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Abstract: Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence
of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state
of the organism’s nervous system (or the body in general). We hypothesized that chronic stress
may be one of the causes occurence of several molecular and cellular types of stress. We analyzed
literary sources and considered most of these types of stress in our review article. We examined
genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead
to various types of stress. The end result of chronic stress can be metabolic disturbance in humans
and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy
deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes
can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and
atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic
stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear
genome and dysfunction of cells and their compartments can occur. As a result of these processes,
oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes
forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular,
chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and
cellular types of stress.

Keywords: chronic stress; oxidative stress; genotoxic stress; cellular stress; mutation; gene; mitochon-
drial genome; nuclear genome

1. Introduction

Chronic stress is a combination of nonspecific adaptive reactions of the body to
the effects of various adverse stress factors that disrupt its homeostasis, as well as the
corresponding state of the nervous system of the body (or the body as a whole) [1,2]. Under
chronic stress, internal changes in the systems of a human body occur in response to a
strong or prolonged exposure to the environmental stressor [3–7]. Chronic stress harms
physical and mental health of people of all genders, races, and ages [8,9]. Stress happens
if mental, emotional, and/or physical demands rise higher than regulatory possibilities
of a body [8,10] and the influence on an organism can vary depending on the frequency,
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magnitude, and length of the stress. While moderate levels of stress can be adaptive,
stress persisting for long periods can have negative consequences on the well-being of
an organism [8,11]. Several preclinical and clinical researches have found that chronic
stress produces alterations in gray and white matter of the brain, and affect healthy neural
communication through changes in brain circuits [8,12]. Moreover, chronic stress is linked
with several psychiatric illnesses, for example, depression, anxiety, post-traumatic stress
disorder (PTSD), substance use disorder (SUD), and personality disorders [8,13].

Chronic stress refers to the non-specific systemic reaction which happens if the body
is stimulated by different internal or external negative factors during a long period of
time [14–16]. The physiological response to chronic stress exposure has long been recog-
nized as a potent modulator in the occurrence of atherosclerosis. Moreover, studies have
confirmed that there is a correlation between atherosclerosis and cardiovascular events.
Chronic stress is pervasive during negative life events and can cause the formation of
atherosclerotic plaques [14–16]. The results of a number of epidemiological researches have
shown that chronic stress is an independent risk factor for the development of vascular dis-
eases and for higher morbidity and mortality in patients with pre-existing coronary artery
disease. One possible mechanism for this process is that chronic stress causes endothelial
injury, directly activating macrophages, promoting foam cell formation and triggering the
formation of atherosclerotic plaques [14–16]. This mechanism involves numerous variables,
which include inflammation, signal pathways, lipid metabolism and endothelial function.
The mechanisms of chronic stress in atherosclerosis should be further investigated to give
a theoretical basis for efforts to liquidate the negative influence of chronic stress on the
cardiocerebral vascular system [14–16].

In response to chronic stress, changes in an individual’s metabolism can occur (in-
creased levels of lipids and glucose in blood). This prepares the organism to enhanced
muscular activity, which was necessary in the struggle for the existence of the individual in
ancient times. Although at present, there is almost no need for a person to use muscular
activity for their own survival, the pathophysiological mechanisms of chronic stress have
not changed much. Since the psychological conflicts of modern people do not involve
physical manifestations, this contributes to the excessive accumulation of glucose, lipids,
and other substances produced by the organism as a result of stress, which triggers athero-
genesis [17,18]. As a result, athletes or workers who perform physical labour a lot are much
less likely to have atherosclerotic lesions than people engaged in mental work and leading
a sedentary lifestyle.

According to a study conducted by Finnish scientists, in individuals with a high level
of flow-mediated dilatation, a slower recovery of the pre-ejection period is a prognostic
factor in the thickening of the intimal-medial layer. Scientists suppose that endothelial
dysfunction is one of pathophysiological mechanisms which associate with atherosclerosis
the slow recovery of cardiac activity after completing a task caused by chronic stress in the
conducted experiment [19].

Hemodynamic responses to neuropsychic stress are also a risk factor for atheroscle-
rosis. Scientists from the United States found that the increase in systolic blood pressure
triggered by psychological problems can be a prognostic factor for atherosclerosis in men
older than 40 years. In the investigated sample, this fact did not depend on other risk
factors [20].

Researchers from Boston suggested that atherosclerotic lesions can affect the vasomo-
tor reactions of coronary arteries under neuropsychic stress. The data obtained by scientists
confirmed that vasomotor reactions in atherosclerosis differ from normal [21].

Therefore, chronic stress can lead to the occurrence and development of neuropsychic
diseases and atherosclerosis. We suppose that a key role in their pathogenesis can play
molecular and cell types of stress. At present, there are several types of classification of
these types of stress. In our review article we would like to present a classification of
molecular and cell types of stress from the point of view of medical molecular geneticists.
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2. Molecular Types of Stress

Oxidative stress and genotoxic stress belong to molecular types of stress. Besides,
DNA methylation caused by stress, can be included into this group, too.

2.1. Oxidative Stress

Redox reactions underlie the molecular biological processes in humans. In particular,
they participate in metabolic processes which are linked with protein phosphorylation,
induction of the Ca2+-signal, modulation of transcription factors, and hydrolysis of phos-
pholipids [22–25].

Oxidative stress is a process of damaging of various organs and tissues by reactive
oxygen species at the cellular level. It arises as a result of an imbalance in the functional
activity of the prooxidant and antioxidant systems that support or inhibit oxidation (re-
spectively). This process can be a result of both the lack of antioxidant protection caused
by a disruption in the production of endogenous antioxidants and a superfluous excess of
free radicals formed [26–29].

Since most free radicals are cytotoxic, they are included in pathogenetic mechanisms.
Free radicals can be by-products of metabolic processes. Among them, the “reactive oxygen
species” (ROS) play a large role (Table 1) [30–34].

Table 1. Reactive oxygen species [30–34].

Number Reactive Oxygen Species Chemical Formula

1 Superoxide anion O2
−

2 Hydroxyl radical OH-
3 Nitrogen oxide anion NO-
4 Hydrogen peroxide H2O2
5 Peroxynitrite anion ONOO−

6 Hydroperoxide radical HO2-
7 Singlet oxygen O1

2
8 Hypochlorite anion OCl−

9 Hypobromite anion OBr−

10 Hypoiodic anion OI−

11 Alkyldioxyl radical ROO-
12 Alkoxyl radical RO-
13 Organic radical R-

In any stressful reactions accompanied by oxidative stress, ROS are included in the
transmission of information from primary mediators: hormones, cytokines, neurotransmit-
ters through the cell membrane to trigger reactions of adaptation the organism to extreme
conditions. Pathological processes in the human body can occur due to sharp fluctuations
in the concentration of ROS in cells and tissues. For example, activation of apoptosis
and proliferation genes may begin, and the level of cytokine expression may increase. In
addition, somatic DNA mutations and cytotoxicity may occur [35–39].

The DNA molecule may be damaged by hydroxyl radical and superoxide anion. Hy-
droxyl radical may cause oxidation of purine and pyrimidine bases, as well as on residues
of ribose and deoxyribose. Superoxide anion interacts with guanine bases, as a result of
which their various oxidized derivatives are formed, including the final oxidation product
of guanine bases, 7,8-dihydro-8-hydroxyguanosine. Radicals formed during lipid perox-
idation also damage DNA molecules. Mitochondrial DNA is subjected to the oxidative
effect of ROS even more than the nuclear one, since it is in close proximity to ROS sources
and is not protected by histones. During the interaction of hydrogen peroxide, formed
in the respiratory chain, with ions of Fe2+ and Cu2+, which are present in mitochondrial
membranes, forms hydroxyl radical, which damages mtDNA. Mitochondrial genome can
also be damaged by the action of hydrogen peroxide formed in the monoamine oxidase
reaction. Damage to mtDNA leads to dysfunction of respiratory chain in mitochondria,
resulting in increased wastage of superoxide anion. Damage to mtDNA also occurs as a
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result of the action of endonucleases, which are activated during the increase in concen-
tration of intracellular Ca2+, observed during oxidative stress. As a result of respiratory
chain dysfunction in mitochondria, ATP synthesis decreases. In mitochondria and cells of
the organism, energy deficiency begins. This leads to oxidative stress. Ultimately, these
processes can enhance the production of oxidants. Moreover, during stress, the amount of
ROS significantly exceeds the activity of endogenous antioxidant systems which ensure
their elimination [30,31].

Oxidative stress leads to damaging of vascular endothelium, arterial hypertension and
atherosclerosis. At the molecular level, it leads to damage to nucleic acids, proteins, lipids
and the emergence of cell mutations. For example, an increase in the level of hydrogen
peroxide in the plasma of patients with arterial hypertension was found. In addition, this
indicator was greater in such patients with arterial hypertension, in whom this disease was
observed in the family [32].

Endothelial dysfunction and smooth muscle hypertrophy of vascular cells occurring
in arterial hypertension and atherosclerosis result from the excessive formation of O2

−.
This leads to oxidative inactivation of NO and a decrease in its bioavailability. This ROS
is formed using enzyme NO synthase, which is found in macrophages. Its expression
occurs with the development of inflammation, in response to bacterial endotoxins and
cytokines [33–37].

It should be noted that O2
− can cause unlimited proliferation of endothelial cells

and lymphocytes. At the same time, H2O2 and NO− inhibit this proliferation. OH− is
characterized by the destruction of any CH bonds. RO− and OH− have a carcinogenic effect.
O2

1 and OH− are mutagens. To sum it up, an excess of any ROS causes cytotoxicity [38–41].

The Link of Oxidative Stress with Neurodegenerative Diseases and Mitochondrial Genome Mutations

It is believed that mitochondrial dysfunction, which disrupts the structure of mito-
chondria, is a key element of oxidative stress in the cell. It leads to an imbalance between
the production of free radicals and the protective capabilities of the organism [41–45]. It
should be noted that oxidative stress can lead to neurodegenerative and vascular diseases,
and also to metabolic diseases and cancer [42–47].

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases
and is clinically characterized by progressive hypokinesia, muscle rigidity and resting
tremor [48,49]. The death of dopaminergic neurons of the substantia nigra lies at the core
of PD. Meanwhile, in PD Lewy bodies are found in the surviving cells, and the amount of
dopamine in the striatum is reduced [48–50]. During the study of autopsy material, a defect
of complex I of the electron transport respiratory chain of mitochondria of the substantia
nigra cells was found, leading to a 30–40% decrease in their activity [51]. This mechanism
is determined by the reduced production of subunits of this complex, the destruction of
its structure and direct oxidative damage to the cells themselves [52,53]. Even stronger
evidence of the link of PD with oxidative stress was obtained by histochemical analysis
of substantia nigra cells, in which mtDNA mutations, glycation and nitration of cellular
proteins were detected. This leads to the formation of the most significant lipid oxidation
product: 4-hydroxy-2 nonenal, which triggers the process of cell death. A change in the
conformational structure of the α-synuclein protein is integrated into this mechanism. The
aggregates of α-synuclein protein have a toxic effect and are a basis for the formation
of Lewy bodies [54]. Chen, S.H. et al. found that changes in oxidative stress and the
number of mitochondrial DNA copies y numbers in patients with Parkinson’s disease
(PD), especially in those who underwent therapy with the use of dopamine for a long time
undergoing long-term dopamine therapy. In particular, this research group evaluated the
number of mitochondrial copies numbers, thiobarbituricacid reactive substances (TBARS),
and thiols inpatients with Parkinson’s disease andin conditionally healthy people. The
total prescribed dopamine dose was calculated for each PD patient. Each patient with
Parkinson’s disease was prescribed dopamine, and the dose was different and depended
on many factors. Patients with Parkinson’s disease had a decreased low number of mi-
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tochondrial copies and antioxidant thiols level, but an increased oxidative TBARS level.
The number of mitochondria and thiols decreased with age in all PD subgroups, but
they showed high TBARS levels compared to conditionally halthy people. It was found
in further investigations that there was an association betweendecreased serum TBARS
and dopamine administration. It was detected that a decrease in TBARS diminished the
negative effect of pathogenetic and age-related decrease in mitochondrial copy number
in patients with Parkinson’s disease. The authors of the study suppose that moderate
dopamine dose therapy benefits patients with Parkinson’s disease through attenuation of
oxidative stress and manipulation with the number mitochondrial copies [55].

A recent article was published by Nido, G.S. et al., which reports on deletion analysis
in individual neurons. It was noted that in Parkinson’s disease at least one small deletion
in mtDNA was detected in each of the affected neurons. The most common deletion in
the mitochondrial genome for Parkinson’s disease was 4977 bp “common” deletion. The
authors suppose that precisely mtDNA deletions cause mitochondrial dysfunction leading
to Parkinson’s disease [56,57].

It should be noted that Parkinson’s disease is also associated with mutations in the
genes of nuclear genome (SNCA (PARK1), PARK2, PINK1 (PARK6), DJ-1 (PARK7), LRRK2
(PARK8), ATP13A2 (PARK9), PLA2G6 (PARK14), FBXO7 (PARK15), VPS35 (PARK17),
EIF4G1 (PARK18), COQ2, DNAJC6, ATP6AP2, SYNJ1, DNAJC13), which lead to oxidative
stress, apoptosis or stress in the endoplasmic reticulum [58–62].

Another neurodegenerative disease associated with oxidative stress and mitochondrial
dysfunction is Alzheimer’s disease. Alzheimer’s disease (AD) is predominantly a disease
of late age, characterized by progressive cognitive decline and leading to the loss of
independence in everyday life. The disease is based on irreversible cell death, especially
in the cerebral cortex and hippocampus. The main pathomorphological correlates of AD
are extracellular aggregates of beta-amyloid and also intracellular neurofibrillary tangles,
formed from hyperphosphorylated tau protein. In AD, oxidative stress is one of the
key elements in pathogenesis. It is oxidative stress which can lead to disruption of the
metabolism of the protein, a precursor of amyloid [63,64]. Tau hyperphosphorylation is the
second key pathogenetic mechanism of Alzheimer’s disease, not only due to the fact that it
violates the structure of microtubules and axonal transport, but also due to the fact that
the absence of a normal tau protein itself leads to the destruction of microtubules [65,66].
The results of recent studies suggest that neurofibrillary glomerular accumulation is also
associated with oxidative stress [67,68].

Neuritic plaque, one of the major characteristics of AD neuropathology, mainly con-
sists of amyloid β (Aβ) protein. Aβ is derived from amyloid precursor protein (APP) by
sequential cleavages of β- and γ-secretase. Although APP upregulation can promote AD
pathogenesis by facilitating Aβ production, growing evidence indicates that aberrant post-
translational modifications and trafficking of APP play a pivotal role in AD pathogenesis
by dysregulating APP processing and Aβ generation [69].

Recently it was described a mitochondrial matrix peptidase, called PITRM1 (hPreP)
that works as scavenger preventing the accumulation of Aβ inside the mitochondria.
Alikhani et al. performed a post-mortem study on AD brain samples, showing a signif-
icant reduction in proteolytic activity of PITRM1 in the mitochondrial matrix extracted
from temporal lobes of AD patients compared with age-matched non-AD individuals.
Lower enzymatic activity was not due to a reduced protein expression but to a functional
alteration of the enzyme, and possibly through post-translational modifications such as
protein oxidation [70–74]. This enzyme in fact, resulted particularly sensitive to oxidizing
conditions, because of the presence of two cysteines linked by a disulfide bridge which
locks the enzyme in a closed conformation thus hindering substrate binding. Mutations
in Pitrm1 are linked with a neurodegenerative disease characterized by ataxia and cogni-
tive decline [75]. Further it was proved that PITRM1 LOF induces proteotoxic stress and
Alzheimer’s disease-like pathology in human cerebral organoids [76].
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It should be noted that Alzheimer’s disease was found to be associated with 4977 bp
“common” deletion, as well as Parkinson’s disease was [77–79]. Alzheimer’s disease is
also associated with mutations in nuclear DNA genes, such as APP, PSEN1, PSEN2, and
APOE [80–84].

However, a number of research groups give data on the fact that some neurodegenera-
tive diseases (in particular, major depressive disorder), were not associated with a range of
genes-candidates during whole genome sequencing (NGS) [85]. At the same time, during
the analysis of separate polymorphisms, this link was earlier detected. For example, such
association was detected for 5-HTTLPR variable number tandem repeat (VNTR) poly-
morphism in the promoter region of the serotonin transporter gene SLC6A4 [86]. Besides,
for one of alleles of this polymorphism, was found an association between stress and
anxiety symptoms, which is moderated by 5-HTTLPR [87]. At present, there are several
hypotheses and theories, which explain the cause why the results of analysis of separate
polymorphisms and NGS are different [85,88,89]. Our research group faced a similar
problem while comparing the results of analysis of separate mtDNA mutations by the
method of pyrosequencing and the analysis of mutations of whole mitochondrial genome
by the method of NGS which were associated with atherosclerosis. In our review article
“Mitochondrial genome sequencing in atherosclerosis: what’s next?” we give examples
of results of analyses of mutations by research groups from different countries of the
world [88]. These investigations were carried out using different methods, for example,
the analysis of separate mutations and polymorphisms using PCR, Sanger sequencing
and NGS. Meanwhile, these results could be fully or partially do not match [85,88,89].
For example, in our study, some mtDNA mutations were detected during the analysis of
separate mutations, but they were not detected using the method of NGS. Meanwhile, our
sample for analysis of separate mutations of mtDNA by the method of pyrosequencing was
more than 700 individuals, and our sample for analysis of whole mitochondrial genome by
the method of NGS, was 115. Perhaps, the difference in the list of the detected mutations
was connected with the high cost of NGS and the absence of possibility to sequence the
large number of samples, which can be compared to the large number of samples, taken for
the analysis of single nucleotide polymorphism or mutation [85,88,89]. We suppose that
the comparison of data, obtained on different samples of patients, may be correct, if it was
carried out using the same method.

2.2. Genotoxic Stress

In genotoxic stress, genome damage occurs under the influence of genotoxins. Geno-
toxic types of nuclear DNA damage include alkylation, hydrolysis and oxidation. In this
case, there occur sister chromatid exchanges, large and small DNA deletions, reading frame
shift mutations, chromosomal aberrations, point mutations, cross-linking with other bases
and proteins, and DNA strand breaks [90,91].

2.2.1. Replicative Stress

One of the genotoxic stress forms is replicative stress. During this form of stress, a stop
of the replicative fork happens because of the occurrence of single-stranded DNA breaks.
During replication, erroneous inclusion of non-complementary nucleotides (mismatches)
can take place, leading to the occurrence of point mutations. A mutation with a shift in the
reading frame may appear or a number of short tandem repeats may increase. For example,
an increase in the number of CAG codons in gene IT-15 leads to the occurrence of such a
nervous system disease as Huntington disease [92,93].

Reactive oxygen species lead to the formation of modified nitrogenous bases. In this
case, mutations occur with the replacement of bases: transitions or transversions. If the
oxidized base is localized in the promoter region of the gene, transcription is impaired.
In case of removing damaged bases with DNA glycosylases, AP sites (abasic site) occur.
These sites represent the deoxyribose residues in a DNA molecule lacking a nitrogenous
base (“AP”–“apurinic” or “apyrimidinic”). In the absence of further repair, AP sites lead
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to the replacement of damaged nitrogenous bases with thymine or single and double
stranded DNA breaks. By some modified bases, DNA polymerases are blocked [94–96].
This causes the replication fork to stop. After this, specific DNA polymerases with reduced
complementarity requirements may activate. Driven by these polymerases, replication
is renewed, but mutations occur in the resulting daughter chain. This process happens
because of the fact that purines and pyrimidines are much more sensitive to modification
as mononucleosides and nucleotides than as part of DNA, where they are protected
by chromatin packaging. Although DNA and RNA polymerases recognize damaged
and modified bases, this recognition is not absolute and they can incorporate damaged
nucleotides into DNA [97–99].

The link of stress with the number of the mitochondrial genome copies was found
during the study of posttraumatic stress disorder (PTSD). In particular, Bersani, F.S. et al.
found that mitochondrial DNA copy number is reduced in male combat veterans with
PTSD compared to those without PTSD [97]. Kelly J. Brunst et al. elucidated that the
number of the mitochondrial genome copies in the placenta during maternal lifetime
stress and PTSD symptom in white individuals is reduced more significantly than in
representatives of other races [98]. However, scientists need further research to achieve
statistically significant results.

2.2.2. Mutation Stress. Genetic Predisposition to Genotoxic Stress

One of the specific forms of replicative stress is mutational stress. Some mutations
and polymorphisms of genes which control the functioning of the nervous and immune
systems make post-traumatic stress disorder more likely after traumatic situations.

It has been shown that the genes of the dopamine and serotonin receptors con-
trolling the transmission of a nerve impulse, affect the extent of being worried by a
traumatic situation, and how well the person recovers after that. In particular, the 7-
repeat allele (7R) of the dopamine receptor gene (DRD4) is an early marker of future
psychological disorder in infants who have experienced a short-term separation from their
mother [99–101]. It is necessary to note that allele 7R has been the most intensively studied
in recent years. It is sometimes called a “gene of adventurism” because its carriers have suf-
ficiently clear, statistically significant behavioral differences from those with other variants
of gene DRD4. In carriers of allele 7R, on average, a desire to search for novelty-seeking
behavior is stronger expressed than in other people. Among the carriers of allele 7R, there
are more people with attention deficit hyperactivity disorder [102].

At the same time, young people, having an allele of gene MAOA (monoamine oxidase
A) with low-MAOA-activity are predisposed to become antisocial when they experience a
variety of adverse experiences, most notably maltreatment in childhood [103]. It should
be noted that monoamine oxidases A and B carry out the catabolism of monoamines (hor-
mones, neurotransmitters, exogenous monoamines) through their oxidative deamination.
These enzymes regulate the concentration of the above substances in the cell and the
organism as a whole. The substrates for MAOA are adrenaline, noradrenaline, serotonin,
histamine, and also many phenylethylamine and tryptamine surfactants [104]. MAOB
(monoamine oxidase B) substrates are phenylethylamine and dopamine. Both types of
monoamine oxidases are located in the outer membrane of mitochondria. Since gene
MAOA is on the X chromosome, in women, mutations of this gene may be in a heterozy-
gous state. They are compensated by the normal gene on the second X chromosome. At
the same time, in men such compensation does not happen. That is why, gene MAOA is
often called a “gene of aggressive behavior” [105].

A group of researchers Igata, N. et al., Caspi, A. et al., Zammit, S. et al., Karg, K. et al.
found that a short ‘S’ allele of the 5-hydroxytryptamine-linked polymorphic region poly-
morphism (5-HTTLPR) is associated with increased depression in a high-stress
context [86,87,106–109]. Insertion deletion polymorphism (5-HTTLPR) is located in the
promoter part of the serotonin transporter gene (SLC6A4). A possible cause of depression
in a high-stress context may be the association of allele “S” with a deletion [86,87,110,111].
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Often this occurs in patients in response to adverse environmental influences in child-
hood [106,111,112]. The search for mechanisms mediating the effect of polymorphism
5-HTTLPR on the development of anxiety and depression led to the detection in allele “S”
carriers of enhanced processing of emotionally negative information, including expression
of fear and anger on the face. Therefore, the presence ofallele “S” in the genotype turned
out to be associated with increased activation of the tonsil of the brain during the percep-
tion of frightened and angry faces and a more pronounced negative shift (i.e., a tendency
to involuntarily direct attention towards emotionally negative stimuli) compared with
homozygous carriage of a long allele (“L”) [106,111,112].

The features of the immune system work are very important in the reaction of the
organism to stress factors. People with a genetically determined stronger inflammatory
response at high levels of stress are more susceptible to diseases with an inflammatory
component (for example, cardiovascular diseases, autoimmune diseases, mental disorders).
For example, Seeger et al. evaluated whether the season of the year in which a child was
born interacted with the dopamine DRD4 polymorphism in predicting the hyperkinetic
conduct disorder (ADHD). When comparing patients with controls, children with one copy
of the DRD4 7-repeat allele born in autumn and winter (that is, long photoperiod during
pregnancy) had a 5.4-fold decreased relative risk for hyperkinetic conduct disorder, whereas
children with the same genotype born in spring and summer (that is, short photoperiod)
had a 2.8-fold increased relative risk for hyperkinetic conduct disorder [113,114].

Slominsky, P.A. et al. analyzed the expression of genes related to lysosomal autophagy:
HSPA8, LAMP2, TFAM, SLC18a2, and VPS35 in the brain tissues of mice with the earli-
est stage of MPTP-induced PD. Decrease in HSPA8 and LAMP2 mRNA levels suggests
that dysfunction of lysosomal autophagy may be involved in the earliest stages of PD
pathogenesis. A decrease in the rate of lysosomal autophagy may affect the accumulation
of damaged proteins and the formation of protein inclusions in PD. Genes related to the
lysosome function may be involved in development of both lysosomal storage disorders
(LSD) and Parkinson’s disease (PD) at the earliest stages of these pathologies [115–117].

2.3. DNA Methylation Caused by Stress

Resistance to stress is not only affected by heredity but also by the characteristics of
genes which form after birth. After birth, there is a fine adjustment of the work of the
genetic apparatus to environmental conditions. Stress conditions also cause this adjustment.
As shown in animal models, when stressful situations occur in mousekins and young rats,
their genes change their level of activity [118,119]. Subsequently, such a level of activity
of these genes can persist until the end of life. For example, separation from the mother
is a great stress for young rats. And if the young rat is taken away from the mother for
several hours and then returned, the cortisol level and the organizm’s response to stress
change, and these changes last for life. In this case, methyl groups join the genes involved
in the stress response. The activity of methylated genes may decline for life [118,119].
A study of the molecular mechanisms of the response to stress has been conducted in
humans. A group of researches Champagne, D.L. et al. studied children who grew up in a
single-parent family, in which the parents divorced or one of the parents died. It turned
out that their level of methylation of the cortisol receptor gene was higher than in children
who grew up in an intact family. I.e., the intensity of the gene expression levels in these
children is reduced. This can lead to the fact that carriers of the methylated gene will
react more sharply to a stressful situation [120]. Tyrka, A.R. et al. found that disruption or
lack of adequate nurturing, as measured by parental loss, childhood maltreatment, and
parental care, was associated with increased NR3C1 promoter methylation. In addition,
NR3C1 promoter methylation was linked to attenuated cortisol responses to the Dex/CRH
test [121].
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3. Cellular Types of Stress

Several types of stress belong to a group of cellular stresses: the very cellular stress,
endoplasmic reticulum stress, and osmotic stress.

3.1. Cellular Stress

The reaction of the cell to various types of stress determines its future fate. During
cellular stress, the permeability of membranes increases, the membrane potential of cells
is depolarized. CO2 penetrates into the cytoplasm from cell walls and intracellular com-
partments. The pH of the cytoplasm decreases. Microfilament assembly is activated. The
consequence of this is an increase in the viscosity and light scattering of the cytoplasm.
Oxygen and ATP absorption are increasing. The speed of hydrolytic processes is increasing.
Stress-induced proteins are activated. Their synthesis begins. The activity of the H+ pomp
in the plasmalemma is enhanced. The synthesis of ethylene is increasing. Suppression of
cell division and growth occurs. These cell reactions are aimed at protecting intracellular
structures and eliminating adverse changes in the cells [122–124].

Under the influence of stress factors, apoptosis, autophagy, necrosis and ferrop-
tosis of cells can occur. These stress reactions are characteristic of neurodegenerative
diseases [125–127]. A key factor in neurodegenerative diseases is the death of a neuron,
which can be of three types: programmed cell death (apoptosis), pathological cell death
(necrosis) programmed oxidative necrotic cell death (ferroptosis). Moreover, apoptosis,
ferroptosis and necrosis of the neuron are morphologically different. In particular, a charac-
teristic feature of ferroptosis is ferrum dependent peroxidation of lipids. For ferroptosis the
following morphological changes are characteristic: a decrease in number or the disappear-
ing of cristae in mitochondria, small size of mitochondria with dense inner membranes,
ruptures of external membrane of mitochondria [127–130]. The primary reaction of the
neuron to apoptotic effects, apparently, is realized by proto-oncogenes. The activation
of these genes is considered as one of the main components of the neuronal response to
damage preserved in evolution. Noteworthy is the expression of gene JUN in the central
nervous system. The product of this gene is regulatory protein c-Jun. It is connected
with transcription factors which realize a cellular response to damage through activation
or repression of genes. Protein C-Jun is involved in the regulation of the cell cycle, dif-
ferentiation, organogenesis, tumor transformation and apoptosis. It was found that the
activation of the JUN proto-oncogen with increased expression of its product, protein c-Jun,
occurs in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer’s disease).
Some scientists see c-Jun as an early marker of signaling activation in apoptosis [131]. In
the effector phase of apoptosis in human neurons, a key role is played by caspases, for
example, interleukin-1p-converting protease (ICE) or caspase-1 [132]. Meanwhile, apop-
tosis is mainly regulated by proteins of the Bcl-2,family, and besides two classes of these
proteins are distinguished: inhibiting apoptosis (bcl-w, bcl-2, brag-1, bfl-1, a-1, mcl-1) and
inducing this process (bax, bcl-xs, bak, bid, bad, hrk, bik). The ratio of inhibitory and
inducing proteins determines the ability of a neuron to respond to apoptosis signals [133].
Groups of scientists Galluzzi, L. at al. and Jiang, L. et al. showed that ferrroptosis is one
of mechanisms by which protein-suppressor of tumors p53 maintains homeostasis of the
organism during stress [129,130].

In Alzheimer’s disease and amyotrophic lateral sclerosis, an increased expression of
gene Bax was detected. It was found that gene of low affinity receptor to nerve growth
factor (pTSNGFR) induced apoptosis only in the nervous system [134]. Genes involved
in the mechanisms of apoptosis also play a role in the occurrence of neuron necrosis. For
example, gene BCL-2 inhibits necrosis [135]. Gene BCL-XL inhibits not only apoptosis,
but also necrotic neuronal death during hypoxia. ICE protease inhibitors have the same
properties. This suggests the presence of common molecular-cellular mechanisms of
apoptosis and necrosis [136].
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3.2. Endoplasmic Reticulum Stress

Endoplasmic reticulum (ER) is a large membrane organelle which plays an important
role in the life-support of a eukaryotic cell. It is involved in the synthesis and modification
of proteins, buffering calcium, the synthesis of steroids and the construction of intracellular
membranes. In addition, ER takes part in many signaling pathways which regulate gene
expression and apoptosis (Figure 1) [137–141].
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In many types of cells (primarily those specializing in protein secretion), a significant
part of intracellular membranes belongs to ER. The ER membrane is integral with the
membrane of the cell nucleus. The ER cavity opens directly into the perinuclear space,
which favors the contact of the ER signaling apparatus with genetic material [137–141].

It is ER which provides the synthesis and maturation of proteins intended for secretion
or exposure on the surface of the cell membrane. The maturation of any protein molecule
implies its “folding”, spontaneous acquisition of the only correct three-dimensional struc-
ture (conformation). Violation of the maturation of protein molecules and the accumulation
of improperly folded protein chains is the pathophysiological core of “ER stress”. The
situation in which the intermediate form of the protein is so unsuccessful that it leads to an
unexpected interaction with cellular components is called misfolding or “folding error”.
Misfolding poses a real threat to the life of the cell and even the multicellular organism
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as a whole, laying a foundation for states such as Alzheimer’s disease [142–144], autoso-
mal retinitis pigmentosa [145–147], α1-antitrypsin deficiency [148–151], and oncological
diseases [152–155].

The formation of disulfide “bridges” between the side chains of cysteine residues is
essential for stabilizing the protein molecule. The formation of S–S bridges in the protein
chain sharply limits the number of possible variants of 3D organization, effectively reducing
the time for the molecule to search for the correct conformation [156–158]. Similar to the
process of oxidative phosphorylation in mitochondria, the construction of disulfide bonds
using the enzyme Ero1-L inextricably happens with the formation of hydrogen peroxide
(H2O2). This determines a high concentration of H2O2 in the lumen of the ER and associates
the maturation of the secreted protein with the generation of reactive oxygen species which
potentially threaten cell survival [159–162].

More and more data indicate the involvement of ER stress in a wide variety of patho-
physiological processes. For example, mutant variant of presenilin-1 protein is involved
in stress mechanisms of the endoplasmic reticulum. This protein is a part of the devel-
opment of Alzheimer’s disease. It inhibits the function of PERK (a protein from the
eIF2alpha kinase family, activated in response to various cellular stresses), IRE1α (α-
isoforms of inositol-dependent enzyme of type 1) and ATF6 (activating transcription factor
6) [163–166]. Similarly, a mutation of protein parkin leads to impaired proteosome function
and ER overload, which causes the accumulation of cytotoxic fibrils and pathological
protein aggregation. Mesencephalic dopaminergic neurons are rich in parkins. The loss of
mesencephalic dopaminergic neurons leads to the development of Parkinson’s disease [167].
LaVoie, M.J. et al. report that neurotransmitter dopamine covalently modifies parkin in
living dopaminergic cells. This process increases parkin insolubility and inactivates its
E3 ubiquitin ligase function. In the brains of individuals with sporadic Parkinson disease,
scientists observed decreases in parkin solubility consistent with its functional inactivation.
Using a new biochemical method, investigators detected catechol-modified parkin in the
substantia nigra but not other regions of a normal human brain. These findings show
a vulnerability of parkin to modification by dopamine, the principal transmitter lost in
Parkinson disease, suggesting a mechanism for the progressive loss of parkin function in
dopaminergic neurons during sporadic Parkinson disease [168].

The mismatch between the biosynthetic load and the functional capacity of the ER
leads to overload of the ER, misfolding and accumulation of inactive or chemically ag-
gressive proteins in the lumen of the ER [169]. In order to ensure this dynamic balance,
eukaryotes have developed an “unfolded protein response” (UPR). However, if this pro-
cess is disturbed during ER stress, there may develop diabetes mellitus and dysfunction
of β-cells of Langerhans islets in an individual [170–173]. In particular, with diabetes
mellitus, when carbohydrates enter the body, the load on the endoplasmic reticulum of
β-cells increases sharply. The conditions for their apoptosis are created. At the same time,
glucotoxicity and lipotoxicity can disrupt the compensation of ER stress [174–176]. In
addition to reducing insulin secretion due to of a reduction in the β-cell population, ER
stress plays an important role in the occurrence of obesity and insulin resistance in adipose,
liver and muscle tissue [177].

The transcription factor ATF4 regulates the expression of genes involved in amino acid
metabolism, redox homeostasis and ER stress responses. In particular, Karuppagounder,
S.S. et al. found, that protection from oxidative death by adaptaquin was associated with
suppression of activity of the prodeath factor ATF4 [178].

Meanwhile, Lange, P.S. et al. on cellular and animal models detected, that ATF4 as a
redox-regulated, prodeath transcriptional activator in the nervous system that propagates
death responses to oxidative stress in vitro and to stroke in vivo [179].

3.3. Osmotic Stress

This kind of stress can occur as a result of the difference between the levels of in-
tracellular and extracellular osmolality. In this case, the cells can either swell because
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of the influx of water, or lose water and shrink. Osmotic stress has a large effect on cell
activity. It was found that mitogen-activated protein kinases (MAPKs) have a great signifi-
cance in signaling pathways (for example, WNK1-SPAK/OSR1 ASK3) in osmotic stress
responses, including the regulation of intracellular levels of inorganic ions and organ
mitogen-activated protein kinases (MAPKs) in osmolytes [180–183]. Osmotic stress can
affect the cell nucleus biophysically. Under the influence of hypoosmotic stress, a cell
nucleus can significantly increase and take a smooth rounded shape. At the same time,
under the influence of hyperosmotic stress, a cell nucleus can shrink and take a twisted
shape. It is supposed that osmotic stress can influence gene transcription and nucleocy-
toplasmic transport [184–186]. Mild hypoosmotic stress induces stabilization of R loops
in ribosomal genes and this way it provokes the nucleolispecific DNA damage response,
which is governed by the ATM- and Rad3-related (ATR) kinase. Activation of ATR in
nucleoli strongly depends on Treacle, which is necessary for efficient recruitment/retention
of TopBP1 in nucleoli. Subsequent ATR-mediated activation of ATM causes repression of
nucleolar transcription [187–190].

The compromised MAPK signaling pathways lead to the pathological processes
connected with diverse diseases including neurodegenerative disorders and cancer such as
amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease. The MAPK
signaling pathways (p38 and JNK) are activated by different types of cell stress such as
osmotic, genotoxic, and oxidative stress, and also by proinflammatory cytokines such
as interleukin 1β and tumor necrosis factor-α. The p38 MAPK pathway is involved in
the processes of neuroinflammation mediated by glial cells, in particular, microglia and
astrocytes [191,192].

3.4. Link between Cellular Senescence, Oxidative Stress and Chronic Stress

Cellular aging loses the ability of cells to divide. Therefore, this process is also called
replicative aging. In addition, with cellular aging, the efficiency of DNA repair decreases,
the synthesis of proteins, RNA and ATP slows down, oxidative stress and mitochondrial
dysfunction occur. Cell aging is believed to be involved in the aging mechanisms of the
human body [193,194].

The authors of the article identified mutations in the mitochondrial genome associated
with aging. All of them were located in the coding region of the mitochondrial genome.
Most of them were localized in the genes encoding the protein subunits of the mitochondrial
respiratory chain enzymes. We believe that these mutations contributed to the occurrence
of oxidative stress in cells and the human body [195].

One of the mechanisms of cellular aging is the shortening of telomeres (regions on
the ends of chromosomes) [196]. It happens because of the fact that the region of the
chromosome, where the DNA polymerase is located before replication, is not replicated
by it. Therefore, the chromosomes are shortened with each replication cycle, i.e., at each
cell division. After a certain number of divisions, a significant shortening of telomeres
occurs and the cell stops dividing. Telomere shortening can contribute not only to the aging
of the cell and the whole organism, but also to various diseases [196–199]. In particular,
Stein, J.Y., et al. found that traumatic stress which occurs in soldiers after being captured
contributes to the appearing of shorter telomeres [197]. Our research group found that short
telomeres are associated with coronary heart disease and type 2 diabetes mellitus [198,199].
In addition, the authors of the article found that telomeres became shorter under chronic
stress caused by prolonged exposure to high air temperatures for more than 40 days in the
very hot summer of 2010 [200,201].

In addition, telomere shortening and senescence associated with factors such as
epigenomic damage, strong mitogen–associated signals and activation of tumor suppres-
sors [194,202]. Smoking and unfavorable environmental factors worsen senescence and
the ageing of the whole organism [194,203,204]. Moreover, these processes are often
linked with chronic stress, diabetes, hypertension, coronary heart disease and other age-
related diseases [194,205]. It is necessary to mention that these factors contribute to the
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occurrence of oxidative stress, which in its turn can cause ageing of cells and the whole
organism [206–209]. Wang, L. et al. studied the mechanisms of thrombocyte ageing [206].
The given analysis was carried out using beta-galactosidase, which is associated with age-
ing. Meanwhile the researchers defined beta-galactosidase activity at pH 6.0 in senescent
cells [208,209]. In addition, the properties of thrombocytes in the process of senescence
were investigated. It turned out that the senescence of thrombocytes can be explained by
the influence of oxidative stress on these cells. Meanwhile, a stimulating effect on ageing
have inductors of apoptosis. A group of scientists found that the addition of resveratrol
efficiently postponed thrombocytes senescence and ameliorated thrombocytes storage
lesion [206,209].

An important characteristic ofmost of senescent cells is the secretory phenotype (SASP)
associated with senescence. The SASP is one of the most interesting features of aging cells.
With the use of SASP it is possible to explain the link of cellular senescence with aging of a
human organism and diseases which are associated with age [210,211]. SASP contain pro-
teins which can have complex effects on different types of cells. For example, the biphasic
WNT modulator secreted frizzled-related protein 1 and interleukin (IL)-6 and IL-8, which
can stimulate or inhibit WNT signaling cell proliferation, depend on the physiological
context. Chronic WNT signaling can drive both differentiated cells and stem cells into
senescence. Many SASP components directly or indirectly promote inflammation, which is
particularly important in the role of cellular senescence in aging and age-related diseases.
These factors include IL-8 and IL-6, a variety of monocyte chemoattractant proteins and
macrophage inflammatory proteins, and proteins, regulating multiple aspects of inflamma-
tion such as granulocyte-macrophage colony-stimulating factor. As it is known, chronic
inflammation may trigger or make significant contributions to many degenerative and
hyperplastic age-related diseases [194,210,211]. Senescent cells can cause degenerative
changes, including with the use of their secreted proteins from their cellular SASP [212,213].
Ageing cells can disrupt healthy tissue structures, causing dysfunction of tissues. SASPs of
senescent astrocytes can be a reason of age-related neurodegeneration. In particular, these
SASPs can be triggers of Parkinson’, Alzheimer’s diseases and brain disorders [194,214,215].
Moreover, SASPs of senescent cells ofsmooth musculature, epithelium and endothelium
may be included into mechanisms of the occurrence and development of age-related car-
diovascular disease [194,216]. Therefore, senescent cells may be a trigger on the occurrence
and development of many age-related pathologies, such as atherosclerosis, metabolic syn-
drome, type 2 diabetes mellitus, hypertension, cardiovascular diseases, insulin insensitivity,
macular degeneration, emphysema, and chronic obstructive pulmonary disease.

4. The Relationship of Chronic Stress with the Occurrence and Development of
Atherosclerosis

In addition to neurodegenerative diseases, the chronic stress can lead to the occurrence
and development of atherosclerosis [14,15,19–21,217]. Some research groups have shown
that atherosclerosis often develops in people who experience steady stress. In particular,
Heidt, T. et al. detected that chronic stress induced monocytosis and neutrophilia in the
human organism [218]. While investigating the source of leukocytosis in mice, the scientists
found that stress activates upstream hematopoietic stem cells. During chronic stress in mice,
sympathetic nerve fibers released surplus noradrenaline, which signaled bone marrow
niche cells to decrease CXCL12 levels through the β3-adrenergic receptor. This suggests
that hematopoietic stem cell proliferation was elevated. There was an increased output of
neutrophils and inflammatory monocytes. When atherosclerosis-prone Apoe (−/−) mice
were exposed to chronic stress, accelerated hematopoiesis promoted plaque features linked
with vulnerable lesions which cause stroke and myocardial infarction in humans [218].

It is necessary to note that acute myocardial infarction (AMI) and stroke are risk
factors for atherosclerosis. A trigger of these pathologies can be chronic stress. In particular,
Arnold, S.V. et al. compared patients with AMI with high and low level of chronic stress.
They considered chronic stress for the period of 30 days before AMI happened and during
one year after AMI. They also considered AMI during two years after AMI happened. It



Int. J. Mol. Sci. 2021, 22, 699 14 of 26

was found that patients with high level of chronic stress died twice more often than patients
with low level of chronic stress [219]. Zhao, Z. et al. investigated on animal model the effect
of chronic stress on the brain after stroke. It was detected that chronic stress has a strong
negative impact on key components of cells, participating in the remodelling of vessels
of nervous system. Besides, chronic stress worsens vascular disorders [220] Takotsubo
syndrome occupies a special place among these pathologies. Takotsubo syndrome is
acute cardiac disease with a clinical presentation that of an acute coronary syndrome.
Chronic stress often occurs before Takotsubo syndrome. During the acute stage of the
syndrome, in patients may develop such complications as arrhythmias and heart failure
including cardiogenic shock, cardiac arrest and rupture. Scally, C. et al. found that
Takotsubo syndrome has such characteristics as changes in the distribution of monocyte
subsets, an increase in systemic proinflammatory cytokines and a myocardial macrophage
inflammatory infiltrate [221]

A number of scientists have identified a relationship between endoplasmic reticulum
stress and the occurrence of atherosclerosis [222–227]. It was found that ER stress occurs in
cells involved in the occurrence and development of atherosclerosis, including endothelial
cells and macrophages. ER stress also affects the processes of atherosclerosis diseases by
coordinating protein and lipid metabolism, inflammatory response and cell apoptosis.
According to recent data, molecular signaling pathways between ER stress and the NLRP3
(nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing
3) inflammasome play a large role in atherogenesis [140,228–230]. ER stress is thought to
affect NLRP3 inflammasome activation through reactive oxygen species generation, the
unfolded protein response, metabolic products of calcium or lipids [231].

Cellular stress may be one of the causes of atherosclerosis occurrence. Tabas, I. assumes
that cellular stress contributes to the formation of vulnerable plaques, including the secre-
tion of pro-inflammatory, procoagulant, and proteolytic molecules by macrophages and
also the death of intimal smooth muscles cells, macrophages, and possibly endothelial cells.
A keyfactor in plaque vulnerability is the necrotic core in particular, because macrophage
debris promotes inflammation, plaque instability, and thrombosis. Plaque necrosis arises
from a combination of lesional macrophage apoptosis and defective clearance of these dead
cells. This process is named efferocytosis [232].

Bonomini, F. et al. supposes that the reactive nitrogen (RNS)and reactive oxygen (ROS)
species are the important endogenous sources produced by non-enzymatic and enzymatic
(nicotinamide adenine dinucleotide phosphate oxidase (NADH oxidase), myeloperoxi-
dase (MPO), and lipoxygenase (LO)) reactions that may be balanced with anti-oxidative
compounds (vitamins, polyphenols and glutathione (GSH)) and enzymes (peroxiredox-
ins (Prdx), glutathione peroxidase (Gpx), paraoxonase (PON), and superoxide dismutase
(SOD)). However, the oxidative and anti-oxidative imbalance causes the involvement of
cellular proliferation and migration signaling pathways and macrophage polarization leads
to the formation of atherogenic plaques [233,234].

The researchers of our laboratory discovered the association of mitochondrial genome
mutations with atherosclerosis (m.652delG, m.3256C>T, m.13513G>A, m.14846G>A,
m.1555A>G, m.12315G>A, m.14459G>A, m.5178C>A, m.652insG, m.3336T>C and
m.15059G>A). This study was carried out using a new original quantitative method devel-
oped by the authors of the article on the basis of pyrosequencing technology [18,235–239].
Threshold values of the heteroplasmy level of 11 mitochondrial genome mutations were
detected, after which in patients atherosclerosis began to occur or the protective effect of
these mutations began to appear (Tables 2 and 3) [18,235–239].
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Table 2. Value of heteroplasmy level of mtDNA mutations in atherosclerotic plaques [18,235–239].

Genes Mutations Threshold Value of Heteroplasmy Level (%)

MT-TL2 m.12315G>A 7.6
MT-RNR1 m.652delG 20.4
MT-ND1 m.3336T>C 6.6
MT-TL1 m.3256C>T 15.4

MT-CYTB m.14846G>A * 17.6
MT-RNR1 m.652insG 20.1
MT-RNR1 m.1555A>G * 17.5
MT-ND6 m.14459G>A 4.5
MT-ND2 m.5178C>A 6.5
MT-ND5 m.13513G>A * 32.4

MT-CYTB m.15059G>A 24.6
*—Antiaherogenic mutations.

Table 3. The threshold value of heteroplasmy level of mtDNA mutations in thickened intima-medial
layer of carotid arteries [18,235–239].

Genes Mutations Threshold Value of Heteroplasmy Level (%)

MT-TL2 m.12315G>A 10.4
MT-RNR1 m.652delG 21.6
MT-ND1 m.3336T>C 7.5
MT-TL1 m.3256C>T 16.4

MT-CYTB m.14846G>A * 17.4
MT-RNR1 m.652insG 20.2
MT-RNR1 m.1555A>G * 19.6
MT-ND6 m.14459G>A 4.6
MT-ND2 m.5178C>A 6.4
MT-ND5 m.13513G>A * 33.6

MT-CYTB m.15059G>A 26.4
*—Antiaherogenic mutations.

The authors of the article created two cybrid cultures, one of which contained an
atherogenic mutation of the mitochondrial genome (m.12315G>A), and the other contained
an antiatherogenic mutation mtDNA (m.1555G>A) [240–244]. These cultures was created
on the basis of a monocytic origin culture of THP-1. Platelet donors for the creation of
cybrid cultures were study participants who had a heteroplasmic level of interest mutations
above the threshold level. Then, the oxygen respiration level was measured in these cybrid
cultures. In a cybrid culture containing an atherogenic mutation, the level of oxygen
consumption was lower than in a native culture of THP-1. At the same time, in cybrid cells
containing an antiatherogenic mutation, the level of oxygen consumption was higher than
in the native THP-1 culture. We assume that this data may indicate a negative effect of
oxidative stress on a cybrid culture containing an atherogenic mutation of the mitochondrial
genome [240–244].

In addition, our research team found that the number of copies of mtDNA in a cybrid
culture containing atherogenic mutation m.12315G>A was significantly lower than in a
native culture of THP-1. We assume that this fact indicates the occurrence of replicative
stress in this cybrid culture [240–244].

Most of mutations, linked with atherosclerosis, cardiovascular diseases and aging,
belong to genes of subunits of mitochondrial respiratory chain enzymes (MT-ND1, MT-ND2,
MT-ND5, MT-ND6, MT-CYTB) [18,235,245–249]. The occurrence of such mutations can
lead to energy deficiency in cells, for the reason of enzyme dysfunction [18,235,245–248].
This, in its turn, can lead to mitochondrial dysfunction and oxidative stress in cells and
in the human organism. Such processes can cause the occurrence and development of
diseases, and also speed up the aging process [207,210]. Part of the detected mutations
belongs to tRNA genes (MT-TL1, MT-TL2) and rRNA (MT-RNR1). Mutations in these genes
can lead to dysfunction of tRNA and rRNA [18,235,245–247]. As a result, the amount of
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normal RNA and proteins in mitochondria decreases. In mitochondria, metabolism is
disturbed. The cell begins suffer from shortage of ATP molecules, which ultimately leads
to oxidative stress.

5. Conclusions

An analysis of literary sources allowed us to conclude that, under the influence of
chronic stress, the metabolism in the human body can be disrupted, mutations of the
mitochondrial and nuclear genome, dysfunction of cells, and their compartments can
occur. As a result of these processes, molecular and cellular types of stress can occur.
Therefore, chronic stress can be one of the causes of the occurrence and development of
neurodegenerative diseases and atherosclerosis [8–16]. We suppose that among molecular
types of stress, the largest contribution to pathogenesis of neurodegenerative diseases and
atherosclerosis can make oxidative and genotoxictypes of stress (Figure 2) [8–16].
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Figure 2. Some mechanisms of the link of chronic stress with neurodegenerative diseases and
atherosclerosis [8–16]. We suppose that the most important role in this process play molecular and
cellular types of stress. Among molecular types of stress, the largest contribution to pathogenesis of
neurodegenerative diseases and atherosclerosis can make oxidative and genotoxictypes of stress.

The relevance of the present review article is proven by the fact that there are few
articles, in which general mechanisms of occurrence and development of chronic stress,
neurodegenerative diseases and atherosclerosis were considered. However, recently, exper-
imental articles have been published on this theme [8–16]. In our article we have made an
attempt to give a theoretical ground for these researches. We hope that this article will be
useful to scientists and doctors involved in research in this area.
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