regulation in adolescence in the
last decade (Baker and Richardson, 2017; Cisler and Herringa,
2021), the impact of chronic stress on these processes is not well
understood. In other words, although adolescents are thought to
be particularly vulnerable to the effects of traumatic experiences,
there is little research into the impact of such experiences on
processes related to emotion regulation.

One important process of emotion regulation is extinction
of learned fear (Sotres-Bayon et al., 2006). A particularly
robust difference in learning and memory processes reported
in adolescence is diminished extinction of Pavlovian fear
conditioning. Pavlovian fear conditioning refers to a behavioral
paradigm where an initially neutral cue is paired with an aversive
stimulus (Unconditioned Stimulus; US). This results in the
cue, now referred to as a conditioned stimulus (CS), eliciting
conditioned fear responses (CRs). Extinction training refers to a
procedure where the CS is repeatedly presented without the US,
which leads to a reduction in the CRs (Anagnostaras et al., 2015).
The retention of extinction can be assessed later by presenting
the CS again and involves the retrieval of a safety memory that
competes for expression with the original fear memory (Bouton,
2004; Lonsdorf et al., 2019). Diminished retention of cued fear
extinction is reported in adolescent rats relative to older and
younger animals despite a similar reduction in fear responses
during extinction training while adolescent mice exhibit deficits
in extinction learning and retention of both cued and context
fear (for review see Bisby et al., 2021). Diminished learning
or retention of cued fear extinction has also been reported
in humans (e.g., Pattwell et al., 2012; Ganella et al., 2017).
As the maintenance of extinction is a challenge for exposure-
based treatments for clinical anxiety and fear-related disorders
in youth and adults (Rauch et al., 2012; Vervliet et al., 2013;

Kodal et al., 2018), understanding the processes which strengthen
extinction retention in adolescence in animal and human
laboratory studies may ultimately provide insight into clinical
interventions to reduce excessive fear in this age group.

Preclinical research has identified several methods which
enhance extinction retention in adolescent rats, broadly falling
into behavioral and pharmacological interventions. One example
of a behavioral approach is doubling the amount of extinction
training given to adolescents, which leads to equivalent extinction
retention as observed in adult animals (e.g., McCallum et al.,
2010). In terms of a pharmacological adjunct, the partial NMDA
receptor agonist D-Cycloserine (DCS) improves subsequent
extinction retention in adolescent rats when administered
immediately following extinction training (McCallum et al.,
2010), similar to its effects in adults (Walker et al., 2002;
Ledgerwood et al., 2003).

An important consideration in the use of behavioral or
pharmacological interventions to enhance extinction is that
exposure to chronic stress can affect their efficacy in adolescent
rats (Stylianakis et al., 2019). Specifically, exposure to chronic
stress during adolescence impairs extinction retention even
after extended extinction training. For example, in one study
chronic stress during early adolescence (27–33 days old) was
modeled by having rats drink corticosterone-infused water for
7 days (Den et al., 2014). This type of stressor has been shown
to mimic the neural and physiological effects of other types
of stress, such as repeated restraint stress and chronic social
stress (Luine et al., 1993; McKittrick et al., 2000; Cook and
Wellman, 2004; Radley et al., 2006; Jeong et al., 2013; Hoffman
et al., 2014; Kaplowitz et al., 2016). Adolescent rats exposed to
corticosterone displayed significantly higher CS-elicited freezing
at the extinction retention test, as compared to rats exposed to
vehicle or water, which did not differ from each other, following
extended extinction training (Den et al., 2014). In another
set of experiments, Stylianakis et al. (2019) replicated those
effects and further reported that pharmacological enhancement
of extinction retention by DCS in adolescent rats was abolished
when animals had been exposed to chronic corticosterone in their
drinking water. These findings suggest that two methods that
have been shown to ameliorate the extinction retention deficit
in non-stressed adolescent rats, extended extinction training
and DCS, do not facilitate extinction retention in adolescents
exposed to chronic stress. Moreover, this work provides evidence
for the idea that chronic stressor exposure during adolescence
has particularly deleterious effects on extinction processes (i.e.,
similar effects of the chronic stress were not observed in
younger or older rats).

Based on these findings, alternative methods to enhance
extinction retention in stress-exposed adolescents need to be
explored. In addition, awareness that chronic stress can impair
extinction processes could be useful in clinical settings where
excessive fears are targeted with extinction (i.e., exposure;
Graham and Milad, 2011). Therefore, here we examined
the potential of an alternative pharmacological adjunct,
7,8-dihydroxyflavone (7,8-DHF), to improve fear extinction
retention in adolescent rats exposed to chronic corticosterone.
This adjunct was chosen based on a report that the administration
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of 7,8-DHF prior to extinction enhanced cued fear extinction in
male mice (Tohyama et al., 2020), as well as a study which found
that administration of 7,8-DHF prior to extinction reduced fear
responses during extinction training in both non-stressed adult
mice as well as those exposed to immobilization stress prior to
fear conditioning (Andero et al., 2011). The non-stressed mice
given 7,8-DHF also exhibited less relapse (i.e., reinstatement) of
extinguished fear, compared to those given an injection of the
vehicle. This adjunct is proposed to be a tropomyosin receptor
kinase B (TrkB) agonist (Jang et al., 2010; Liu et al., 2014),
and there is evidence 7,8-DHF upregulates phosphorylation
of TrkB in the amygdala, a key region for extinction learning,
when delivered systemically in mice (Andero et al., 2011). In
the present study, we examined the efficacy of 7,8-DHF in
facilitating fear extinction learning and retention (and reducing
relapse) in non-stressed adolescent rats as well as those exposed
to chronic corticosterone.

MATERIALS AND METHODS

Subjects
Subjects were 116 experimentally naïve male Sprague-Dawley
rats, bred and housed in the School of Psychology at UNSW
Sydney. Rats were maintained in a humidity- and temperature-
controlled room on a 12-h light/dark cycle (lights on at 0700).
Animals were weaned at postnatal day (P)21-P22 and housed
with two or three other rats in plastic boxes (60 cm long× 30 cm
wide × 12 cm high) with wire tops (total height 27.5 cm).
A maximum of one animal per litter was allocated into each
experimental group. Water and food were available ad libitum.
Animals from a given stress condition were housed together,
but were randomly allocated to drug condition (i.e., 7,8-DHF
or vehicle). All animals were treated in accordance with the
Australian Code of Practice for the Care and Use of Animals
for Scientific Purposes (8th Edition, 2013). The Animal Care and
Ethics Committee at UNSW Sydney approved all procedures.

Apparatus
All behavioral procedures occurred in two sets of chambers
(24 cm long × 30 cm wide × 21 cm high; Med Associates).
One set of chambers was used as Context A and the other as
Context B. Each chamber was fitted with a speaker to deliver a
white-noise CS. Chambers were enclosed in sound-attenuating
cabinets. Each cabinet was fitted with a camera on the rear wall
through which behavior was digitally recorded via computer-
based recording software (Blue Iris). Each cabinet also contained
a ventilation fan that provided a low level of background noise
(∼58 dB). CS and US presentations were controlled by Med-PC
V software. The chambers were cleaned with tap water after each
experimental session.

Context A
The two identical chambers referred to as Context A were
constructed of stainless-steel walls with a Perspex door and
ceiling. The floor consisted of stainless-steel rods spaced 16 mm
apart. Underneath the rods was a stainless-steel tray containing

corncob bedding. A clear Perspex sheet divided the chamber into
two triangular spaces and the rat was placed into the side that
housed the speaker. The only sources of lighting in Context A
were red LEDs on the ceiling of the cabinet.

Context B
The Context B chambers were constructed of similar materials
to Context A but they differed in terms of size, visual features,
lighting, and flooring. Specifically, sheets of paper with 2.5 cm
vertical black-and-white stripes covered the outside of the
Perspex ceiling and door in these chambers. A clear Perspex sheet
covered the grid floor and there was no Perspex divider in the
Context B chambers. A white light was placed on top of the
chambers to provide additional lighting (∼4 lux, Deglitch light
meter QM1587) to the red light.

Procedure
Pellet Implantation
In experiments for Analysis 2, animals in the chronic stress
condition were subcutaneously implanted with a 30 mg 7-
day release corticosterone pellet (4.3 mg per day average
corticosterone release; pellet was 7 mm in diameter) composed of
a proprietary matrix of cholesterol, cellulose, lactose, phosphates,
and stearates designed to facilitate continuous diffusion of
corticosterone over 7 days (Innovative Research of America,
Sarasota, FL, United States). The pellet implantation occurred
5 days before the start of the handling procedures (i.e.,
implantation on P28 ± 1 day) to ensure animals received 7 days
of corticosterone exposure before fear conditioning. Animals
housed together were implanted with pellets on the same day.
Placebo pellets, purchased from the same supplier, were the same
size and consisted of the same matrix without the corticosterone.
Dose and duration of hormone administration were chosen based
on the average daily dose consumed by rats across 7 days of
corticosterone administration in drinking water in our previous
studies on extinction in stressed adolescent rats (i.e., Den et al.,
2014; Stylianakis et al., 2019). Before implantation of pellets,
animals received a pre-emptive subcutaneous (s.c.) injection
of the non-steroidal anti-inflammatory analgesic Carprofen
(5 mg/kg; 1 ml/kg). Following this, rats were anaesthetized by
being placed in a chamber connected to a gas nozzle delivering
1–5% isoflurane in oxygen (33 ml/min). Once the rat was
anaesthetized, it was removed from the induction chamber and
placed in a nosepiece that supplied the isoflurane in oxygen
throughout the surgery, which did not last more than 10 min (and
usually much less than that). The body temperature of the animal
was maintained during and post-surgery with the use of a heat
pad. Following the onset of stable anesthesia (as verified by paw
pinch), an injection of 0.1 ml of the local anesthetic bupivacaine
(0.5%) was given at the site of incision. Using a scalpel blade, a
∼2 cm incision was made in the skin above the scapula. The skin
was pulled open using surgical skin hooks, and a corticosterone or
placebo pellet was implanted 0.5 cm under the incision between
the skin and muscle tissue. After the pellet had been inserted, the
skin was sewn together with surgical sutures and surgical staples
and Vetbond Tissue Adhesive was applied to the incision area.
Post-surgical infection was minimized by injecting rats with a
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prophylactic dose of procaine penicillin (150 mg/ml, 0.6 ml/kg
s.c.). The wellbeing of the rats was monitored daily for 7 days,
which included taking their weight.

7,8-DHF Administration
Rats were given an intraperitoneal (i.p.) injection of 5 mg/kg
7,8-DHF (7,8-dihydroxyflavone hydrate; Sigma-Aldrich D5446-
10MG) dissolved in 17% dimethyl sulfoxide (DMSO; Sigma) and
phosphate-buffered saline (PBS; pH 7.2; Andero et al., 2011) or
vehicle (17% DMSO in PBS). After being dissolved in DMSO and
PBS, the 7,8-DHF solution was kept refrigerated for up to 48 h.
7,8-DHF was administered 1 h prior to extinction. The injection
was administered as a volume of 1 ml/kg.

Behavioral Procedures
The behavioral procedures started when animals were between
P32 and 34, and consisted of handling and pre-exposure, fear
conditioning, extinction training, an extinction-retention test,
and a renewal test. Each procedure was separated by ∼24 h and
occurred around the same time of day (between 15:00 and 17:00
to ensure that all animals were at a similar point in their diurnal
corticosterone cycle; Maywood et al., 2007).

Handling and Pre-exposure
Rats were handled for 4 min each day for two consecutive days.
On each of these days, all rats were pre-exposed to Context A for
8 min to familiarize them with this context.

Fear Conditioning
Fear conditioning occurred in Context A. Following a 2-min
adaptation period, rats were given three pairings of a white noise
CS (7 dB above background noise levels, 10 s duration) and
a scrambled foot-shock US (0.45 mA, 1 s duration). The US
was presented in the last second of the CS so that the stimuli
co-terminated. The three CS-US pairings were separated by inter-
trial intervals (ITIs) of 135 and 85 s (mean ITI was 110 s). These
conditioning parameters were based on those used by Stylianakis
et al. (2019).

Extinction Training
Extinction training took place in Context B to minimize the
possibility that freezing at extinction could be attributed to
learned fear of the context, as opposed to fear of the CS.
After a 2-min adaptation period, rats received 30 non-reinforced
presentations of the white noise CS (10 s each, 10 s ITI).

Extinction Retention Test
Extinction retention was tested in Context B. Following a 2-
min adaptation period, rats received a 2-min CS presentation.
The longer CS duration at test than at conditioning and
extinction is a standard procedure in many of our studies on fear
extinction retention in developing and adult rats (e.g., McCallum
et al., 2010). However, as noted in a recent systematic review,
adolescent rats exhibit comparable impairment in extinction
whether the CS is presented continuously for 2 min or via
multiple 10 s presentations (see Bisby et al., 2021).

Renewal Test
Renewal was tested in Context A (i.e., ABA renewal was assessed).
Following a 2-min adaptation period, rats received a 2-min
CS presentation.

Scoring
Freezing was operationalized as the absence of movement other
than that necessary for respiration (Fanselow, 1980). Rats were
scored as freezing or not freezing every 3 s during the adaptation
(pre-CS) period as well as the CS presentations at conditioning,
extinction, the extinction retention test, and the renewal test.
The percentage of time spent freezing was calculated for each
animal, with percentage of time freezing calculated for each
of the three conditioning trials, five blocks at extinction (with
each block consisting of six extinction trials), and the extinction
retention and renewal tests. A random sample (∼30%) of the
CS-elicited freezing at the extinction retention and renewal
tests was cross-scored by an individual who was blind to the
experimental condition of subjects. Inter-rater reliability was very
high (r = 0.94–0.96 across the experiments reported here).

Adrenal Glands and Bodyweights
A subset of animals implanted with a corticosterone (n = 25,
13 injected with 7,8-DHF; included in Analysis 2) or placebo
pellet (n = 17, 7 injected with 7,8-DHF; included in Analysis 1)
were weighed on the day of extinction training and following
the last behavioral test before euthanasia using carbon dioxide.
The animals’ abdomens were cut laterally to expose the kidneys
and the adrenal glands were excised from above the kidney
with visible fat removed. The adrenal glands were weighed
as a pair [on a Mettler Toledo, MTL 025-MET balance;
Readability (d) = 0.1 mg].

Analysis
The aim of this study was to determine the efficacy of 7,8-
DHF in ameliorating the extinction retention deficit in non-
stressed adolescent rats and, if so, then test the efficacy
of this adjunct in chronically stressed adolescent rats. Two
overarching analyses were conducted, each involving pooled data
from three experiments with vehicle and 7,8-DHF groups (see
Supplementary Material for numbers of animals per experiment
included in the analyses). Analysis 1 was conducted on data from
experiments with non-stressed adolescent rats. In all three of
those experiments, adolescent rats were handled for 2 days before
undergoing conditioning 24 h later. The following day, the rats
were injected with either 7,8-DHF or vehicle 1 h before extinction
training, and 24 h after this they underwent an extinction
retention test before undergoing a renewal test the following day.
A subset of rats [n = 8 injected with 7,8-DHF (out of a total
of n = 29 animals in the final data set), n = 11 injected with
vehicle (out of a total of n = 33 in the final data set)] included in
Analysis 1 were implanted with a placebo pellet at P28 (±1 day),
5 days before the first day of handling. Analysis 2 compared data
collected from rats implanted with a corticosterone pellet at P28
(±1 day), which all underwent the same behavioral procedure
5 days later as in Analysis 1. The aim of Analysis 1 was to examine
the efficacy of 7,8-DHF on extinction retention in non-stressed
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adolescent rats, while the aim of Analysis 2 was to examine the
efficacy of 7,8-DHF on rats exposed to chronic corticosterone.

All statistical analyses were conducted using SPSS Version 26.
A significance value of p = 0.05 was applied to all analyses. In all
analyses, the experiment number (coded as a nominal variable)
was included as a factor to detect whether any group main
effects or interactions varied by the experimental replication. Pre-
CS freezing data at each session was analyzed using ANOVA
with group (vehicle or 7,8-DHF) and experiment as between-
subjects factors. CS-elicited freezing during conditioning and
extinction were analyzed using separate mixed-model ANOVAs
with group and experiment as between-subjects factors and
trial or block of six CSs as a repeated measure factor for
conditioning and extinction analyses, respectively. When the
assumption of sphericity was violated for repeated measure
ANOVAs, the Greenhouse-Geisser procedure was followed to
adjust degrees of freedom and p values. CS-elicited freezing
at the extinction retention and renewal tests were analyzed
using separate ANOVAs with group and experiment as between-
subjects factors. Given that renewal can be viewed as the degree of
relapse outside the extinction context, a subsequent mixed-model
ANOVA compared freezing across groups across tests, with test
as a repeated measures factor. Interactions were explored with
simple main effects. Bodyweight and adrenal gland weight as a
percentage of bodyweight were analyzed with 2 × 2 ANOVAs
with factors of drug (vehicle or 7,8-DHF) and pellet (placebo or
corticosterone). Measures of effect sizes are also given (partial η2

for the above analyses where small effect size = 0.001, medium
effect size = 0.059, and large effect size = 0.138; Richardson, 2011).

Exclusion criteria were applied such that any rat that did not
show evidence of learning the CS-US association at conditioning
(<6% freezing on block 1 of extinction training) or had failed to
learn during extinction ( > 94% freezing across the final four
blocks of extinction training) was excluded from the analysis.
This resulted in the exclusion of nine rats from the 7,8-DHF
group in Analysis 1, four rats from the 7,8-DHF group in
Analysis 2, and one rat from the vehicle group in Analysis
2. In addition, the extinction data of three rats in the 7,8-
DHF group and the renewal results of three rats in the control
group of Analysis 1 were not included in the analysis due to
experimenter error (e.g., recording failure). Furthermore, three
of the rats that had their adrenal glands excised did not have their
weight recorded at 2 days post-pellet washout due to errors in
weight recording.

RESULTS

Analysis 1
We initially compared the behavioral data of those implanted
with a placebo pellet to those not implanted with a pellet in rats
injected with 7,8-DHF or vehicle. These analyses confirmed that
placebo pellet implantation did not affect behavior during any
pre-CS period, conditioning, extinction, extinction retention or
renewal [7,8-DHF group: largest F(3.12,74.79) = 2.38, p = 0.074,
ηp

2 = 0.090, extinction block by pellet interaction; vehicle group:
largest F(1,31) = 2.38, p = 0.13, ηp

2 = 0.071, pellet effect

for conditioning pre-CS]. Therefore, the subsequent analyses
disregarded whether animals had pellets or not.

Pre-CS
Table 1 provides levels of pre-CS freezing across sessions for data
included in Analysis 1. Pre-CS freezing did not differ between
groups at conditioning [F(1,56) = 1.37, p = 0.25, ηp

2 = 0.024],
extinction training [F(1,53) = 0.27, p = 0.61, ηp

2 = 0.005], the
extinction retention test [F(1,56) = 3.39, p = 0.071, ηp

2 = 0.057],
or the renewal test [F(1,53) = 0.71, p = 0.79, ηp

2 = 0.001].
An effect of experiment or interaction of experiment with
group was not detected at conditioning, the extinction retention
test, or the renewal test [largest F(2,53) = 3.00, p = 0.058,
ηp

2 = 0.102, experiment main effect at renewal]. Pre-CS freezing
in the 7,8-DHF and vehicle groups varied at extinction training
across experiments [experiment effect: F(2,53) = 1.24, p = 0.30,
ηp

2 = 0.045; interaction: F(2,53) = 3.57, p = 0.035, ηp
2 = 0.119]

such that the pre-CS freezing was slightly higher in the vehicle
controls (M = 10.28) relative to the 7,8-DHF group (M = 1.25)
in one out of three experiments [F(1,53) = 5.40, p = 0.024,
ηp

2 = 0.092; other Fs ≤ 1.97, p ≤ 0.166, ηp
2
≤ 0.036]. Overall,

these results suggest that pre-CS freezing was relatively low across
most sessions and was largely unaffected by group.

Conditioning and Extinction
Figures 1A,B show that the 7,8-DHF and vehicle group exhibited
a comparable increase in CS-elicited freezing during conditioning
and a comparable decrease in CS-elicited freezing across
extinction training. This description was confirmed with a mixed-
model ANOVA revealing a trial main effect at conditioning
[F(2,112) = 122.70, p < 0.001, ηp

2 = 0.687] but no group or
experiment effects or interactions [largest F(2,56) = 1.31, p = 0.28,
ηp

2 = 0.045, experiment effect].
A mixed-model ANOVA of the extinction training data

detected a block main effect [F(2.76,146.28) = 48.34, p < 0.001,
ηp

2 = 0.477], but no main effects of group [F(1,53) = 2.48, p = 0.12,
ηp

2 = 0.045] or experiment [F(2,53) = 0.24, p = 0.79, ηp
2 = 0.009],

nor an interaction of block by group [F(2.76,146.28) = 0.52, p = 0.65,
ηp

2 = 0.010]. The effects of block and group did not vary by
experiment [block by experiment interaction: F(5.52,146.28) = 1.02,
p = 0.41, ηp

2 = 0.037; group by experiment interaction:
F(2,53) = 0.21, p = 0.82, ηp

2 = 0.008]. Whilst a block by group
by experiment interaction was detected [F(5.52,146.28) = 3.54,
p = 0.003, ηp

2 = 0.118], follow-up ANOVAs with simple main
effects examining group differences across block separately across
experiments did not reveal any meaningful differences in the

TABLE 1 | Mean (SEM) pre-CS freezing across sessions for data
included in Analysis 1.

Vehicle n = 33 7,8-DHF n = 29

Conditioning 0.83 (0.39) 0.34 (0.20)

Extinction 3.86 (1.88) 3.08 (1.05)

Extinction retention test 7.96 (2.53) 2.41 (0.73)

Renewal test 5.33 (2.00) 6.64 (2.28)

Due to missing cases, n = 26 at extinction training in the 7,8-DHF group and n = 30
in the vehicle group at the renewal test.
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FIGURE 1 | Adolescent non-stressed rats exhibit lower levels of freezing when tested in either the extinction or conditioning contexts when 7,8-DHF is combined
with extinction training. Data included in Analysis 1 are represented by mean (±SEM) levels of CS-elicited freezing at Conditioning (A) and Extinction (B). CS-elicited
freezing data at the Extinction Retention (C) and Renewal tests (D) are shown as individual dot plots with mean (±SEM). Asterisk represents significant (p < 0.01)
group difference. Group sizes were n = 33 for vehicle and n = 29 for 7,8-DHF with the exception of n = 26 for 7,8-DHF at extinction training and n = 30 for vehicle at
the renewal test.

rate of extinction between 7,8-DHF or vehicle groups; the 7,8-
DHF group (M = 20.56) had significantly lower freezing than
the vehicle group (M = 51.24) only at block 4 in one experiment
(p = 0.033). Overall, these results indicate that 7,8-DHF did not
affect average levels of CS-freezing or the rate of extinction.

Extinction Retention Test
Figure 1C illustrates that rats injected with 7,8-DHF before
extinction training had lower levels of CS-elicited freezing at the
extinction retention test compared to those injected with vehicle,
as confirmed by a group main effect [F(1,56) = 25.91, p < 0.001,
ηp

2 = 0.316]. The group effect was consistent across experiments
[largest F(2,56) = 0.60, p = 0.55, ηp

2 = 0.021, group by experiment
interaction]. This suggests that 7,8-DHF improved extinction
retention in non-stressed adolescent rats.

Renewal
There was a significant difference in level of CS-elicited freezing
between groups, with those injected with 7,8-DHF exhibiting
lower levels than those injected with vehicle, suggesting less
renewal in the 7,8-DHF-treated group [F(1,53) = 7.40, p = 0.009,
ηp

2 = 0.122, see Figure 1D]. The group difference was consistent
across experiments [experiment effect: F(2,53) = 2.42, p = 0.10,

ηp
2 = 0.084; group by experiment interaction: F(2,53) = 1.42,

p = 0.25, ηp
2 = 0.051].

Given that renewal can be quantified as the degree of relapse
when performance is tested outside of the extinction training
context, a subsequent analysis examined whether each group had
significant changes in freezing from the retention test (Context
B) to the renewal test (Context A). A mixed-model ANOVA
on CS-elicited freezing was conducted with drug (7,8-DHF or
vehicle) as a between-group factor and test (extinction retention
test or renewal) as a within-subjects factor. This analysis revealed
a main effect of test [F(1,57) = 21.37, p < 0.001, ηp

2 = 0.273],
indicative of renewal, and a main effect of drug [F(1,57) = 17.86,
p< 0.001, ηp

2 = 0.239], but no significant test by drug interaction
[F(1,57) = 2.18, p = 0.15, ηp

2 = 0.037]. These results confirm that,
on average, 7,8-DHF reduced post-extinction freezing but suggest
that both 7,8-DHF and vehicle groups had a comparable degree
of renewal of fear outside of the extinction context.

Overall, the results of this analysis demonstrate that 7,8-DHF
administered before extinction training does not affect within-
session extinction but reduces fear responses at subsequent
extinction retention and renewal tests in non-stressed adolescent
rats. These results suggest 7,8-DHF enhances the consolidation of
the extinction memory.
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Analysis 2
This analysis involved adolescent rats chronically exposed to
corticosterone (via an implanted, slow-release pellet). Twenty-
four rats were injected with 7,8-DHF and sixteen with vehicle.

Pre-CS
As shown in Table 2, pre-CS freezing did not differ between
groups at conditioning [F(1,35) = 0.00, p = 1.00, ηp

2 = 0.000],
extinction training [F(1,35) = 0.79, p = 0.38, ηp

2 = 0.022],
extinction retention test [F(1,35) = 2.25, p = 0.14, ηp

2 = 0.060],
or renewal [F(1,35) = 0.61, p = 0.44, ηp

2 = 0.017]. Furthermore,
there were no effects of experiment or group by experiment
interactions during pre-CS freezing at conditioning, extinction
training, extinction retention test, or renewal [largest
F(1,35) = 2.89, p = 0.10, ηp

2 = 0.076, group by experiment
interaction at extinction training].

Conditioning and Extinction
Figures 2A,B show that the 7,8-DHF and vehicle groups
exhibited a comparable increase in CS-elicited freezing during
conditioning and a comparable decrease in CS-elicited freezing
across extinction training. This description of the results
was confirmed with a mixed-model ANOVA revealing a
trial main effect at conditioning [F(2,70) = 58.16, p < 0.001,
ηp

2 = 0.624] with no group or experiment effects or interactions
being detected [largest F(2,35) = 2.46, p = 0.10, ηp

2 = 0.123,
experiment effect].

A mixed-model ANOVA of the extinction data detected a
block main effect [F(3.03,105.94) = 17.29, p < 0.001, ηp

2 = 0.331]
and an experiment effect [F(2,35) = 3.47, p = 0.042, ηp

2 = 0.166].
However, Tukey’s post hoc tests on the experiment main effect
did not detect any significant differences in average freezing
across experiments (smallest p = 0.051). No effect of group
or interactions were detected [largest F(1,35) = 2.81, p = 0.10,
ηp

2 = 0.074, group by experiment interaction].

Extinction Retention Test
As shown in Figure 2C, rats injected with 7,8-DHF did
not exhibit significantly different levels of CS-elicited freezing
compared to those injected with vehicle [F(1,35) = 0.001, p = 0.97,
ηp

2 = 0.000]. This suggests that 7,8-DHF did not improve
extinction retention in chronically stressed adolescent rats. While
there was no effect of experiment [F(2,35) = 1.53, p = 0.23,
ηp

2 = 0.080], there was a significant group by experiment
interaction [F(1,35) = 4.20, p = 0.048, ηp

2 = 0.107]. This
interaction was further explored by simple main effects, which
found no significant effect of group within each experiment

TABLE 2 | Mean (SEM) pre-CS freezing across sessions for data
included in Analysis 2.

Vehicle n = 16 7,8-DHF n = 24

Conditioning 1.41 (0.82) 1.04 (0.94)

Extinction 7.21 (4.62) 7.42 (2.98)

Extinction retention test 12.50 (5.76) 3.13 (1.15)

Renewal test 12.03 (5.87) 3.44 (1.80)

[largest p = 0.064, 95% CI = (−1.28, 42.95)], suggesting that group
differences within experiments were not significant.

Renewal
The groups did not differ in level of CS-elicited freezing
on the renewal test [F(1,35) = 1.30, p = 0.26, ηp

2 = 0.036,
see Figure 2D]. The group difference was consistent across
experiments [experiment effect: F(2,35) = 1.15, p = 0.33,
ηp

2 = 0.062; group by experiment interaction: F(1,35) = 0.13,
p = 0.72, ηp

2 = 0.004].
As in Analysis 1, a subsequent mixed-model ANOVA

examined whether each group had significant changes in CS-
elicited freezing from the retention test (Context B) to the renewal
test (Context A). This ANOVA had drug (7,8-DHF or vehicle)
as a between-group factor and test (extinction retention test or
renewal) as a within-subjects factor. This analysis revealed a main
effect of test [F(1,38) = 8.21, p = 0.007, ηp

2 = 0.178], indicative
of renewal, but no main effect of drug [F(1,38) = 3.01, p = 0.09,
ηp

2 = 0.073] or drug by test interaction [F(1,38) = 0.55, p = 0.47,
ηp

2 = 0.014]. These results suggest that both 7,8-DHF and vehicle
groups had a comparable degree of renewal of fear outside of the
extinction context.

Adrenal Glands and Bodyweight
Adrenal weights differed between groups, with the animals
implanted with corticosterone pellets (n = 25) having smaller
adrenals as a percentage of bodyweight compared to those
implanted with the placebo pellets [n = 17; F(1,38) = 49.23,
p < 0.001, ηp

2 = 0.564, as shown in Figure 3A]. Relative to
those implanted with placebo pellets, animals with corticosterone
pellets had lower bodyweight 2 days after corticosterone
treatment cessation [F(1,35) = 4.12, p = 0.050, ηp

2 = 0.105, see
Figure 3B]; however, bodyweight did not differ between groups
four days after treatment cessation [F(1,38) = 1.84, p = 0.18,
ηp

2 = 0.046, see Figure 3C]. There were no significant differences
between adrenal gland weight and bodyweight at either 2 or
4 days washout in animals injected with 7,8-DHF or vehicle in
either the corticosterone-exposed group or the group exposed
to placebo [largest drug effect or interaction: F(1,38) = 1.03,
p = 0.32, ηp

2 = 0.026, drug effect for adrenal glands as a
percentage of bodyweight].

DISCUSSION

The overarching aim of the experiments reported in this
paper was to firstly determine the efficacy of the TrkB
agonist 7,8-DHF in ameliorating the extinction retention
deficit in non-stressed adolescent rats. Upon finding that
7,8-DHF did indeed improve extinction retention in non-
stressed adolescents, we sought to examine whether 7,8-DHF
was efficacious in ameliorating the extinction retention deficit
in chronically stressed adolescent rats. Compared to vehicle,
7,8-DHF administration (i.p.) 1 h before extinction training
facilitated extinction retention (as indicated by lower levels of
CS-elicited freezing) in both the extinction and the conditioning
contexts in non-stressed adolescent rats (Analysis 1). However,
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FIGURE 2 | 7,8-DHF combined with extinction training does not affect CS-elicited freezing during extinction training or tests of extinction retention and renewal in
adolescent rats exposed to corticosterone. Data included in Analysis 2 are represented by mean (±SEM) levels of CS-elicited freezing at Conditioning (A) and
Extinction (B). CS-elicited freezing data at the Extinction Retention (C) and Renewal (D) tests are shown as individual dot plots with mean (±SEM). Group sizes were
n = 16 for vehicle and n = 24 for 7,8-DHF.

FIGURE 3 | Corticosterone pellet exposure reduced adrenal gland weight as a percentage of bodyweight (A) and bodyweight 2 days after treatment cessation (B)
but did not affect bodyweight 4 days after treatment cessation (C) relative to placebo treatment. Data is shown as individual dot plots with mean (±SEM). Asterisk
represents significant (p < 0.001) group difference. Group sizes were n = 17 for the placebo (vehicle n = 10, 7,8-DHF n = 7) and n = 25 for the corticosterone
(vehicle n = 12, 7,8-DHF n = 13) group at 4 days washout, and n = 15 for the placebo (vehicle n = 9, 7,8-DHF n = 6) and n = 24 for the corticosterone (vehicle
n = 12, 7,8-DHF n = 12) group at 2 days washout.

7,8-DHF administration had no impact in chronically stressed
adolescent rats (i.e., those implanted with a 7-day-release
corticosterone pellet; Analysis 2). These results contrast with
those of Andero et al. (2011) and Tohyama et al. (2020)
that 7,8-DHF enhanced within-session extinction in non-
stressed adult mice and those exposed to immobilization stress.
The possibility of a species difference is supported by the

consistency of our results with reports that genetic antagonism
of TrkB-mediated signaling in the amygdala of rats impairs
the retention of fear extinction whilst leaving the acquisition
of extinction intact (Chhatwal et al., 2006). A comparison
of the results of the present study across the stressed (i.e.,
corticosterone-exposed) and non-stressed conditions indicates
that a history of elevated stress hormone exposure interferes
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with the efficacy of 7,8-DHF in enhancing the maintenance of
fear extinction.

Past research has shown that, compared to juvenile and adult
animals, non-stressed adolescents have diminished extinction
retention (McCallum et al., 2010; Pattwell et al., 2012; Bisby
et al., 2021). However, this extinction retention deficit can be
ameliorated by an injection of a partial NMDA receptor agonist
(i.e., DCS) or giving extended extinction training (McCallum
et al., 2010). In contrast, neither of these treatments facilitate
extinction retention in adolescent rats exposed to 7 days
of corticosterone in their drinking water (Den et al., 2014;
Stylianakis et al., 2019). In the present study, 7,8-DHF was
also found to facilitate extinction retention in non-stressed
adolescents but not in rats exposed to chronic elevated levels
of corticosterone (via slow release implanted pellets). Therefore,
it is clear that chronic corticosterone exposure diminishes the
effectiveness of at least one behavioral and two pharmacological
approaches to enhancing extinction retention in adolescence.

One potential explanation for why chronic corticosterone
reduces the maintenance of fear extinction in adolescent rats
is that such exposure downregulates subunits of the NMDA
receptors within critical brain regions that are necessary for
extinction consolidation. The activation of NMDA receptors
and their downstream signaling cascades (e.g., mitogen activated
protein kinases) are crucial for the protein synthesis underlying
the formation of long-term memories, such as extinction
memories, at least in adult animals (Burgos-Robles et al., 2007;
Orsini and Maren, 2012). NMDA receptors are also important
for extinction retention in non-stressed adolescents, but only
after extended extinction training or an injection of DCS (see
Baker and Richardson, 2017). One pathway through which
BDNF’s binding to TrkB receptors is hypothesized to facilitate
extinction is by modulating glutamate release, resulting in
increased glutamate binding to NMDA receptors, which in
turn increases synaptic plasticity (Andero et al., 2011; Andero
and Ressler, 2012). However, there is evidence to suggest that
corticosterone exposure decreases the expression of NMDA
receptor subunits in the prefrontal cortex. For example, Gourley
et al. (2009) found that levels of the NMDA receptor subunit
NR2B were decreased in the ventral medial prefrontal cortex
(vmPFC) of adult rats that exhibited impaired extinction as
a result of chronic corticosterone exposure, with the vmPFC
being a region of the brain that is particularly important for
extinction retention (Quirk et al., 2006). Moreover, NR2B levels
in the vmPFC were correlated with extinction retention, with
lower levels of NR2B being associated with poorer extinction
retention. Should corticosterone exposure during adolescence
also lead to a decrease in the NMDA receptor subunit NR2B, then
this could be the mechanism by which the efficacy of extended
extinction, DCS, and 7,8-DHF in improving extinction retention
in adolescent rats is reduced (Den et al., 2014; Stylianakis et al.,
2019; the present study). In order to test this hypothesis, future
research could compare the phosphorylation of NMDA receptors
following extended extinction, 7,8-DHF, and DCS exposure in
non-stressed and chronically stressed adolescents.

As 7,8-DHF did not improve extinction retention in
adolescent rats exposed to chronic stress, it is important to

consider alternate means by which extinction retention can be
improved in this population. In line with this, another area for
future research is the examination of the efficacy of 7,8-DHF
following extended extinction training in animals exposed to
chronic stress. While non-stressed adolescents demonstrate good
extinction retention following extended extinction training, those
that have been exposed to chronic stress continue to exhibit poor
extinction retention even following extended extinction training
(Stylianakis et al., 2019). This suggests that adolescents exposed
to chronic stress may have a weaker extinction memory relative
to non-stressed adolescent rats, making it more difficult for 7,8-
DHF (or DCS, as in Stylianakis et al., 2019) to enhance extinction
retention. Hence, an injection of 7,8-DHF coupled with further
extinction may result in a stronger extinction memory, leading to
improved extinction retention.

The experiments described were not without their limitations.
One limitation pertains to the use of 7,8-DHF. Whilst this
adjunct was initially proposed to be a tropomyosin receptor
kinase B (TrkB) agonist (Jang et al., 2010; Liu et al., 2014),
and there is evidence that 7,8-DHF (at 5 mg/kg, the same
dose as used in the current study) upregulates phosphorylation
of TrkB in the amygdala 1 and 2 h after systemic delivery
in adult mice (Andero et al., 2011), the pharmacology of 7,8-
DHF is more complex than initially assumed. Several alternative
targets than TrkB receptors may mediate its neurobehavioral
actions in vivo, including activation of adenosine receptors
(Pankiewicz et al., 2021). In addition, as we administered the
drug systemically it is not possible to deduce whether 7,8-DHF
acted centrally to facilitate extinction retention in non-stressed
adolescent rats. Consequently, future experiments are needed
examining the pharmacokinetics of this drug in the adolescent
brain and the phosphorylation of TrkB receptors, or activation of
possible alternative targets, in extinction-relevant brain regions.
For example, it would be of interest to determine whether 7,8-
DHF upregulates TrkB phosphorylation or neural activity in the
ventral hippocampal, vmPFC, and amygdala, three regions that
have been shown to be important for extinction retention, at
least in adults (Chhatwal et al., 2006; Peters et al., 2010) and that
are hypothesized to be under-recruited in the adolescent during
the consolidation of fear extinction (Zimmermann et al., 2019).
Furthermore, although a 5 mg/kg dose of 7,8-DHF was found
to be effective in facilitating extinction retention in non-stressed
adolescent rats in the present study, no other doses were tested.
Future studies should test lower doses to establish a threshold
dose (i.e., the dose at which effects are first seen) as well as
higher doses (which provides information about limits and safety
of higher doses), especially in chronic corticosterone-exposed
adolescent rats, given that a 5 mg/kg dose of 7,8-DHF did not
facilitate extinction retention in those animals.

Another limitation of the experiments reported here is that no
measures of stress hormone levels in the blood of the adolescent
rats were taken in order to confirm that the corticosterone
pellet implantation did indeed increase circulating corticosterone
levels. However, measures of adrenal glands that were taken
4 days following the cessation of corticosterone exposure show
that chronic corticosterone exposure resulted in significantly
reduced adrenal weights, replicating past studies with chronic

Frontiers in Neuroscience | www.frontiersin.org 9 March 2022 | Volume 16 | Article 822709

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-822709 March 10, 2022 Time: 14:58 # 10

Stylianakis et al. Stress Impairs Enhancement of Extinction

exogenous corticosterone administration in the drinking water
of adolescent male rats (e.g., Kaplowitz et al., 2016; Stylianakis
et al., 2019). In addition, animals with corticosterone pellets had
lower bodyweights 2 days after treatment cessation (i.e., on the
day of extinction training) which recovered to similar levels as
placebo treated animals 4 days after treatment cessation. Thus,
the changes in adrenal gland weight and bodyweight confirm that
administration of corticosterone via these slow-release pellets had
a physiological effect on the adolescents in these experiments.

A third limitation of these studies derives from the way
animals were exposed to chronic stress (via the implantation
of corticosterone pellets). While exposure to chronic elevated
levels of corticosterone does indeed lead to behavioral and neural
changes that also occur following other chronic stress induction
procedures (Luine et al., 1993; McKittrick et al., 2000; Cook and
Wellman, 2004; Radley et al., 2006), an animal’s stress response
consists of the release of a number of other stress hormones,
each of which have specific impacts upon the brain (Charmandari
et al., 2005). Therefore, it would be of interest to determine if
the diminishment of 7,8-DHF’s effects on extinction following
corticosterone exposure are replicated using different methods
of inducing chronic stress (e.g., chronic restraint, which would
result in the activation of the HPA axis in its entirety).

Future work may also seek to extend the present work
in male adolescent rats by testing whether 7,8-DHF enhances
fear extinction consolidation in adolescent females and whether
chronic stress interferes with such an effect. Not only are
fluctuations in estradiol levels across the rodent estrous cycle
associated with varying effectiveness of extinction in adolescent
female rats (Perry et al., 2020) but 7,8-DHF was reported to
hinder extinction learning in adult female mice (Tohyama et al.,
2020), or exert no influence on extinction learning, retention, or
renewal (Baker-Andresen et al., 2013). Those effects in females
are in stark contrast to the enhancement of fear extinction in
male adult mice (Andero et al., 2011; Tohyama et al., 2020) and
adolescent male rats (non-stressed) reported in the current study.
Whilst age-dependent effects are possible, the possibility of sex-
specific effects of 7,8-DHF on fear extinction requires addressing.

Concluding Statement
The experiments described here demonstrate that whilst 7,8-DHF
facilitates extinction retention in male non-stressed adolescents
it does not facilitate extinction retention in adolescents exposed
to chronic stress, at least when the same extinction conditions
are used. These results add to the broader literature which has

demonstrated that two other approaches that facilitate extinction
retention in non-stressed rats, DCS and extended extinction, do
not facilitate extinction retention in those exposed to chronic
stress. These results provide further insight into the etiology and
treatment of pediatric stress-related disorders, and call for further
research into the mechanisms underlying the extinction retention
deficit in chronically stressed adolescents, and for methods by
which this deficit can be ameliorated.
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