
RESEARCH Open Access

High-Throughput parallel blind Virtual Screening
using BINDSURF
Irene Sánchez-Linares, Horacio Pérez-Sánchez*, José M Cecilia, José M García

From NETTAB 2011 Workshop on Clinical Bioinformatics
Pavia, Italy. 12-14 October 2011

Abstract

Background: Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact
with drug targets. Most VS methods suppose a unique binding site for the target, usually derived from the
interpretation of the protein crystal structure. However, it has been demonstrated that in many cases, diverse
ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant
fact.

Results: We present BINDSURF, a novel VS methodology that scans the whole protein surface in order to find new
hotspots, where ligands might potentially interact with, and which is implemented in last generation massively
parallel GPU hardware, allowing fast processing of large ligand databases.

Conclusions: BINDSURF is an efficient and fast blind methodology for the determination of protein binding sites
depending on the ligand, that uses the massively parallel architecture of GPUs for fast pre-screening of large ligand
databases. Its results can also guide posterior application of more detailed VS methods in concrete binding sites of
proteins, and its utilization can aid in drug discovery, design, repurposing and therefore help considerably in
clinical research.

Background
In clinical research, it is crucial to determine the safety
and effectiveness of current drugs and to accelerate
findings in basic research (discovery of new leads and
active compounds) into meaningful health outcomes.
Both objectives need to process the large data set of
protein structures available in biological databases such
as PDB [1] and also derived from genomic data using
techniques as homology modeling [2]. Screenings in lab
and compound optimization are expensive and slow
methods, but bioinformatics can vastly help clinical
research for the mentioned purposes by providing pre-
diction of the toxicity of drugs and activity in non-tested
targets, and by evolving discovered active compounds
into drugs for the clinical trials.
This can be achieved thanks to the availability of

bioinformatics tools and Virtual Screening (VS) methods

that allow to test all required hypothesis before clinical
trials. Nevertheless current Virtual Screening (VS) meth-
ods, like docking, fail to make good toxicity and activity
predictions since they are constrained by the access to
computational resources; even the nowadays fastest VS
methods cannot process large biological databases in a
reasonable time-frame. Therefore, these constraints
imposes serious limitations in many areas of transla-
tional research.
The use of last generation massively parallel hardware

architectures like Graphics Processing Units (GPUs) can
tremendously overcome this problem. The GPU has
become increasingly popular in the high performance
computing arena, by combining impressive computational
power with the demanding requirements of real-time
graphics and the lucrative mass-market of the gaming
industry [3]. Scientists have exploited this power in argu-
ably every computational domain, and the GPU has
emerged as a key resource in applications where paralle-
lism is the common denominator [4]. To maintain this

* Correspondence: horacio@ditec.um.es
Computer Engineering Department, School of Computer Science, University
of Murcia, Spain

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

© 2012 Sánchez-Linares et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:horacio@ditec.um.es
http://creativecommons.org/licenses/by/2.0

momentum, new hardware features have been progres-
sively added by NVIDIA to their range of GPUs, with the
Fermi architecture [5] being the most recent milestone in
this path.
Therefore, GPUs are well suited to overcome the lack

of computational resources in VS methods, accelerating
the required calculations and allowing the introduction
of improvements in the biophysical models not afford-
able in the past [6]. We have previously worked in this
direction, showing how VS methods can benefit from
the use of GPUs [7-9].
Moreover, another important lack of VS methods is

that they usually take the assumption that the binding
site derived from a single crystal structure will be the
same for different ligands, while it has been shown that
this does not always happen [10], and thus it is crucial to
avoid this very basic supposition. In this work, we present
a novel VS methodology called BINDSURF which takes
advantage of massively parallel and high arithmetic inten-
sity of GPUs to speed-up the required calculations in low
cost and consumption desktop machines, providing new
and useful information about targets and thus improving
key toxicity and activity predictions. In BINDSURF a
large ligand database is screened against the target pro-
tein over its whole surface simultaneously. Afterwards,
information obtained about novel potential protein hot-
spots is used to perform more detailed calculations using
any particular VS method, but just for a reduced and
selected set of ligands. Other authors have also per-
formed VS studies over whole protein surfaces [11] using
different approaches and screening small ligand data-
bases, but as far as we know, none of them have been
implemented on GPUs and used in the same fashion as
BINDSURF.

Protein surface screening
The main idea underlying our VS method BINDSURF is
the protein surface screening method, implemented in
parallel on GPUs. Essentially, VS methods screen a large
database of molecules in order to find which one fit some
established criteria [12]. In the case of the discovery of
new leads, compound optimization, toxicity evaluation
and additional stages of the drug discovery process, we
screen a large compound database to find a small mole-
cule which interacts in a desired way with one or many
different receptors. Among the many available VS meth-
ods for this purpose we decided to use protein-ligand
docking [13,14]. These methods try to obtain rapid and
accurate predictions of the 3D conformation a ligand
adopts when it interacts with a given protein target, and
also the strength of this union, in terms of its scoring
function value. Docking simulations are typically carried
out in a very concrete part of the protein surface in
methods like Autodock [15], Glide [16] and DOCK [17],

to name a few. This region is commonly derived from
the position of a particular ligand in the crystal structure,
or from the crystal structure of the protein without any
ligand. The former can be performed when the protein is
co-crystallized with the ligand, but it might happen that
no crystal structure of this ligand-protein pair is at dispo-
sal. Nevertheless, the main problem is to take the
assumption, once the binding site is specified, that many
different ligands will interact with the protein in the
same region, discarding completely the other areas of the
protein.
Given this problem we propose to overcome it by

dividing the whole protein surface into defined regions.
Next, docking simulations for each ligand are performed
simultaneously in all the specified protein spots. Follow-
ing this approach, new hotspots might be found after
the examination of the distribution of scoring function
values over the entire protein surface. This information
could lead to the discovery of novel binding sites. If we
compare this approach with a typical docking simulation
performed only in a region of the surface, the main
drawback of this approach lies on its increased compu-
tational cost. We decided to pursue in this direction and
show how this limitation can be overcome thanks to
GPU hardware and new algorithmic designs.
In essence, in a docking simulation we calculate the

ligand-protein interaction energy for a given starting con-
figuration of the system, which is represented by a scor-
ing function [18]. In BINDSURF the scoring function
calculates electrostatic (ES), Van der Waals (VDW) and
hydrogen bond (HBOND) terms. Furthermore, in dock-
ing methods it is normally assumed [12] that the minima
of the scoring function, among all ligand-protein confor-
mations, will accurately represent the conformation the
system adopts when the ligand binds to the protein.
Thus, when the simulation starts, we try to minimize the
value of the scoring function by continuously performing
random or predefined perturbations of the system, calcu-
lating for each step the new value of the scoring function,
and accepting it or not following different approaches
like the Monte Carlo minimization method [19] or
others.
One of the main computational bottlenecks of docking

simulation methods resides in the calculation of the scor-
ing function [6]. We have already implemented non-
bonded interactions kernels on GPUs [7] when direct
summation is used to calculate the electrostatic interac-
tions term, achieving speedups of up to 260 times versus
the sequential counterpart. We will refer later to this
kernel as DIRECT_KERNEL. When dealing with rigid or
mixed flexible-rigid systems we can further improve the
speed of the calculations using precomputed grids [20].
This kernel will be referred later as GRID_KERNEL. We
studied the influence and convenience of both kernels for

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 2 of 14

the design of BINDSURF, which was carried out totally
from scratch on the GPU.

Calculation of non-bonded interactions using grids
BINDSURF uses ES, VDW and HBOND interaction ker-
nels to calculate the scoring function of each ligand
conformation for each step of the simulation during the
whole energy minimization process. In case of the
GRID_KERNEL, a grid approach is used for the calcula-
tion of the interactions. In the case of the ES part of the
GRID_KERNEL kernel, we followed the initial idea
described in [20] for the generation of protein grids and
its latter application in the calculation of the non-
bonded interactions. Both ES, VDW and HBOND grids
are generated in CPU and GPU as described in [8].
Details about how the ES term is calculated on the GPU
can be found in [9]. A graphical depiction of the grid
for streptavidin is shown in Figure 1(A) and in more
detail for the ligand biotin on its binding pocket in
Figure 1(B).

CUDA programming model
NVIDIA GPU platforms can be programmed using the
Compute Unified Device Architecture (CUDA) program-
ming model [21] which makes the GPU to operate as a
highly parallel computing device. Each GPU device is a
scalable processor array consisting of a set of SIMT (Single
Instruction Multiple Threads) multiprocessors (SM), each
of them containing several stream processors (SPs). Differ-
ent memory spaces are available in each GPU on the sys-
tem. The global memory (also called device or video
memory) is the only space accessible by all multiproces-
sors. It is the largest and the slowest memory space and it
is private to each GPU on the system. Moreover, each

multiprocessor has its own private memory space called
shared memory. The shared memory is smaller and also
lower access latency than global memory.
The CUDA programming model is based on a hierar-

chy of abstraction layers: The thread is the basic execu-
tion unit that is mapped to a single SP. A block is a
batch of threads which can cooperate together because
they are assigned to the same multiprocessor, and there-
fore they share all the resources included in this multi-
processor, such as register file and shared memory. A
grid is composed of several blocks which are 5 equally
distributed and scheduled among all multiprocessors.
Finally, threads included in a block are divided into
batches of 32 threads called warps. The warp is the
scheduled unit, so the threads of the same block are
scheduled in a given multiprocessor warp by warp. The
programmer declares the number of blocks, the number
of threads per block and their distribution to arrange
parallelism given the program constraints (i.e., data and
control dependencies).

Methods
Algorithm 1 BINDSURF overview2

1: Read main simulation configuration file bindsurf_conf.
inp
2: Generate ES and VDW grids (es_grid, vdw_grid) of

the protein using GEN_GRID
3: Generate ligand_conformations with GEN_CONF
4: Read protein and calculate surface_spots using

GEN_SPOTS
5: for all ligand_conformations do
6: Calculate initial_configuration of the system on

GPU (protein, surface_spots, ligand_conformation) using
GEN_INI

Figure 1 Grid for streptavidin. (A) Representation of the grid for the protein streptavidin. (B) Biotin in the crystallographic binding site of
streptavidin.

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 3 of 14

7: Surface Screening using SURF_SCREEN (initial_-
configuration, ligand_conformation, protein, surface_-
spots, es_grid, vdw_grid)
8: end for
9: Process results
This Section introduces the underlying design of

BINDSURF which is summarized in Algorithm 1. All
necessary simulation parameters are specified in a con-
figuration file called bindsurf_conf.inpwhich contains the
following information:

• Molecular data: Filenames related with protein,
ligand and input-output directories. Also, number of
ligand conformations that will be generated from the
input one.
• Force field data: ES, VDW and HBOND force
field parameters used in the scoring function. By
default we provide the OPLS force field [22].
• Monte Carlo minimization parameters: number
of steps of the simulation, energy cutoff, maximum
values for random shift and rotation.
• Output related data: file names for the different
output files such as for graphical display through
Pymol [23], energy distributions, detailed information
about the poses with the lowest scoring function
values, etc.

Once bindsurf_conf.inphas been read and processed,
we generate an ensemble of ligand conformations from
the input ligand using GEN_CONF; an ad hoc version of
the FlexScreen docking program [24]. Given the modu-
lar structure of BINDSURF, any other program which
generates ligand conformational ensembles can be used
for the same purpose.
Next, we need the information pertaining to the areas of

the protein surface (spots) where each individual simula-
tion will take place. It is important to find an optimal
number of spots, since too many spots would increase
unnecessarily the total computation time, and few spots
would not cover completely the protein surface. We have
found that a good strategy, implemented in GEN_SPOTS,
consists in the calculation for the input protein of the
coordinates of the alpha carbons of each residue. All paral-
lel simulations will take place in spherical regions, defined
by the centers of these spots, with a cutoff radius of 10
Angstroms. This module can be easily changed to any
other that just outputs the list of the coordinates of the
spots.
In the fourth step of Algorithm 1 we generate the

electrostatic (ES) and van der Waals (VDW) grids of the
protein using the GPU program GEN_GRID, as depicted
in our previous work [8]. The main idea underlying
GEN_GRID is to suppose that the protein is rigid, and
then to precomputate the electrostatic potential and the

neighbours lists, in a regular spatial disposition of points
called grid [20], as depicted in, that comprises both the
protein and the ligands. GEN_GRID reads its parameters
from the configuration files, generates the grids belong-
ing to the input protein and writes them into different
output files that are consequently processed during con-
formation generation and surface screening, resulting in
fast computations of the scoring function.
Before the surface screening process can begin, we

need to generate all necessary simulation parameters
from the input ligand and protein with the GPU program
GEN_INI. For a given ligand ligand_conformation, GEN_-
INI performs random ligand translations and rotations in
order to obtain valid starting conformations of the ligand
on each protein surface spot. Once the system is set up,
the program SURF_SCREEN performs the protein surface
screening procedure. Finally, BINDSURF reports statistics
of the obtained results, Pymol files for its convenient 3D
visualization as well as many other reports, as will be
shown in the results section.

Surface screening on GPU
In this Section, we introduce the main core of the BIND-
SURF program (namely SURF_SCREEN). Algorithm 2
shows the host side pseudocode of BINDSURF. Firstly,
the previously obtained information regarding protein
and its precomputed grids and surface spots, the ligand
conformation, and the simulations initial states are trans-
ferred from CPU to the GPU, where all the simulation
process takes place.
Algorithm 2 Host side of the SURF_SCREEN core of the

BINDSURF application for a given ligand conformation
1: CopyDataCPUtoGPU (protein, es_grid, vdw_grid,

surface_spots, ligand_conformation; shifts_set, quater-
nions_set, initial_configuration)
2: for i = 0 to number_of_spots/BLOCKSURF do
3: for n = 1 to numSteps do
4: if n is even then
5: GenerateShiftsKernel (randomStates,

shifts_set)
6: else
7: GenerateRotationsKernel(randomStates,

quaternions_set)
8: end if
9: Energy(es_grid, vdw_grid, protein, ligand_con-

formation, shifts_set, quaternions_set, newEnergy)
10: if n is even then
11: UpdateShiftsKernel(randomStates, oldE-

nergy, newEnergy)
12: else
13: UpdateRotationsKernel(randomStates, oldE-

nergy, newEnergy)
14: end if
15: end for

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 4 of 14

16: FindMinima(oldEnergy, minIndexes, minEnergy)
17: CopyDataGPUtoCPU(minIndexes, minEnergy,

shifts_set, quaternions_set)
18: end for
On each spot, many simulations (in this case, 128) for

each ligand conformation are carried out in parallel on the
GPU. The protein-ligand interaction energy is minimized
using a parallel adaptation of the Monte Carlo method,
utilizing the Metropolis algorithm [19]. Required random
numbers in Monte Carlo are generated using the NVIDIA
CURAND library [21], which later are employed to per-
form the required ligand rotations and displacements in
parallel.
As a minimization process, the next iteration always

depends on the previous one. Thus, the loop comprised
between steps 3 to 15 in the Algorithm 2 is not affordable
for parallelization. Therefore, only the internal computa-
tion is paralellized; i.e. the generation of shifts and rota-
tions, energy calculation and the update of simulation
state.
Moreover, we cannot launch simultaneously all the

threads we need for the execution of all the simulations
in parallel because the number of threads needed is
greater than the maximum allowed. Hence, we only
perform simulations for a maximum number of spots
(BLOCKSURF value) simultaneously (line 2 in the
Algorithm 2).
On one hand, each simulation needs to have a copy of

the ligand that can modify. On the other hand, the num-
ber of simulations required in this process is huge, and
thus it is not viable to have a copy of all information
related to the ligand atoms in the GPU memory, such as
for instance, all the atom positions. An alternative way of
representing the ligand information, which is independent
of the ligand size and thus benefits its allocation in the
scarce internals of the GPU memory, is to keep a model of
the ligand in the GPU constant memory. In this way, the
state of each simulation is represented by one 3D point
and a quaternion which represent the displacement and
rotation about the origin, accumulated along the simula-
tion. This solution can be applied because we use a rigid
representation of the molecules.
The Monte Carlo process alternates different steps of

rotation and displacement. Thus, we developed two differ-
ent kernels; (1) for generating displacements of the simula-
tions (called GenerateShiftsKernel), and (2) for generating
rotations (called GenerateRotationsKernel). These kernels
generate a random move using a local copy of the random
state of each simulation and do not modify the random
state in global memory. Later, if that move is accepted, the
random state in global memory is updated with the ran-
dom state that generated this movement; otherwise, the
random state is not updated and the move is undone in
the simulation state.

The function Energy in Algorithm 2 launchs highly
GPU optimized non-bonded interaction kernels [9] for
the description of the electrostatic, Van der Waals and
hydrogen bond interactions between the ligand and the
protein. These kernels are named ESKernel and
VDWKernel, which are described in posterior sections.
Once the energy is calculated, UpdateShiftsKernel and
UpdateRotationsKernel check whether the previous
energy values are smaller than the new values calculated
for the energy, and if so the movement made is applied
permanently to the simulation state.
The minimum value found for the energy belonging to

the same sphere surface is obtained by FindMinima func-
tion. This function launches two different kernels; (1) a
kernel to reduce the energy vector, which stores all
energy values calculated in all simulations, and (2) a ker-
nel to compact this vector, in order to reduce the data
transferred to the CPU. Finally, we obtain a vector which
contains the minimum energy obtained in the simula-
tions for each spot.
Once the simulations are carried out on each protein

spot in the surface, in the final output BINDSURF pro-
duces for each ligand detailed information about the pro-
tein spots where the strongest interactions are found for
the different ligand conformations. This information can
be parsed directly to PyMOL [23] to get a graphical
depiction of the results. The information regarding the
hotspots obtained for different ligands, and the set of
ligands with the lowest values of the scoring function, is
thought to be later employed in a more detailed VS
methodology to screen only this resulting set of ligands
in the hotspots found by BINDSURF. Other option is to
pass the resulting ligand binding pose obtained by a
detailed VS method for a binding site as input for BIND-
SURF to check whether it could interact in other parts of
the protein surface.
In the next subsections we describe how is the scoring

function calculated in both CPU and GPU versions.

ElectroStatic (ES) energy calculation
Sequential baselines
Algorithm 3 Sequential pseudocode for the calculation
of the electrostatic potential
1: for i = 1 to N_simulations do
2: for j = 1 to nlig do
3: energy[i * nlig + j] = qi * interpolate (lig[i * nlig +

j], ESGrid)
4: end for
5: end for
The precomputed ES grid is generated by the program

GEN_GRID as described in [8] and afterwards, it is read
by SURF_SCREEN from file and loaded onto memory.
The calculation of the electrostatic potential for the pro-
tein-ligand system is performed as follows; for each

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 5 of 14

ligand atom i with charge qi at point Pi we calculate the
eight closest protein grid neighbours. Next, an interpola-
tion procedure is applied to estimate the value of the
electrostatic potential due to all protein atoms at Pi. The
same procedure is applied to all ligand atoms summing
them up. The pseudocode is shown in Algorithm 3,
where N_simulations is the number of simulations, nlig is
the number of atoms of each ligand and the function
interpolate performs the calculation of the electrostatic
potential for each atom.
GPU design
Algorithm 4 GPU pseudocode for the calculation of the
electrostatic potential
1: for all nBlocks do
2: dlig = rotate(clig[myAtom], myQuaternion)
3: ilig = shift(myShift, dlig)
4: index = positionToGridCoordinates (ESGridInfo,

ilig)
5: energy_shared[myAtom] = charge[myAtom] *

accessToTextureMemory(ESGrid, index)
6: totalEnergy = parallelReduction(energy_shared)
7: if threadId == numThreads%nlig then
8: energy[mySimulation] = totalEnergy
9: end if
10: end for
In a previous work [9], we studied different strategies for

the GPU implementation of the previous algorithm
applied to many different ligands. In that study, we
reported that the use of the texture memory decreases
considerably the time needed for the calculation of the
interpolation. Therefore, in BINDSURF we decided to use
the texture memory to obtain the electrostatic potential by
linear interpolation in a 3D grid. The Algorithm 4 shows
the pseudocode of the ES kernel, where clig, charge and
nlig is the ligand model (atom positions and charges, and
number of atoms); myAtom, myQuaternion and myShift
are the atom assigned to the thread and the rotation and
shift belonging to the simulation assigned to the thread
mySimulation; ESGridInfo and ESGrid are the grid
description and the grid data (the latter is stored in the
GPU texture memory) and energy_shared is a auxiliary
vector in shared memory.
Each thread calculates the energy of only one atom.

Firstly, each thread has to obtain the current atom posi-
tion from the ligand model and the simulation state
using the functions shift and rotation. Then, it calculates
the grid position (function positionToGridCoordinates),
interpolates the energy value accessing to the texture
memory and (function accessToTextureMemory) stores
the result in shared memory (line 5). Finally, threads of
the same simulation sum up their results by a parallel
reduction (line 6) with complexity order O(log(n)) and
one of these threads writes the final result in global
memory (lines 7-8).

Van der Waals (VDW) and Hydrogen Bonds (HBOND)
energies calculation
Sequential baselines
Algorithm 5 Sequential pseudocode for the calculation
of the VDW and HBOND energies
1: for i = 1 to N_simulations do
2: for j = 1 to nlig do
3: index = positionToGridCoordinates(V

DWGRidI n f o, j)
4: for k = 0 to numNeighbours(V DWGRid

[index]) do
5: vdwTerm+ = vdwEnergy (j, V DWGRid

[index][k])
6: hbondTerm+ = hbondEnergy (j, V DWGrid

[index][k])
7: end for
8: end for
9: energy[i * nlig + j] = vdwTerm + hbondTerm;
10: end for
The precomputed VDW grid is generated by the pro-

gram GEN_GRID as described in [8] and afterwards, it is
read by SURF_SCREEN from file and loaded onto mem-
ory. Next, the Van der Waals (VDW) energy of each
atom is calculated using the expression explained before
and following the pseudocode shown in Algorithm 5,
where N _simulations is the number of simulations, nlig
is the number of atoms of the ligand and the functions
vdwEnergy and hbondEnergy performs the calculation of
the Van der Waals and hydrogen bonds potentials for
each pair of atoms.
GPU design
The Algorithm 6 shows the pseudocode of the VDW ker-
nel, where V DWGridInfo and V DWGrid are the grid
description and the grid data, both stored in the GPU
global memory. Other variables have the same meaning
than in Algorithm 4. Each thread calculates the energy of
only one atom. In the same way as the previous kernel,
each thread applies the rotation and displacement corre-
sponding to the simulation over the ligand model in
order to obtain the current atom position (lines 2-3).
Then, it calculates the grid position, calculates the VDW
and HBOND potentials using the neighbors stored in the
VDW grid and stores the result in shared memory (lines
4-9) . The parameters needed by the VDW and HBOND
energies are previously stored in the GPU constant mem-
ory. Finally, threads of the same simulation sum up their
results by a parallel reduction (line 10) and one of these
threads accumulates the final result in global memory
(lines 11-12).
Algorithm 6 GPU pseudocode for the calculation of

the VDW and HBOND energies
1: for all nBlocks do
2: rlig = rotate(clig[myAtom], myQuaternion)
3: ilig = shift(myShift, rlig)

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 6 of 14

4: index = positionToGridCoordinates(V DWGridI n
f o, ilig)
5: for k = 0 to numNeighbours(V DWGRid[index])

do
6: vdwTerm+ = vdwEnergy(j, V DWGRid[index]

[k])
7: hbondTerm+ = hbondEnergy(j, V DWGrid

[index][k])
8: end for
9: energy_shared[myAtom] = vdwTerm + hbondTerm
10: totalEnergy = parallelReduction(energy_shared)
11: if threadId == numThreads%nlig then
12: energy[mySimulation]+ = totalEnergy
13: end if
14: end for1

Results and discussion
Experimental setup
Particular features for our hardware and software equip-
ment are summarized in Tables 1 and 2. GPUs are
plugged into the motherboard using PCI-express 2
when required.

Performance measures
We measured the performance of BINDSURF in the
form of total running time, for its different implementa-
tions depending on the kernel used; SEQ and GPU,
which denote sequential and GPU versions respectively,
and DIRECT or GRID, as explained in the Methods Sec-
tion. When GRID is used, the optimal value for the
separation between grid points is equal to d = 0.5 · Å,
as reported previously [8]. Surface screening was per-
formed over the protein PDB:1M54. Simulations were
always carried out with a total of 500 Monte Carlo
steps. Running times were obtained while increasing the

number of processed spots, specified by the parameter
size. Observing Figure 2 it is clear that for all implemen-
tations the total running time depends linearly on the
size of the system. But it should be noticed that if
reduced the value of the distance between grid points, d,
the number of grid points would increase and the GRID
GPU and GPU SEQ kernels would run slower. Addi-
tionally, the GPU version outperforms the SEQ version
in the case of the DIRECT kernel, thanks to the very
efficient DIRECT kernel, which was optimized specifi-
cally for GPU [7]. Finally, we can observe how the
GRID GPU kernel outperforms also the DIRECT GPU
kernel, being the fastest implementation of BINDSURF,
and the one we used for all the application cases
explained later.
The performance of BINDSURF was also determined

through the measure of the partial running times for the
different programs that form BINDSURF (GEN_GRID,
GEN_CONF, GEN_INI and SURF_SCREEN). In Table 3
we can observe the results obtained for one single ligand
conformation and one single receptor (PDB:1M54). As
we increase the size of the system, the total running
times of GEN_GRID, GEN_CONF and GEN_INI remain
approximately constant, and on overall, start to contri-
bute less to the total running time, while SURF_SCREEN

Table 1 Hardware features

Processors for a $3000 high-end server

CPU GPU

Release date Q4 2009 Q4 2009

Codename Intel Westmere Nvidia Fermi

Estimated cost $500 $1500

Commercial model Xeon E5620 Tesla C2050

No. cores @ speed 4 @ 2.4 GHz -

No. stream processors - 448 @ 1.15 GHz

L2 cache size 12 MB. 768 KB. .

DRAM memory size 16 GB. 3 GB.

DRAM type DDR3 GDDR5

Memory bus width 128 bits 384 bits

Memory clock 1066 MHz 2 × 1.5 GHz

Memory bandwidth 17 GB/s 144 GB/s

Summary of hardware features for the CPUs and GPUs used during our
experimental survey.

Table 2 Software resources

Target hardware Software tools

Intel Xeon CPU gcc compiler, 4.3.4 version with the -O3 flag

Nvidia Tesla GPU CUDA compilation tools, release 4.0

Software resources used for each hardware platform in our experimental
study.

Figure 2 Performance of BINDSURF . Running times for the
different implementations of BINDSURF, when performing surface
screening over the protein PDB:1M54 and increasing the number of
processed spots, specified by the parameter size. SEQ and GPU
denote sequential and GPU versions respectively. DIRECT and GRID
refer to the respective kernels.

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 7 of 14

becomes the most computationally intensive part of
BINDSURF (SURF_SCREEN). The program GEN_CONF
generates by default 100 different conformations for the
input ligand. Since GEN_CONF is a non-optimized
sequential program, it needs too much time (among 40

and 80 % of the total running time) for its processing and
its use should be avoided. Given the modular design of
BINDSURF, the user can substitute it for any other gen-
erator of ligand conformations, in the desired case of use
of a conformational ensemble of ligand conformations to

Table 3 Running times for the different parts of BINDSURF

size % GEN_GRID % GEN_CONF % GEN_INI % SURF_SCREEN BINDSURF running time

64 7.8 82.7 2.7 6.8 29.4

128 6.2 64.8 2.9 26.1 37.5

192 5.0 51.1 3.6 40.3 47.6

256 4.5 45.6 3.8 46.2 53.3

320 4.1 41.8 3.6 50.4 58.1

356 3.6 38.0 3.9 54.5 63.9

Percentage of the running times for the different parts of BINDSURF (GEN_GRID, GEN_CONF, GEN_INI and SURF_SCREEN) and total BINDSURF running time value
(in seconds) when changing the size of the system (total number of spots, first column) processed for PDB:1M54.

Figure 3 Surface screening results for PDB:2BSM. Surface screening results for PDB:2BSM. From up left to down right; a) beads represent
protein spots and the color of each bead is related with the value of the scoring function, so colors from red to blue indicate lower values for
the scoring function, b) histogram with the distribution of scoring function values, c) green and blue molecules represent crystallographic and
predicted pose for the ligand, RMSD is lower than 1 Angstrom, and d) depiction of the hydrogen bonds established by the ligand with the
closest residues.

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 8 of 14

represent ligand flexibility. Nevertheless, at this stage
BINDSURF is optimized for small or medium size ligands
which can be modelled without consideration of the flex-
ibility, and we leave its implementation for a next stage.
We conclude therefore in this part that the ideal applica-
tion scenarios of BINDSURF are the screening of single
rigid ligand conformations over the whole surface of rigid
receptor models (or ensembles of receptor conformations
that might represent partially the flexibility of the pro-
tein), given its ultra fast processing speed, of around one
minute for ligand-receptor pair. To the best of our
knowledge, there is no other method that can perform
protein surface screening in these conditions and at such
speed. Other ideal application scenarios would be the
case of multi target drug screening [8,25], useful for toxi-
city prediction, and fragment based (since they can effi-
ciently be modeled without flexibility consideration) drug
screening (in a similar fashion as depicted in [26]) over
the whole protein surface.

Applications
BINDSURF does not make any assumption about the
location of the binding site of the protein. After a BIND-
SURF execution, and with the obtained information
about how different ligands dock in the protein surface
we can start to make hypothesis about different poten-
tial binding sites which can guide posterior and more
detailed analysis using known standard docking tools
like Autodock [15], FlexScreen [24], Glide [16] or
DOCK [17], or Molecular Dynamics or mixed Quan-
tum-Mechanical/Molecular-Mechanics methods. We
run BINDSURF over receptor-ligand structures selected
from the PDB database, which are known to have one
or several binding pockets depending on the ligand, and
checked whether BINDSURF could find correctly a) the
binding site area, b) the binding pose of the crystallo-
graphic ligand. Simulations were always carried out with
a total of 500 Monte Carlo steps. We also selected
application cases known to present difficulties for bind-
ing site prediction with other methods.

Figure 4 Surface screening results for PDB:1QCF. Surface screening results for PDB:1QCF. From up left to down right; a) beads represent protein
spots and the color of each bead is related with the value of the scoring function, so colors from red to blue indicate lower values for the scoring
function, b) histogram with the distribution of scoring function values, c) red and blue molecules represent crystallographic and predicted pose for the
ligand, RMSD is lower than 1 Angstrom, and d) depiction of the hydrogen bonds established by the ligand with the closest residues.

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 9 of 14

We also obtained concordance with some other meth-
ods that try to predict the binding site based on the pro-
tein structure alone [27]. In Figure 3.a, we show how the
strongest interaction spot (blue sphere) for chaperone
Hsp90 (PDB:2BSM) coincides with crystal binding site.
Figure 3.b shows how its scoring function value is
clearly differentiated from the other weak interaction
spots, with higher value for the scoring function. The
shape of the binding pocket is shown in Figure 3.c,
where we can observe that predicted and crystallo-
graphic binding poses coincide rather well, with RMSD
lower than 1 Angstrom. Finally, Figure 3.d shows the

hydrogen bond network predicted by BINDSURF for the
ligand.
We compared also with the final binding site found

and ligand binding poses obtained using very long tra-
jectories in Molecular Dynamics simulations in Super-
computers [28-30] for a tyrosine kinase protein
(PDB:1QCF). It must be noticed that with BINDSURF
the dynamical information about the binding process
cannot be obtained. In Figure 4, we can observe the
accuracy of the prediction of BINDSURF both for the
location of the binding site, and for the prediction of
the ligand pose.

Figure 5 Surface screening results for proteins PDB:2BXB, PDB:2BXD, PDB:2BXF, PDB:2BXG. Surface screening results for proteins PDB:2BXB,
PDB:2BXD, PDB:2BXF, PDB:2BXG. From left to right; a) ligand poses predicted by BINDSURF for the ligands of proteins PDB:2BXB (red color), PDB:2BXD
(dark blue color), PDB:2BXF (yellow color) and PDB:2BXG (light blue color), with average RMSDs less than 2 Angstroms, and b) histogram with the
distribution of scoring function values for PDB:2BXG (green color), PDB:2BXB (red color), PDB:2BXD (light blue color), and PDB:2BXF (dark blue color).

Figure 6 Surface screening results for PDB:3P4W. Surface screening results for PDB:3P4W. From left to right; a) superposition of predicted and
crystallographic ligand poses, with RMSD less than 2 Angstroms, and b) histogram with the distribution of scoring function values.

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 10 of 14

Figure 7 Surface screening results for PDB:2BYR. Surface screening results for PDB:2BYR. From left to right; a) superposition of predicted and
crystallographic ligand poses, with RMSD less than 3 Angstroms, and b) histogram with the distribution of scoring function values.

Figure 8 Surface screening results for PDB:1YXM. Surface screening results for PDB:1YXM. From up left to down right; a) beads represent
protein spots and the color of each bead is related with the value of the scoring function, so colors from red to blue indicate lower values for
the scoring function, b) representation of the PDB:1YXM protein surface, c) histogram with the distribution of scoring function values, d) red and
blue molecules represent crystallographic and predicted pose for the ligand, RMSD is lower than 1 Angstrom.

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 11 of 14

There have been previous studies [31] in human
serum albumin (HSA) where it has been shown the exis-
tence of two primary drug-binding sites on the protein,
and other secondary binding sites for drugs distributed
across the protein. In Figure 5.a we show that BIND-
SURF can predict the binding site and binding pose in
HSA when it is complexed with different ligands (cases
PDB:2BXB, PDB:2BXD, PDB:2BXF, PDB:2BXG). Figure
5.b shows that it obtains different scoring function dis-
tribution profiles depending on the ligand. Thus, our
method can work efficiently also for multiple binding
site prediction. We decided also to test predictions for
ion channel proteins, where some docking methods fail
given the narrow internal cavity of the protein. In Figure
6 the prediction results for a pentameric ligand-gated
ion channel, GLIC, (PDB:3P4W) are shown, and mani-
fest good agreement with the experimental result. In the

case of acetylcholine-binding proteins (PDB:2BYR),
which provide very useful information for the modeling
of the extracellular domain of pentameric ligand-Gated
ion channels, we also obtained good agreement with the
experimental results, as shown in Figure 7.
It has been reported in a previous study [32], cases

where other computational approaches have tried to
predict binding site location. We selected some of the
cases where the previous methods [32] fail to provide
accurate predictions and tested with BINDSURF. For
peroxisomal trans 2-enoyl CoA reductase (PDB:1YXM),
the binding site was reported in the mentioned study to
be too small for predictions, but BINDSURF could find
it efficiently, as shown in Figure 8. For Murine class
alpha glutathione S-transferase A1-1 (PDB:1F3A), it was
reported in the same study that the ligand would bind
at the edge of the pocket but not inside the pocket. We

Figure 9 Surface screening results for PDB:1F3A. Surface screening results for PDB:1F3A. From up left to down right; a) beads represent
protein spots and the color of each bead is related with the value of the scoring function, so colors from red to blue indicate lower values for
the scoring function, b) histogram with the distribution of scoring function values, c) red molecule represents predicted pose for the ligand,
RMSD is lower than 1 Angstrom, and d) depiction of the hydrogen bonds established by the ligand with the closest residues.

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 12 of 14

performed the calculations with BINDSURF, as shown in
Figure 9, and 9 could find both the binding site and
binding pose efficiently.
Finally, we performed calculations to check the effec-

tiveness of BINDSURF in the direct prediction of binding
poses. For this purpose there are standard tests, like the
Directory of Useful Decoys (DUD) [33], where VS meth-
ods check how efficient they are in differentiating ligands
that are known to bind to a given target, from non-bin-
ders or decoys. Results for three different DUD datasets
are shown in the ROC curves of Figure 10. Given the
results obtained for the DUD datasets TK, MR and GPB,
and characterized by the value of the area under the
curve (AUC) for each ROC curve, it could be said that,
on average, BINDSURF performs similarly than other
docking methods reported for these datasets [34].
Nevertheless, it is clear that there is still room for

improvement in the scoring function that BINDSURF
uses, and in its energy optimization method (Monte
Carlo), since both affect directly to the effectiveness of
the direct prediction of binding poses.

Conclusions
In this work we have presented the BINDSURF pro-
gram. We have shown the details of its modular
design, so other users can modify it to suit their
needs.
In view of the results obtained, we conclude that

BINDSURF is an efficient and fast methodology for the

unbiased determination on GPUs of protein binding
sites depending on the ligand. It can also be used for
fast pre-screening of a large ligand database, and its
results can guide posterior detailed application of other
VS methods. Its utilization can help to improve drug
discovery, drug design, repurposing and therefore aid
considerably in clinical research.
In the next steps we want to substitute the Monte

Carlo minimization algorithm for more efficient optimi-
zation alternatives, like the Ant Colony optimization
method, which we have already implemented efficiently
on GPU [35] and implement also full ligand and recep-
tor flexibility.
Lastly, we are also working on improved scoring func-

tions to include efficiently metals, aromatic interactions,
and implicit solvation models.
The program code is available upon authors’ request.

List of abbreviations used
The list of abbreviations used is the following: GPU: (Graphics Processing
Unit); VS: (Virtual Screening); ES: (Electrostatic); VDW: (Van der Waals); HBOND:
(Hydrogen bonds).

Acknowledgements
This research was supported by the Fundación Séneca (Agencia Regional de
Ciencia y Tecnología, Región de Murcia) under grant 15290/PI/2010, by the
Spanish MEC and European Commission FEDER under grants CSD2006-
00046 and TIN2009-14475-C04, and a postdoctoral contract from the
University of Murcia (30th December 2010 resolution).
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 14, 2012: Selected articles from Research from the Eleventh
International Workshop on Network Tools and Applications in Biology
(NETTAB 2011). The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S14

Authors’ contributions
ISL designed and implemented the BINDSURF system described in this
paper, performed the tests and calculations needed for the study and
participated in the drafting of the manuscript. JMC contributed to the
parallel design of the surface screening algorithm and helped to draft the
manuscript technical part. HPS and JMG conceived of the study, participated
in the design of the study and the algorithms, and in the coordination,
drafting and final writing of the manuscript. All authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 7 September 2012

References
1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,

Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000,
28:235-242.

2. Sanchez R, Sali A: Large-Scale Protein Structure Modeling of the
Saccharomyces cerevisiae Genome. Proc Natl Acad Sci USA 1998,
95(23):13597-13602.

3. Garland M, Kirk DB: Understanding throughput-oriented architectures.
Commun ACM 2010, 53:58-66.

4. Garland M, Le Grand S, Nickolls J, Anderson J, Hardwick J, Morton S,
Phillips E, Zhang Y, Volkov V: Parallel Computing Experiences with CUDA.
IEEE Micro 2008, 28:13-27.

5. NVIDIA: Whitepaper NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi 2009.

Figure 10 ROC plots for DUD data sets. ROC plots for the targets
of the DUD data set TK (red), MR (blue) and GPB (green). Diagonal
line indicate random performance. Obtained values for AUC are
0.700, 0.695 and 0.675, respectively.

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 13 of 14

http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S14
http://www.ncbi.nlm.nih.gov/pubmed/10592235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9811845?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9811845?dopt=Abstract

6. Pérez-Sánchez H, Wenzel W: Optimization methods for virtual screening
on novel computational architectures. Curr Comput Aided Drug Des 2011,
7:44-52.

7. Guerrero G, Pérez-Sánchez H, Wenzel W, Cecilia JM, García JM: Effective
Parallelization of Non-bonded Interactions Kernel for Virtual Screening
on GPUs. 5th International Conference on Practical Applications of
Computational Biology; Bioinformatics (PACBB 2011), Volume 93 Springer
Berlin/Heidelberg; 2011, 63-69.

8. Sánchez-Linares I, Pérez-Sánchez H, Guerrero GD, Cecilia JM, García JM:
Accelerating multiple target drug screening on GPUs. Proceedings of the
9th International Conference on Computational Methods in Systems Biology
(CMSB’ 11) New York, NY, USA: ACM; 2011, 95-102.

9. Sánchez-Linares I, Pérez-Sánchez H, García JM: Accelerating Grid Kernels
for Virtual Screening on Graphics Processing Units. In Parallel Computing:
Proceedings of the International Conference ParCo 2011, Volume 22
D’Hollander E, Padua D 2012, 413-420, IOS.

10. Brannigan G, LeBard DN, Hénin J, Eckenhoff RG, Klein ML: Multiple binding
sites for the general anesthetic isoflurane identified in the nicotinic
acetylcholine receptor transmembrane domain. Proc Natl Acad Sci USA
2010, 107(32):14122-14127.

11. Hetényi C, van der Spoel D: Efficient docking of peptides to proteins
without prior knowledge of the binding site. Protein Sci 2002,
11(7):1729-1737.

12. Jorgensen W: The many roles of computation in drug discovery. Science
2004, 303(5665):1813-1818.

13. Yuriev E, Agostino M, Ramsland PA: Challenges and advances in
computational docking: 2009 in review. J Mol Recogn 2011, 24(2):149-164.

14. Huang SY, Zou X: Advances and challenges in protein-ligand docking. Int
J Mol Sci 2010, 11(8):3016-3034.

15. Morris G, Goodsell D, Halliday R, Huey R, Hart W, Belew R, Olson A:
Automated docking using a Lamarckian genetic algorithm and an
empirical binding free energy function. J Comput Chem 1998,
19(14):1639-1662.

16. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT,
Repasky MP, Knoll EH, Shelley M, Perry JK, et al: Glide: a new approach for
rapid, accurate docking and scoring. 1. Method and assessment of
docking accuracy. J Med Chem 2004, 47(7):1739-1749.

17. Ewing TJA, Makino S, Skillman AG, Kuntz ID: DOCK 4.0: Search strategies
for automated molecular docking of flexible molecule databases. J
Comput-Aided Mol Des 2001, 15(5):411-428.

18. Wang R, Lu Y, Fang X, Wang S: An extensive test of 14 scoring functions
using the PDBbind refined set of 800 protein-ligand complexes. J Chem
Inform Comput Sci 2004, 44(6):2114-2125.

19. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E: Equation
of State Calculations by Fast Computing Machines. J Chem Phys 1953,
21:1087-1092.

20. Meng E, Shoichet B, Kuntz I: Automated Docking with Grid-Based Energy
Evaluation. J Comput Chem 1992, 13(4):505-524.

21. NVIDIA: NVIDIA CUDA C Programming Guide 4.0 2011.
22. Jorgensen W, Maxwell D, TiradoRives J: Development and testing of the

OPLS all-atom force field on conformational energetics and properties
of organic liquids. J Am Chem Soc 1996, 118(45):11225-11236.

23. Schrödinger LLC: The PyMOL Molecular Graphics System, Version 1.3r1 2010.
24. Kokh DB, Wenzel W: Flexible side chain models improve enrichment

rates in in silico screening. J Med Chem 2008, 51(19):5919-5931.
25. Vidal D, Mestres J: In Silico Receptorome Screening of Antipsychotic

Drugs. Mol Inf 2010, 29:543-551.
26. Landon MR, Lieberman RL, Hoang QQ, Ju S, Caaveiro JMM, Orwig SD,

Kozakov D, Brenke R, Chuang GY, Beglov D, Vajda S, Petsko GA, Ringe D:
Detection of ligand binding hot spots on protein surfaces via fragment-
based methods: application to DJ-1 and glucocerebrosidase. J Comput-
Aided Mol Des 2009.

27. Ghersi D, Sanchez R: Improving accuracy and efficiency of blind protein-
ligand docking by focusing on predicted binding sites. Proteins 2009,
74(2):417-424.

28. Buch I, Giorgino T, De Fabritiis G: Complete reconstruction of an enzyme-
inhibitor binding process by molecular dynamics simulations. Proc Natl
Acad Sci USA 2011, 108(25):10184-10189.

29. Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H,
Shaw DE: Pathway and mechanism of drug binding to G-protein-
coupled receptors. Proc Natl Acad Sci USA 2011, 108(32):13118-13123.

30. Shan Y, Kim E, Eastwood MP, Dror RO, Seeliger MA, Shaw DE: How Does a
Drug Molecule Find its Target Binding Site? J Am Chem Soc 2011,
133:9181-9183.

31. Ghuman J, Zunszain P, Petitpas I, Bhattacharya A, Otagiri M, Curry S:
Structural basis of the drug-binding specificity of human serum
albumin. J Mol Biol 2005, 353:38-52.

32. Zhang Z, Li Y, Lin B, Schroeder M, Huang B: Identification of cavities on
protein surface using multiple computational approaches for drug
binding site prediction. Bioinformatics 2011.

33. Huang N, Shoichet BK, Irwin JJ: Benchmarking sets for molecular docking.
J Med Chem 2006, 49(23):6789-6801.

34. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C:
Comparison of Several Molecular Docking Programs: Pose Prediction
and Virtual Screening Accuracy. J Chem Inf Model 2009, 49(6):1455-1474.

35. Cecilia JM, García JM, Ujaldon M, Nisbet A, Amos M: Parallelization
Strategies for Ant Colony Optimisation on GPUs. 14th Int Workshop on
Nature Inspired Distributed Computing -NIDISC11- (in conjunction with IPDPS
2011), IEEE 2011, 339-346.

doi:10.1186/1471-2105-13-S14-S13
Cite this article as: Sánchez-Linares et al.: High-Throughput parallel blind
Virtual Screening using BINDSURF. BMC Bioinformatics 2012 13(Suppl 14):
S13.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Sánchez-Linares et al. BMC Bioinformatics 2012, 13(Suppl 14):S13
http://www.biomedcentral.com/1471-2105/13/S14/S13

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/20883205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20883205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20660787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20660787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20660787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12070326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12070326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15031495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21152288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15027865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15027865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15027865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11394736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11394736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18771256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18771256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18636505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18636505?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21646537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21646537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21778406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21778406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21545110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21545110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17154509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19476350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19476350?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Protein surface screening
	Calculation of non-bonded interactions using grids
	CUDA programming model

	Methods
	Surface screening on GPU
	ElectroStatic (ES) energy calculation
	Sequential baselines
	GPU design

	Van der Waals (VDW) and Hydrogen Bonds (HBOND) energies calculation
	Sequential baselines
	GPU design

	Results and discussion
	Experimental setup
	Performance measures
	Applications

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

