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Staphylococcus aureus is nearly unrivaled among bacte-
rial pathogens, both in the diversity of clinical syndromes
it causes (from skin abscesses and food-borne illness to
endocarditis and sepsis) and in its complex array of viru-
lence mechanisms. In addition, antimicrobial resistance
rates continue to increase, both in methicillin-susceptible
(MSSA) and methicillin-resistant (MRSA) isolates [1]. S.
aureus harbors numerous gene regulatory and quorum
sensing systems, and features substantial genomic plas-
ticity and frequent redundancy among specific virulence
factors. For these reasons, this pathogen represents a
daunting target for the development of novel therapeutic
and preventive measures, dating back to the first pub-
lished attempt at a S. aureus vaccine in 1902 [2].

Since the onset of the community-associated MRSA
epidemic, a family of toxins produced by S. aureus, the
leukocidins, have gained increasing attention as impor-
tant virulence determinants and potential targets of
intervention against this pathogen. The leukocidins
known to be produced by clinical isolates of S. aureus
include Panton-Valentine leukocidin (PVL), LukAB
(also known as LukGH), LukED, and the g-hemolysins
HlgAB and HlgCB [3]. Each of these two-component
toxins is secreted as a pair of monomers that oligomerize
to form a pore on the surface of phagocytes, lympho-
cytes, and natural killer cells, and they are important
mediators of staphylococcal evasion of innate host
defenses. The neutrophil represents the primary innate
defense against S. aureus infection in humans, as evi-
denced in part by the clear predilection toward invasive
S. aureus disease in patients with neutrophil defects [4].
The leukocidins exert their effect at the level of the neu-
trophil and other phagocytes, binding receptors in the
chemokine and complement receptor families [5–8],
forming a pore, and potently lysing these cells, thereby

facilitating infection in a variety of in vivo models
[9–13]. S. aureus elaborates a number of additional pore-
forming toxins outside the leukocidin family, promi-
nently including alpha-hemolysin (Hla), which primarily
targets erythrocytes, epithelial and endothelial cells, and
lymphocytes. While the role of Hla has been carefully
elucidated in numerous animal models [14,15], most of
the leukocidins exhibit a markedly increased tropism for
human leukocytes in comparison to murine cells
[6,16,17], likely resulting in a previous underappreciation
of the importance of the leukocidins when extrapolating
from murine data.

Since its discovery by two independent groups in 2010
[12,18], LukAB/LukGH has garnered attention as an
important S. aureus virulence factor based on its clear
role in both ex vivo and in vivo models of disease
[6,12,13,19]. Infection of human neutrophils with diverse
S. aureus strains indicates that LukAB/LukGH is the
dominant toxin responsible for neutrophil targeting and
killing [12]. This toxin is also highly conserved, being
present in the genome of all known clinical isolates tested
to date [20,21]. Finally, LukAB/LukGH is clearly pro-
duced during human infection, as evidenced by its recog-
nition by the humoral response following invasive
human disease [21,22].

In this issue of Virulence, Rouha et al have thoroughly
evaluated the capacity of a pair of human monoclonal
antibodies to inhibit the cytotoxicity of the leukocidins
and Hla [23]. These antibodies, termed ASN-1 and
ASN-2, were isolated by screening a human IgG1 anti-
body library using a yeast selection system; ASN-1 exhib-
its cross-reactive neutralizing activity against Hla and
four of the leukocidins (PVL, LukED, and the g-hemoly-
sins), while ASN-2 neutralizes LukAB/LukGH. The
authors have previously reported the cross-reactive
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capacity of ASN-1 [24], itself an important discovery
given the redundant nature of S. aureus virulence factor
expression. In this report, Rouha and colleagues charac-
terize the individual and combined effects of the mAbs
in a variety of in vitro models using human leukocytes,
an important distinction given leukocidin tropism.

Several notable findings emerge from this work. First, the
authors observed marked differences in toxin production in
the presence of different culture media, particularly for the
leukocidins. This speaks to the difficulty of interpreting the
importance of staphylococcal toxins (and many other viru-
lence factors) from different in vitro models, as protein
expression by S. aureus may vary dramatically based on fac-
tors such as pH, oxygen tension, and nutrient availability
[13,25,26]. Of note, the authors found that LukAB/LukGH
was the dominant toxin in the media that may best recapitu-
late the host environment in the setting of human infection,
RPMI + Casamino acids. Second, the authors observed that
toxin production also varied widely across S. aureus strains.
As the pore-forming toxins are evaluated as putative targets
of intervention against S. aureus, it will be important to
define the critical toxin(s) in the setting of human infection
and produced by widely circulating clinical isolates. The
authors also found that both antibodies were required to
fully prevent toxin-mediated lysis of human neutrophils in
most in vitro conditions, emphasizing the apparent redun-
dancy in this pathway, though caution must be used when
extrapolating these in vitro findings to what occurs in the
human host during natural infection.

Many fascinating questions remain unanswered regard-
ing pore-forming toxin biology and the interaction between
these important S. aureus virulence factors and the human
host. Despite the robust in vitro characterization of anti-
body-mediated pore-forming toxin inhibition reported by
Rouha and colleagues[23], gaps remain in our understand-
ing of antibody-toxin interactions in the setting of serious
human infections, the setting in which a putative therapeu-
tic would be deployed. For example, our group recently
reported that different human antibodies (purified from B-
cells obtained from children with invasive S. aureus disease)
neutralize LukAB/LukGH-mediated cytotoxicity by distinct
mechanisms [22]. It remains unclear whether certain of
these mechanisms are more biologically relevant or impor-
tant in the setting of invasive human infection. Further, evi-
dence of antibody-enhanced disease has been reported in a
murine model for at least one of the leukocidins (PVL)
[27], and the relevance of this in humans (both for PVL
and the other leukocidins) remains largely unexplored. The
authors note that the antibody combination reported in
this manuscript is under investigation in a Phase II clinical
trial involving mechanically ventilated patients heavily colo-
nized with S. aureus. The findings of this and other future
work will hopefully provide further insights into the

potential roles of antibody-mediated neutralization of pore-
forming toxins in the setting of human disease.
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