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A B S T R A C T   

A new artificial intelligence (AI) supported T-Ray imaging system designed and implemented for non-invasive 
and non-ionizing screening for coronavirus-affected patients. The new system has the potential to replace the 
standard conventional X-Ray based imaging modality of virus detection. This research article reports the 
development of solid state room temperature terahertz source for thermograph study. Exposure time and radi-
ation energy are optimized through several real-time experiments. During its incubation period, Coronavirus 
stays within the cell of the upper respiratory tract and its presence often causes an increased level of blood supply 
to the virus-affected cells/inter-cellular region that results in a localized increase of water content in those cells & 
tissues in comparison to its neighbouring normal cells. Under THz-radiation exposure, the incident energy gets 
absorbed more in virus-affected cells/inter-cellular region and gets heated; thus, the sharp temperature gradient 
is observed in the corresponding thermograph study. Additionally, structural changes in virus-affected zones 
make a significant contribution in getting better contrast in thermographs. Considering the effectiveness of the 
Artificial Intelligence (AI) analysis tool in various medical diagnoses, the authors have employed an explainable 
AI-assisted methodology to correctly identify and mark the affected pulmonary region for the developed imaging 
technique and thus validate the model. This AI-enabled non-ionizing THz-thermography method is expected to 
address the voids in early COVID diagnosis, at the onset of infection.   

1. Introduction 

The novel Coronavirus pandemic [1] began in Wuhan, a province of 
the People’s Republic of China, with an onset of an unknown severe 
respiratory ailment (pneumonia) [2]. The pathogen of the sickness was 
identified as a novel coronavirus and given the name SARS-CoV-2 (Se-
vere Acute Respiratory Syndrome Coronavirus 2) [3] and the disease 
was given the name COVID-19 (Corona Virus Disease) [4]. The virus is 
highly contagious and can transmit from person to person within six feet 

of an infected individual via respiratory droplets [5]. The virus is 
transmitted via the respiratory tract. Coronavirus enters the body and 
begins infecting the epithelial cells of the respiratory tract [6] and 
gradually begins penetrating the host cell [7]. Inside the host cells, the 
virus initiates replication and continues to multiply until the cell dies. 
Coronavirus replication continues, and as it progresses down the 
windpipe and into the lungs, it causes more serious respiratory disorders 
such as bronchitis and pneumonia [7]. RTPCR (Reverse Transcription – 
Polymerase Chain)/Nucleic Acid testing and radiographic imaging are 
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existing diagnosing and screening modalities for coronavirus infected 
patients. Recently Rapid Antigen Tests are also considered for at-home 
COVID detection. However, they suffer severely with false-positive 
and false-negative results. Imaging modalities are X-Ray [8–10] based 
and as a result, frequent application for screening and monitoring pur-
poses is not recommended [11]. Early diagnosis of the disease using CT 
scan investigation has suffered from serious limitations, because of the 
fact that more than fifty percent of new sufferers in China have shown 
healthy CT scan reports during the early stage of the disease [12,13]. On 
the other hand, in this research article, the authors have proposed a 
non-invasive method, for the early stage detection of coronavirus 
infected patients, using non-ionizing terahertz radiation source for im-
aging purposes. Owing to its non-ionizing characteristics, the T-Ray 
imaging technique can be used safely for coronavirus screening and 
monitoring purposes. Moreover, AI-enabled T-Ray imaging technique 
will definitely enhance the efficacy of disease detection at the very onset 
and thus the infection can be arrested before spreading into the lower 
respiratory tract. In this way, the proposed technique can be suitably 
used for saving lives. 

Here they have developed a room temperature terahertz source for 
the study and reported elsewhere [14–18]. The radiation coming out 
from the waveguide embedded THz-solid-state source is incident on the 
human respiratory tract and THz thermographs are generated and an 
image analyzer is placed for analyzing the output. The finite element 
method (FEM) is adopted and studied in COMSOL Multiphysics (5.3a) 
software for Terahertz frequencies [19,20]. The analysis is based on the 
identification of the optimum transmission direction at the interface 
layers from an external Terahertz source. The study reveals that ~100 
GHz (0.1 THz) incident radiation power would be ideal for this appli-
cation. The proposed THz-thermal scanning workflow diagram is 
described in Fig. 1. Earlier, THz spectroscopy was used for the study of 
protein, glucose, yeast, and also for viruses [21]. Recently Terahertz 
(0.1 THz – 10 THz) imaging and spectroscopy technology have been 
immersed as effective methods to study biomolecules [22–24]. 
Compared to X-Ray radiation (used for CT scan), THz-radiation is 
completely safe for biomedical uses [25–27]. THz-signal provides a good 
balance between spatial resolution and depth of penetration for 
biomedical applications [28,29]. When the human body is exposed to 
the coronavirus and becomes infected, uncontrolled cell proliferation 
occurs [30]. Virus affected zone would have a significantly higher water 

content than normal cells/tissues. As a result of the varying elec-
trical/dielectric/thermal characteristics of respiratory epithelium cells, 
the radiation power absorption is significantly higher in the abnorma-
l/affected areas. These finally result in an elevated cell temperature in 
the affected portion compared to healthy neighbouring cells and thus 
produce a sharp temperature gradient on thermographs. 

Using the aforementioned imaging approach, an AI-assisted image 
analyzer was created to evaluate THz thermographs. The class returned 
as output has strong visualisation capability. By integrating Convolution 
Neural Network’s (CNN) accurate prediction and explainable feature 
through network visualisation, a flexible end-to-end detection approach 
is suggested [31]. This mimics a doctor’s approach while revealing 
imaging constraints. Deep networks are meant to perform things 
humans can easily do, therefore they’ve been used in medical diagnosis 
for some time. These models use tagged datasets and multi-layered 
neural network architectures. The network learns shallow to detailed 
characteristics directly from the data using a cascaded structure of 
convolutional modules. Convolutional modules use a set number of 2-D 
convolutional filters, making them effective for image processing. In this 
research, the authors present a model architecture in which the CNN 
classifies Terahertz thermographs into COVID and NON-COVID subjects. 
The study is the first to analyze coronavirus patients using AI-enabled 
THz-thermographs. 

2. Model description 

2.1. In-silico thermal imaging study 

A solid-state room temperature terahertz source is developed using 
standard microelectronics fabrication process steps [32]. The details of 
the design and the development of the source are reported elsewhere 
[14–18]. The position of the source with respect to the detector is varied 
for getting the optimum penetration depth. The radiation energy and 
exposure time are adjusted in such a way that the electromagnetic ra-
diation energy safety protocol is maintained. Radiation safety protocol 
are mostly applicable for ionizing radiation like X-ray based diagnostic 
systems. Terahertz is non ionizing radiation. Three basic principles 
should be adhered to when dealing with radiation and making radio-
graphs: Time, Distance and Shielding. These principles form the basis of 
a broader radiation safety concept called aLaRa (as Low as Reasonably 
achievable). For terahertz imaging, the authors have taken care of dose, 
energy distance and time of exposure. The cell temperature should not 
increase beyond 46 ◦C, beyond this cell damage happens. 

In the present model the author has taken care of this. The distance of 
exposure, energy and time of exposure are optimized through several 
computer run. Although T-ray is promising for various biomedical ap-
plications, the in-vivo penetration depth adjustment is a challenge in 
real-time experiments. This is because the absorption of T-ray energy 
within the body water cell is so significant, that an appreciable amount 
of energy gets absorbed and negligible energy is penetrated carrying the 
information of the virus-affected zone. The authors have incorporated 
the photon-coupling method in the system to enhance the penetration 
depth through the human body organ by adjusting the signal-to-noise 
ratio (SNR). 

In this paper, the authors have used a vertically doped Avalanche 
Transit Time (ATT) oscillator. Due to the limitation of the application of 
terahertz energy straightway in the human body, the authors have 

Fig. 1. Block Diagram of THz-thermal imaging system for coronavirus 
screening purpose. 

Table 1 
Cell properties considered for thermograph generation model in COMSOL Multiphysics (5.3a).  

Cell/Tissue Electrical conductivity (S/ 
m) 

Thermal Conductivity (W/ 
mK) 

Relative 
permittivity 

Density (Kg/ 
m3) 

Specific Heat capacity (J/Kg 
K) 

Respiratory epithelium cell (healthy) 2.50 0.302 20.50 260.0 2560.0 
Respiratory epithelium cell (virus 

affected) 
3.0 0.310 23.0 350.0 2560.0  
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developed a phantom model of upper respiratory systems through 
COMSOL Multiphysics (5.3a) software and simulated the models. In the 
COMSOL Multiphysics (5.3a) study, the problem domain consists of a 
respiratory organ, virus affected and healthy surrounding cells, and a 
THz-radiation source (radiating antenna). The organ under test is 
assumed to be 75 mm × 30 mm in dimension. The distance between the 
source and the sample is optimized to 10 cm for getting the best result. 
The bio-heat transfer model is adopted for the present study. The design 
parameters are given in Table 1. COMSOL Multiphysics (5.3a) simulator 
solves the 3D-heat conduction equation using the finite element method. 
THz thermographs are generated by: (a) moving the specimen for a fixed 
radiation source and detector (b) by moving the radiation source and 
detector keeping the sample under test at a fixed position. In this work, 
the authors have chosen option (b). The absolute thermal contrast is the 
variable adopted to analyze the dielectric variation in cells:  

ΔT (x,y,t) = Td (x,y,t) - TS (x,y,t)                                                        (1) 

Where Td denotes the pixel temperature of the affected zone and TS 
corresponds to the non-affected zone. Input power and initial cell tem-
perature (before exposure) are considered as 10W and 37 ◦C, 
respectively. 

Maxwell’s equations are solved subject to appropriate boundary 
conditions. The calculation is carried out to determine the specific 
electromagnetic absorption rate (SAR). The following is the solution of 
the bioheat equation [33] in order to generate a respiratory tract ther-
mograph model that includes both cells/tissues that are healthy and 
diseased. An axisymmetric magnetic transversal formulation is used for 
the development of an in-silico biological model. Following that, the 
Maxwell Equations [33] are simplified to a wave equation in: 

∇x

[(

εr −
jσE

ωε0

)− 1

∇xH→
φ

]

− μrk
2
0H→

φ = 0 (2)  

Where electrical conductivity is represented by σE. From Eq. (2), the 
magnetic field H→ is solved and then the simulation is done with electric 
field E→. Let unit normal vector for a surface as n→ is, 

n→xE→ = 0 (3) 

The first-order boundary condition [33] is used at outer boundaries 
of cells: 

n→x
̅̅̅
ε

√
E→ −

̅̅̅μ√
H→

∅ = − 2 ̅̅̅μ√
H→

∅0 (4) 

Details of the terahertz generation methodology, as developed by the 
authors, is given elsewhere [28]. Blood perfusion, dielectric and thermal 
characteristics of infected and normal tissues are complex functions of 
the EM waves and frequency of oscillation [34]. The corresponding 

experimentally verified cellular properties are summarized in Table 1 
[33,35,36]. 

The Convolution Neural Network (CNN) has long been a tool of 
choice for processing and analyzing images. The Region-Based Con-
volutional Neural Networks (R–CNN) model to identify infected and 
normal terahertz has been trained with the processed images [37]. 
Detectron2, a Faster–RCNN algorithm, is applied in this case. 
Faster-RCNN is a fork of the Fast-RCNN algorithm [38]. The primary 
distinction between them is that Fast-RCNN generates Regions of In-
terest (RoI) using selective search, whereas Faster RCNN utilizes a 
“Region Proposal Network,” or RPN. RPN accepts picture feature maps 
as input and provides output as a series of object proposals, each with a 
score for object-ness [39]. In a Faster-RCNN technique, the following 
stages are commonly followed as described in Fig. 2:  

1. Bypassing an image as input to the ConvNet, which returns the 
feature map.  

2. These feature maps are subjected to an RPN. This method returns the 
object proposals together with a score indicating their object-ness.  

3. Based on these ideas, a RoI for the pooling layer is performed to 
reduce their size to the same level.  

4. Finally, the proposals are given to a fully connected layer with linear 
regression and softmax on top, which classifies and provides the 
output. 

To begin, Faster-RCNN transfers CNN’s feature maps to the RPN, 
which creates k anchor boxes of varying shapes and sizes by sliding a 

Fig. 2. Typical steps of faster Region-Based Convolutional Neural Network.  

Fig. 3. Workflow diagram of faster Region-Based Convolutional Neu-
ral Network. 
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window over all these feature maps. The workflow is described in Fig. 3. 
Anchor boxes are fixed-size boundary boxes that are positioned 

randomly across the image and come in a variety of shapes and sizes; the 
details are provided elsewhere [40]. It generates feature maps of defined 
dimensions for each anchor and it is described in Fig. 4. 

The feature maps are then sent to a fully connected layer equipped 
with a softmax and a linear regression layer [41]. Finally, it classifies the 
item and forecasts its bounding boxes. 

The day to day progression of the disease has been captured by 
Terahertz based imaging and the same has been used as an input feed to 
the network. Needless to mention that the algorithm is supervised 
classifiers hence the captured images must be fed with their corre-
sponding labels. The distribution of data set into Training and Testing is 
as follows, total images = 400, training set = 320 and test set = 80. 

3. Results and discussion 

T-Ray is invisible to the eye like X-rays and Gamma-Ray & sand-
wiched in the gap between microwaves and Infrared light waves. This 
part of the electromagnetic spectrum is called the “Terahertz Gap” 
because of the unavailability of suitable sources for its useful applica-
tions. Terahertz radiations have certain important properties: its non- 
ionizing nature doesn’t put so much energy into the object that it 
starts to change its composition. This is the major advantage over X- 
Rays, i.e. more powerful but ionizing, and thus X-Ray has the potential 
to disrupt the molecular bond of the living tissues. T-Ray operates in 
pulse modes like radar and ultrasound, thus we can get information 

about the range and depth of the object. Recently, a super lattice ter-
ahertz device for precise cancer cell detection in a full-body prosthetic 
(FBP) has been constructed and investigated by Adhikari et. Al [42,43]. 
Thermographic detection of malignant tumours in Full Body Prosthetics 
(FBP) is reported here, and the authors present a large-signal model of a 
THz Solid State Imaging System for this purpose. Biswas et. Al in their 
publication, presented a novel method of diagnosing Alzheimer’s dis-
ease (AD) by using THz thermograms [44]. This research proposed a 
room-temperature, solid-state generator of THz radiation and it uses an 
in-house designed quantum modified classical drift diffusion simulator 
to investigate the THz non-linear characteristics of the device and sys-
tem. Adhikari et al. also proposed a solid state device that can work at 
room temperature for the non-invasive detection of hepatic cell carci-
noma [45]. Again Adhikari et al. in their study, described the develop-
ment of an in-silico T-ray thermal imaging and detection system for the 
diagnosis and early detection of breast cancer [46]. From all the studies 
it is clear that, the healthy epithelium cells damage due to microwave or 
any other ionizing radiations and THz exposure under similar operating 
conditions are different. THz is found to be safer than microwave radi-
ation or X-Ray as far as percentage of neighbouring cell damage is 
concerned. 

At the outset of the assessment, numerous grid resolutions are 
evaluated and compared to find the most suitable one to ensure the 
highest accuracy. For terahertz wave frequency, 0.1 THz, the default 
grids and refined grids are shown in Fig. 5. 

Healthy respiratory epithelium cells are considered for study under 
the Terahertz (0.1 THz) exposure for 10 s. The time of exposure and 

Fig. 4. Generation of feature maps from T-Ray thermographs with required dimension details.  

Fig. 5. Grid design for thermograph study under Terahertz exposure (Comsol multiphysics 5.3 a).  
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incident power is optimized through the experiment, considering the 
cell burnout issues due to excessive heat generation. Fig. 6 denotes the 
effect of terahertz exposure on healthy cells tested on the second, third, 
seventh, and eighth day of the experiment. The thermographs are not 
showing any significant temperature gradient after 10 s of exposure. 
This is because all healthy cells will absorb the incident energy uni-
formly and thus the question of red spot/hotspot doesn’t arise. 

Fig. 7(a–d) depicts the effect of terahertz exposure on virus-affected 
respiratory epithelium cells mixed with healthy cells. This is interesting 
to observe that virus-affected cells have absorbed more terahertz en-
ergy/radiation power than healthy cells and thus there is a slight 
indicative temperature gradient in comparison to Fig. 6. Moreover, this 
temperature gradient is slightly more prominent under THz exposure. 

Fig. 7(b) denotes the THz thermographs obtained on the third day of 
infection. With the advancement of the day, the spreading of infection 
increases, and this is reflected in Fig. 7(c and d). On the 7th and 8th day 
of infection, the spreading in the neighbouring epithelial cells is sig-
nificant and thus the temperature gradient arises due to non-uniform 
power absorption in healthy and non-healthy epithelial cells, is signifi-
cantly high under THz exposure. The significant temperature gradient 
on the 8th day of infection is a sure indication of the presence of un-
healthy/infected cells that can be utilized for viral infection screening. 

Fig. 8 shows the circular cross-sectional view of the sample under test 
subject to THz radiation for 10 s. The THz radiation thermography can 
detect the (x, y) position and degree of viral infection effectively. The 
temperature gradient is much more prominent in THz thermography 
during the 2nd to 8th day of infection. Thus, early detection of COVID 
infection is possible with THz thermography and the same can be used as 
a basic screening tool in COVID-affected patients. 

Thus, a reliable screening technique will play an important role to 
stop community spreading. Terahertz radiation is non-ionizing in nature 
can be used safely for thermal imaging of upper respiratory track 
unrestrictedly. When the virus-affected patient is asymptomatic, T-Ray 
imaging of the upper respiratory tract will show thermal hotspots that 
signify the existence of viral infection in the very early stage. With the 
spreading of the infection, the location of the hotspot will spread and the 
day-to-day monitoring of the disease would be possible. This will also 
help to isolate the suspected person from the mass gathering and thus 
contact spreading can be avoided largely. In this way, the T-Ray imaging 

Fig. 6. THz thermographs for simulated healthy respiratory cells on 2nd, 3rd, 
7th and 8th day of infection. 

Fig. 7. THz thermographs of nCOVID-19 affected respiratory cell on (a) 2nd day (b) 3rd (c) 7th day and (d) 8th day dayof virus exposure (within incubation period): 
optimized exposure time = 10 s (Comsol multiphysics 5.3 a). 
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technique is beneficial for the early detection of coronavirus. 
Terahertz imaging systems are good for non-ionizing radiation based 

detection of carcinoma. Also this can determine the tumour at early 
stage. However, terahertz radiation penetrating power through human 
body is a challenge. Most of the energy gets absorbed in water and thus 
researchers are trying hard to increase its penetrating power. Reduction 
of SNR by photon coupling technology can increase the penetration level 
but this has also certain limitations. The availability of suitable room 
temperature terahertz sources are also a big challenge as most of the 
sources are bulky and complex. Researchers are focusing in this direc-
tion to address the issue by developing a portable room temperature 
terahertz source that can be operated at room temperature. In addition 
to this, terahertz imaging application on human body is subject to 
ethical committee clearance and still now this is under trial. 

3.1. AI-enabled THz thermograph analysis 

The authors have customized an object detection algorithm, able to 
identify photographs and detect any abnormality in them. Some of the 
common performance metrics include confusion matrix, precision, 
recall (sensitivity) rate, specificity, and F- Score & last but not the least 
ROC and misclassification error curve [47–49]. The receiver operating 
characteristic (ROC) curve is a powerful tool for assessing and 

contrasting different prediction models. ROC curves are a helpful tool 
for evaluating the accuracy of a prediction model’s ability to separate 
genuine positives and negatives from false outcomes. The ROC curve 
does this by graphing sensitivity, the probability of correctly predicting 
a true positive, versus specificity, the probability of correctly predicting 
a true negative. Misclassification error is a measure in machine learning 
that indicates the proportion of data that were wrongly predicted by a 
classification model. Misclassification Error Rate can be defined as, 
number of inaccurate guesses divided by the number of total pre-
dictions. The misclassification rate value can range from 0 to 1. The 
lower the misclassification error, the more accurately a classification 
model can predict the response variable’s consequences. The F-score or 
F-measure quantifies the accuracy of a binary class statistical assess-
ment. It is derived from the precision and recall of the test, where pre-
cision is the number of true positive outcomes divided by the total 
number of positive results, including those that were incorrectly iden-
tified, and recall is the number of true positive outcomes divided by the 
total number of samples that should have been recognised as positive. In 
diagnostic binary classification, precision is also referred to as positive 
predictive value, while recall is also referred as sensitivity. The sensi-
tivity score is indicative of the misclassification of positive cases. Hence 
higher the score lower is the positive misclassification rate. In other 
words, false-negative cases (Type II Error) are lower in number. As a rule 
of thumb, sensitivity should be high for any good model. Similarly, 

Fig. 8. Summary of THz thermographs (cross-sectional/planar view) of 
nCOVID-19 affected respiratory cell during the incubation period of virus 
infection: optimized exposure time = 10 s. 

Fig. 9. Confusion matrix of the proposed AI model.  

Fig. 10. Metrics for model accuracy evaluation.  

Fig. 11. Metrics of overall model accuracy evaluation.  
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specificity is indicative of the misclassification of the negative cases. 
Hence higher the score lower is the negative misclassification rate. As 
explained earlier, a higher specificity indicates lower false-positive cases 
(Type I Error) in combination sensitivity and specificity contribute to-
wards the overall accuracy. The same is illustrated in Fig. 9 and model 
evaluation on the test set is given in Fig. 10. 

Going by the values shown in Fig. 11, the model performed 100% 
correctly on the 80 images in the test set. A detailed description of the 
confusion matrix is given in Figs. 10 and 11. 

A test on smaller samples viz-a-viz 80 random test images may not be 
the right approach, so we passed all images to test the actual prediction. 
Out of 200 normal images, the ratio of correct to incorrect is 160:40 and 
out of 200 infected cases, the ratio of correct to incorrect is 200:0 which 
gives a total percentage of 90%. Hence the model is able to identify 
infected from the given dataset and further tests can be done to fine-tune 
the model and to increase the accuracy. 

The power of explainable AI lies in the fact that the reason behind 
any classification can easily be known. The explanations are only used 
for the infected cases to demarcate the specific region in the scan as 
shown in Fig. 12. This segmentation gives a more comprehensive anal-
ysis of the amoebic pattern formation due to COVID infection. Fig. 12 
shows the AI-assisted output images of the disease progression during 
days one to eight. 

4. Conclusion 

This paper reports a hybrid Covid 19/viral infection detection mo-
dality consisting of T-Ray as a radiation source for thermography 
method and AI-enabled tool for testing the efficacy of the modality. This 
is based on the difference of transmitted (after absorption in affected and 
non-affected cell/tissues) electromagnetic power/T-Ray power between 
healthy and virus affected cells that is reflected through temperature 
gradient study on thermographs. The variation of power absorption and 
associated temperature rise, in healthy and diseased cells, is due to the 
corresponding variation of electrical/dielectric/conductivity properties. 
THz thermograph technique is observed to be a potential non-ionizing 
technique in early diagnosis of Corona virus infected epithelium cells. 
The study for the first time reports the THz thermographs of COVID-19 
infected epithelium cells and the spreading of the location of the affected 
zone with the advancement of infection days. This technique is found to 
be suitable for early detection of COVID infection at the cellular level 
and the findings may be correlated with the body’s vital physiological 
parameters, including cardiovascular data, associated with Covid 19 to 
increase the efficacy of the screening technique. This is most useful for 
screening early Covid infection when conventional techniques cannot 
predict. Moreover, neighbouring cell damage issue due to THz radiation 
is insignificant. The validity of the model is established through AI tools. 
To the best of the authors’ knowledge, this is the first report on early 
COVID-19 infection detection using AI guided Terahertz thermography. 
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