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Broadband acoustic subwavelength 
imaging by rapidly modulated 
stratified media
Xing-Feng Zhu1,2, Qi Wei2, Da-Jian Wu2 & Xiao-Jun Liu   1

An acoustic anisotropic lens (AAL) based on large mass-density modulation depth (LMMD) medium 
is proposed for subwavelength imaging. The underlying mechanism for converting evanescent 
components into propagating waves is attributed to the strong suppression of the transverse velocity 
field component in LMMD medium. In addition, the proposed lens can operate in a broadband manner, 
which is more flexible in practical applications. Both transfer matrix method and finite element method 
are used to corroborate the subwavelength imaging capabilities of the proposed lens. The numerical 
simulations demonstrate that the proposed lens can clearly distinguish two Gaussian sources with equal 
width of λ0/25 and separation of λ0/5 in a broad frequency bandwidth. Medium losses decrease the 
transmission but cannot compromise the resolution of the lens.

Subwavelength imaging of acoustic waves has been a topic of growing interest because of their potential applica-
tions in medicine and detection1,2. To get a subwavelength image, the key point is manipulating evanescent waves, 
which carry the subwavelength details of the objects. In recent years, much attention has been paid to design the 
metamaterial lens for enhancing or maintaining the evanescent fields3–5. One example is acoustic lenses made of 
doubly negative mass density and bulk modulus4,6 or single negative mass density metamaterials7–10, in which the 
evanescent waves are resonantly enhanced due to the couplings with the surface state. However, only parts of 
evanescent waves in the k space can couple with the surface modes and hence the field enhancements are 
non-uniform with respect to the spatial frequencies. Further works focused on anisotropic acoustic metamateri-
als, where evanescent wave amplitudes can be uniformly enhanced due to their hyperbolic or nearly flat equifre-
quency contours (EFCs)11–18. A deep subwavelength resolution down to /50λ  was achieved by a lens made of a 
three-dimensional holey-structured anisotropic metamaterial15. However, the evanescent waves must couple with 
the Fabry–Pérot (FP) resonant condition to achieve efficient transmission. Therefore, the working frequency 
ranges in these FP resonant lenses are relatively narrow, which restricts the practically achievable imaging.

Recently, a rapidly modulated stratified media has been proposed to achieve subwavelength imaging in 
optics19,20. The large modulation of permittivity strongly suppresses the longitudinal component of the electric 
field ( →E 0z ), inducing the infinite effective permittivity ( zε → ∞). Thus, the EFC in such strongly anisotropic 
medium is nearly flat and the evanescent waves can be converted into propagating waves and then transferred 
across the metamaterial lens, forming an image. Inspired by the optical subwavelength imaging phenomena, 
subwavelength imaging of acoustic waves may occur in the modulated stratified medium with a large 
mass-density modulation depth (LMMD) medium. The LMMD medium can be regarded as an acoustic metama-
terial with the uniform effective mass density and has nearly flat EFC21. In this paper, we propose an acoustic 
anisotropic lens (AAL) based on the (LMMD) medium to realize subwavelength imaging. Transfer matrix 
method (TMM) is employed to investigate the subwavelength images properties of the AAL. It is demonstrated 
that the proposed AAL can clearly distinguish two deep subwavelength ( /250λ ) sources with a separation of /50λ  
both in lossless and lossy cases. Importantly, the AAL can operate over a broad frequency bandwidth. Finite ele-
ment method (FEM) is conducted to further verify the results.
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Results
AAL based on LMMD medium.  The LMMD medium is composed of stratified media with a period of Λ 
(Λ ηλ= 0, λ0 is the incident wavelength and η is a small parameter). The unit cell comprises N homogeneous 
layers with thicknesses of Λ N/  and the mass density of jth j N( 1, , )= …  layer is defined as
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where r0ρ ρ  is the mean value of the mass density, and 0ρ δρ (not large) is responsible for the modulation of medium 
absorption. As the modulation of the mass density (η is small) becomes large in comparison with the mean value, 
the acoustic wave evolution will be affected not only by the value of the mass density, but also by additional 
important contributions arising from the rapidly-varying periodic density oscillations, which will strongly sup-
press the transverse component of the velocity field. The LMMD medium can be regarded as an acoustic metama-
terial with the uniform effective mass density. Therefore, the propagating of acoustic waves in the LMMD medium 
can be simulated by that in an effective homogeneous medium21. Based on the LMMD medium, we propose an 
acoustic anisotropic lens (AAL). The AAL is constructed by a LMMD medium slab with a subwavelength thick-
ness L 45Λ= . The structural parameters are determined at frequency f 10 =  kHz. Here, N = 10 and η = 1/60. The 
surface of the lens is parallel to x-axis and perpendicular to z-axis. The equifrequency contours for acoustic met-
amaterials with anisotropic mass can be described by
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where kx and kz are the wave vectors parallel and perpendicular to the slab surface, respectively, and B is the bulk 
modulus. In the LMMD medium, the transverse component of the velocity field is strongly suppressed, i.e. →v 0x  
and then xρ → ∞. The infinite xρ  in the LMMD medium is different from the ones in previous anisotropic meta-
materials, which arises from the extremely large impedance mismatch between the acoustically hard material and 
the surrounding fluid15–18. Then, the evanescent waves could propagate with the same wave vector k B/z zω ρ=  
according to Eq. (2). Figure 1 shows the EFCs of the LMMD medium at different frequencies. The EFCs are 
obtained by imposing the Bloch condition on the field amplitudes evaluated through the TMM. The solid and 
dashed lines represent the EFCs for the lossless LMMD medium with ρ ρ= .0 05m 0, δρ = 0 and lossy LMMD 
medium with ρ ρ= . + . i(0 05 0 02 )m 0, δρ ρ= .0 01 0, respectively. It is clear that the EFCs of the two cases are 
almost the same and very flat for a large range of wavevectors in frequency range from 0.9 to 1.06 kHz. The long 
and flat EFCs indicate that the evanescent waves can be converted into propagating waves and then transferred 
across the LMMD medium. Therefore, the subwavelength details of the source can be preserved inside the AAL.

Numerical demonstrations.  We first investigate the transmission efficiency of the AAL with different fre-
quencies. Figure 2 shows the transmission spectra of the AAL calculated by using the TMM. Here, acoustic waves 
are normally incident on the AAL. The frequency range is chosen from 0.9 kHz to 1.1 kHz, which fluctuates ± .0 1 
kHz at the working frequency f0. The solid line represents the transmission spectra of the AAL for the lossless case 
with 0 05rρ = .  and 0δρ = . It is obvious that the unit transmitted amplitude can be obtained near the working 
frequency and the transmitted amplitudes are larger than 0.85 in the frequency range from 0.9 to 1.1 kHz. The 
dash line represents the transmission spectra of the AAL for the lossy case with i0 05 0 02rρ = . + .  and δρ = .0 01. 
The transmitted amplitudes are larger than 0.75 over the frequency range. Compared to the lossless case, the 
transmittance in the lossy case decreases due to the medium absorption. Therefore, the AAL has a very high effi-
ciency over the frequency range both in the lossless and lossy cases.

Then, we check the subwavelength imaging features of the AAL. The modulation transfer function (MTF) can 
be obtained according to the ratio of the output spatial spectra to the incident fields,

Figure 1.  EFCs of the LMMD medium at different frequencies.
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The point spread function (PSF) is the inverse Fourier transform of the MTF. The transmitted acoustic wave 
field profile p x L( , ) can be expressed as the convolution of PSF(x) with the incident acoustic wave field p x( , 0) 22, 
i.e.,

= = ∗ = .p x z L x p x z( , ) PSF( ) ( , 0) (4)

In Fig. 3, we show the comparison between the output images and input sources. The sources are composed of two 
Gaussians with an equal width of λσ = /250  and the separation is λ=d /50  (center-to-center), i.e.,

= + .− + . σ σ − − . σ σp p e e( ) (5)
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Here, =p 10  Pa. The solid and dashed lines represent the output images in the lossless and lossy cases, respec-
tively. The dotted line represents the two deep subwavelength Gaussian sources. The output images with the 
lossless AAL are almost the copy of the input ones. In the presence of losses, the output images appear at the price 
of reduced amplitude and a slower decay far from the sources, but the resolution is only little affected. To appre-
ciate such an imaging result, we also show the effect of air propagation on the above incoming field in Fig. 3 
(dash-dotted line), and the complete deterioration of the considered subwavelength image is evident. Thus, 
sub-wavelength imaging is possible for the lossless or lossy AAL based on LMMD medium.

We further demonstrate subwavelength imaging of the AAL by using the full-wave simulations based on the 
finite element method (FEM). The acoustic intensity distributions of the two subwavelength sources are shown in 
Fig. 4. The material parameters of the lens are the same as those of Fig. 3. The thicknesses of the air layers at the 
two sides of the lens are both set as 0.5λ0. Periodic boundary conditions are imposed in the x direction, and the 
radiation boundary conditions are set for the remaining boundaries. The two sources are placed near the input 
surface of the lens. Figure 4(a) shows the acoustic intensity distribution of the sources without AAL. The 

Figure 2.  Transmittance spectra for acoustic waves through the AAL.

Figure 3.  Acoustic intensity profile of images along x direction on the output surface of the AAL in the lossless 
and lossy cases based on TMM. The dotted line represents the two deep subwavelength Gaussian sources. The 
dash-dotted line represents the intensity profile at the same position for the case without the lens.
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subwavelength information is lost in the far-field due to the diffraction limit. Figure 4(b,c) show the acoustic 
intensity distributions for the lossless and lossy AALs, respectively. It is apparent that in contrast to the case with-
out the lens, the subwavelength details are preserved on the output surface when the lens is installed. The source 
is directly transferred within a pipeline in the z direction resulting from the non-diffraction feature of the LMMD 
medium. Hence, the two deep subwavelength sources are clearly resolved after the source signals pass through the 
lens. The AAL based on LMMD medium presents an infinitely anisotropic structure that allows wave propagation 
in the direction perpendicular to the interfaces. To show the imaging effects more clearly, Fig. 5 gives the normal-
ized acoustic intensity profile of images along x direction on the output surface of the AAL. The solid and dashed 
lines represent the output images for the lossless and lossy lenses, respectively. The dash-dotted line represents the 
intensity profile at the same position but in the absence of the lens, i.e., propagation in air after the distance of L. 
It can be found that the images at the output of the lens are clearly resolved in sharp contrast to the results 
obtained in the absence of the lens. The complete deterioration of the considered subwavelength image is evident 
after propagating the distance of L in air. Medium losses decrease the amplitude of the images but cannot compro-
mise the resolution of the lens. In Fig. 5, the results obtained by using FEM are in well agreement with those found 
in Fig. 3. Therefore, the AAL can faithfully project an image with deep-subwavelength details (λ /250 ) and clearly 
distinguish two sources with separation of λ /50  both in the lossless and lossy cases.

To examine the frequency response property of the AAL, we use the same setup as used in Fig. 4(b,c) to per-
form the simulation at different frequencies. Figure 6 shows the broadband response of the lens for frequencies 
from 0.94 to 1.1 kHz. The solid and dashed lines represent the normalized intensity profile at each frequency 
along x direction on the output surface for the lossless and lossy AALs, respectively. The two sources can be clearly 
resolved throughout the frequency range although the lens is designed for a specific frequency. Deviating from 
the specific frequency f0, the subwavelength imaging efficiency is evident even in the presence of a slight image 
deterioration resulting from the side lobes. Medium losses decrease the transmitted amplitude but little affect the 

Figure 4.  (a) Acoustic intensity distribution of two subwavelength sources propagating in air. Acoustic 
intensity distribution of two subwavelength sources for (b) lossless lens and (c) lossy lens. The lens has a 
thickness λ= .L 0 75 0. The thicknesses of the air layers in the two sides of the lens are both set as 0.5λ0. The 
dashed lines indicate the interfaces between air and lens.

Figure 5.  Acoustic intensity profile of images along x direction on the output surface of the AAL in the lossless 
and lossy cases based on FEM. The dash-dotted line represents the intensity profile at the same position for the 
case without the lens.
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resolution of the lens throughout the frequency range. Therefore, the broadband subwavelength imaging can be 
realized with the AAL and the imaging is robust against the material losses.

Discussion
The AAL based on LMMD medium has been proposed to realize acoustic subwavelength imaging. Different from 
the anisotropic or high-contrast media23–26 based on resonant mechanism, the proposed lens can operate in a 
broadband without the limitation on working frequency, which is more flexible in practical applications. The 
infinite xρ  in AAL lens is attributed to the strong suppression of the transverse velocity field component in LMMD 
medium. Thus, the EFCs in AAL lens are very flat and the subwavelength source can be directly transferred within 
a pipeline in the lens. The AAL can faithfully project an image with deep-subwavelength details ( /250λ ) and 
clearly distinguish two sources with separation of /50λ . Moreover, the subwavelength imaging is unhampered by 
the material losses throughout the frequency range. This feature is very important in the subwavelength imaging 
since material losses are always present and will generally weaken the effect of lens. Applications based on such 
metamaterial lens can be anticipated in the areas of ultrasonic medical imaging and non-destructive evaluation.

Methods
Our numerical analysis combines two elements: the TMM, which is used to calculate the transmission of a single 
plane wave through the lens, and the theory of linear shift-invariant systems (LSI)27,28, which gives the description 
of the multilayer with the MTF or PSF. LSI are well known in different fields of optics. Here we apply this model 
to analyze the acoustical stratified media in a situation when they act as imaging elements for coherent mono-
chromatic acoustic wave. We study separately the transmission of plane waves with different real values of the 
wavevector component kx, corresponding to both propagating and evanescent waves. Our present analysis is 
limited to transmission through multilayers surrounded by air and does not include a source and detector. Apart 
from TMM, numerical simulations are performed by the commercial software, Comsol Multiphysics, which is 
based on the FEM. The background medium is air with a mass density 1 250ρ = .  kg/m3 and a sound speed 

=c 3430 m/s. Periodic boundary conditions are imposed in the x direction, and the radiation boundary condi-
tions are set for the remaining boundaries. The largest mesh element size is lower than one tenth of the incident 
wavelength, and the further refined meshes are applied in the domain of the unit cells of the microstructure.
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