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ABSTRACT

Motivation: Cells receive a wide variety of environmental signals,
which are often processed combinatorially to generate specific
genetic responses. Changes in transcript levels, as observed across
different environmental conditions, can, to a large extent, be
attributed to changes in the activity of transcription factors (TFs).
However, in unraveling these transcription regulation networks, the
actual environmental signals are often not incorporated into
the model, simply because they have not been measured.
The unquantified heterogeneity of the environmental parameters
across microarray experiments frustrates regulatory network
inference.
Results: We propose an inference algorithm that models
the influence of environmental parameters on gene expression.
The approach is based on a yeast microarray compendium
of chemostat steady-state experiments. Chemostat cultivation
enables the accurate control and measurement of many of the key
cultivation parameters, such as nutrient concentrations, growth
rate and temperature. The observed transcript levels are explained
by inferring the activity of TFs in response to combinations of
cultivation parameters. The interplay between activated enhancers
and repressors that bind a gene promoter determine the possible
up- or downregulation of the gene. The model is translated into a
linear integer optimization problem. The resulting regulatory network
identifies the combinatorial effects of environmental parameters on
TF activity and gene expression.
Availability: The Matlab code is available from the authors upon
request.
Contact: t.a.knijnenburg@tudelft.nl
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Transcription factors (TFs) mediate the activation or repression of
gene expression by binding specific regulatory sequences (motifs) in
gene promoters. The combinatorial interactions of multiple TFs play
an essential role in transcriptional regulation. A classical example is
Escherichia coli’s lactose system, where the lac operon is expressed
only if the concentration of TF CRP is high and that of TF LacI
is low. Presently, many studies have revealed an important role for
combinatorial interactions between different TFs in establishing the
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complex patterns of gene expression (Balaji et al., 2006). The advent
of high-throughput genomic measurement techniques enabled the
application of genome-wide computational approaches aimed at
inferring these regulatory relations. Sequence data, microarray gene
expression data and ChIP–chip TF binding data have been integrated
in many different ways to derive regulatory networks. Several
approaches fit expression data using linear regression models,
where the predictors are the TFs, i.e. their binding potential or
number of motifs in a gene promoter (Bussemaker et al., 2001;
Gao et al., 2004; Nguyen and D’haeseleer, 2006). The effect of
multiple TFs on gene expression is modeled as the weighted sum
of the contribution of individual TFs. Combinatorial regulation
by TFs, i.e. synergistic or antagonistic effects of multiple TFs
on gene expression, are not incorporated into these models. Most
methods that do include combinatorial effects limit the scope to TF
pairs, e.g. (Bonneau et al., 2006; Chang et al., 2006; Das et al.,
2004; Yu et al., 2006). Bonneau et al. employ continuous versions
of logic functions (OR, AND and XOR) of the activities of TF
pairs as additional predictors in the regression model. Although, in
principle, these methods can be extended to model the combinatorial
effects of more than two TFs, the model will be too complex to
reliably estimate its parameters given the currently available data.
Segal et al. (2003) and Yeang and Jaakkola (2006) present quite
different approaches to the problem of combinatorial regulation in
transcription networks. Segal et al. constructed regulatory networks
by building decision trees. Genes are grouped into regulatory
modules, which are defined by a hierarchical decision tree, where
the decisions at the nodes of the tree are based on the expression
levels of TFs. In Yeang and Jaakkola, a TF is characterized as an
enhancer or a repressor, being either necessary or sufficient to cause
up- or downregulation of a gene. The combinatorial function of all
TFs that can bind a gene promoter is modeled as the consensus
prediction of the individual TFs. It should be noted that these
two approaches, as well as many of the abovementioned ones,
rely on the often incorrect assumption that the activity of a TF
can be derived from the expression of the gene that codes for
the TF.

So far, regulatory networks have been presented as graph
structures showing the (combinatorial) regulatory effect of TFs
on individual genes, modules of similarly expressed or otherwise
related genes or on other TFs. The extracellular signals that
trigger the activation or deactivation of TFs are usually not part
of the generated network. Yet they could provide more direct
and trustworthy evidence to infer TF activity than other signals,
such as the gene expression of a TF. Three main reasons for
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their exclusion can be identified. First, many studies on yeast are
based on shake-flask cultures, where parameters like growth rate
and nutrient availability are continuously changing and cannot be
controlled or accurately measured. Consequently, conditions can
not be accurately defined. Second, very often research questions
are approached from a single perspective, i.e. a condition of
interest is compared to a reference condition. Differential gene
expression is then attributed to the difference between the condition
of interest and the reference condition. These approaches ignore
combinatorial effects of growth parameters, the presence of which
have been established by various studies, e.g. Castrillo et al. (2007);
Knijnenburg et al. (2007); Regenberg et al. (2006). That is, if the
measurements were repeated using a different medium composition
or temperature, chances are that a different set of differentially
expressed genes would be identified. Thus, these approaches only
model the differences between growth conditions, and not the
growth conditions themselves. Note that this strategy is implicitly
incorporated into two-channel microarray measurements, which
output the gene expression ratio between the condition of interest and
the reference condition. Third, when combining different microarray
experiments, differences in mRNA extraction protocols, microarray
platform and possibly normalization and summarization algorithms,
add to the already large amount of unquantified heterogeneity
amongst experimental conditions (Bammler et al., 2005; Tan et al.,
2003).

The context dependency of regulatory networks has been
identified and acknowledged in many studies. For example, in
Bar-Joseph et al. (2003) annotation data are employed to identify
the biological context in which the inferred regulatory interactions
are assumed to take place. In Luscombe et al. (2004) condition-
specific regulatory networks were derived. In this case, condition-
specific refers to one of five phenomena (cell cycle, sporulation,
DNA damage, stress response or diauxic shift), which were
investigated with five different microarray datasets. Myers and
Troyanskaya (2007) propose a Bayesian approach for context-
sensitive integration of diverse genomic data. Note however, that
in these approaches, the precise environmental conditions under
which the microarray measurements were taken are not included
in the model.

In this work we do incorporate the actual cultivation parameters
in the computational framework and use this information to
infer combinatorial regulation by TFs. The work is based on a
yeast transcriptome compendium, comprised of 170 microarray
measurements (Knijnenburg et al. manuscript in preparation). These
measurements encompass 55 unique growth conditions with a
variable number of independent biological replicates per condition.
All cultivations were performed in chemostat fermentors under
steady-state conditions. In a chemostat, culture broth (including
biomass) is continuously replaced by fresh medium at a fixed and
accurately determined dilution rate. When the dilution rate is lower
than µmax, the maximal specific growth rate of the micro-organism,
a steady-state situation will be established in which the specific
growth rate equals the dilution rate. In such a steady-state chemostat
culture, µ is controlled by the (low) residual concentration of a
single growth-limiting nutrient. Across the 55 different conditions,
there are nine varying cultivation parameter types, including limiting
element, growth rate, carbon source, aeration and temperature.
Each type can assume a unique set of values. For example, in a
given experiment, the employed limiting element is either carbon,

nitrogen, sulfur, phosphorus, zinc or iron. Thus, each condition is
characterized by a configuration of settings of these nine cultivation
parameter types (Fig. 1).

In order to model the effects of the cultivation parameters on gene
expression while explicitly incorporating TFs, we follow a two-step
procedure. An overview of this procedure is presented in Figure 2.
First, we apply a forward stepwise regression strategy to quantify
the (combinatorial) effect of these environmental parameters on gene
expression. The regression is performed for each gene individually.
Figure 1 depicts the results of the regression analysis for one
particular gene. The influence of a cultivation parameter on the
expression of a gene is represented by its regression weight. These
weights are discretized by mapping non-zero elements to 1 or
−1, depending on the sign of the weight. Given that changes in
gene expression levels as observed across different environmental
conditions can be attributed to changes in the activity of TFs, we
aim to infer the activity of TFs as a function of the cultivation
parameters. This forms the second step of our approach. The goal
is to estimate M, such that R̂ is the optimal approximation of
the discretized regression coefficients in R. The elements of M
are −1, 0 or 1 and indicate whether a TF is activated as an
enhancer (1) or a repressor (−1) under a (combinatorial) cultivation
parameter. Additionally, each TF has a particular generic enhancer
strength and a repressor strength. In the procedure we employ
auxiliary matrix T, which is derived from ChIP–chip experiments
and literature and indicates whether a TF can bind a gene promoter.
To decide whether a gene is upregulated, downregulated or not
affected by a particular cultivation parameter, indicated by a 1, −1
and 0 in R̂, respectively, we use the following rules concerning
transcriptional regulation: if there is at least one active enhancer
in a gene promoter, then the gene can be upregulated. If there
are only active enhancers in a gene promoter, then the gene is
upregulated. Similar rules apply to the repressors. If there are both
active enhancers and repressors in a gene promoter, we compare
total enhancer strength, which is the sum of the strengths of
the activated enhancers, with its repressor counterpart. When the
enhancer strength is larger than the repressor strength, the gene
is upregulated. The gene is downregulated when the repressor
strength exceeds the enhancer strength. Figure 2c visualizes the
active TFs that bind the gene promoters of genes g1, g2 and
g3 under cultivation parameter A. From M we deduce that three
TFs are activated; α and β are enhancers, δ is a repressor. From
T we deduce that α binds all three promoters, β binds the g2
and g3 promoters and δ only binds the promoter of g3. Gene
g1 and g2 are upregulated, since only active enhancers bind the
promoters. For gene g3, the repressor strength of TF δ exceeds that
of the sum of the two enhancers, thereby downregulating the gene.
The concept of TF strength enables the inference of hierarchical
or combinatorial effects amongst TFs that bind a gene promoter.
The inference algorithm is translated into a linear mixed integer
optimization problem and solved accordingly. Both the elements of
M as well as the TF strengths are estimated, such that the predicted
gene regulation in R̂ maximally corresponds with the discretized
regression coefficients in R. The abovementioned rules become
constraints in the optimization problem. See the Methods section for
details. The resulting model identifies the combinatorial influence
of cultivation parameters on TF activity and gene expression.
Furthermore, it infers the combinatorial regulatory code of multiple
TFs in gene promoters.
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Fig. 1. Expression levels of a gene (COX5A) across the 55 cultivation conditions. The colored matrix is a schematic representation of the settings of the nine
cultivation parameter types across the 55 conditions. The colored lanes indicate the cultivation parameter types that are employed to order the experiments, in
this case, aeration type and limiting element. The regression model which models the gene expression as a function of the cultivation parameters, selected one
single effect, i.e. aeration type, and one combinatorial effect, i.e. aeration type anaerobic together with limiting element carbon. The reconstructed expression
pattern based on these two effects is indicated by the shaded area.

2 METHODS

2.1 Microarray data
The Saccharomyces cerevisiae laboratory reference strain CEN.PK 113-7D
(MATa) was grown in chemostat fermentors under 55 different conditions.
For each condition, a variable number of independent biological replicates
was performed, although mostly three, summing up to 170 microarray
measurements. Across the 55 conditions, nine different cultivation parameter
types can be identified. A cultivation parameter type, e.g. the carbon source,
is described as a categorical variable and contains two or more categories,
e.g. the used carbon source can be either maltose, glucose or ethanol. Each
condition is characterized by a specific combination of these categories
across the nine cultivation parameter types. Figure 1 presents an overview
of the relevant categories assumed by the parameter types per condition.
Sampling of the chemostat cultures, probe preparation and hybridization to
single-channel Affymetrix GeneChip YG S98 microarrays was performed as
previously described (Piper et al., 2002). Chip quality control, condensing
probe intensities to gene expression levels and normalization was performed
using GeneData Refiner Array. The RMA algorithm was used to derive the
log2 scale measure of the expression levels (Irizarry et al., 2003). Quantile
normalization was applied to normalize between arrays (Bolstad et al., 2003).

2.2 Inferring the influence of cultivation parameters on
gene expression

A design matrix was created, containing both main (or single) effects and
interaction (or combinatorial) effects: each category within each cultivation
parameter type is represented by a binary indicator column with 170 entries.
These columns represent the main effects, which indicate, for each array,
under which category of a particular cultivation parameter type, the yeast
was grown. Interaction effect columns were obtained by applying the logic
AND function to all possible pair-wise combinations of main effect columns.

Redundant columns and columns containing only zeros were removed,
resulting in 112 columns, of which 37 represent main effects and 75 represent
interaction effects. These data are stored in the binary [A×C] design matrix
D. Here, A equals 170 and is the number of arrays. C equals 112 and is the
number of (combinatorial) cultivation parameters.
A forward stepwise ordinary least squares regression strategy was applied to
each gene individually:

y=Xθ +ε (1)

Here, yi denotes the measured gene expression level of a particular gene for
array i, with i=1, ...,A; X is the predictor matrix, θ represents the regression
coefficients and ε the error, which is assumed to be independent zero-mean
normally distributed. Initially, X contains only the intercept, i.e. a column
of A ones. In an iterative fashion, columns from D are added to X. For this
we apply a leave-one-out cross validation (LOOCV) scheme, where a single
sample is used for testing, while the remaining (A−1) samples are used
for training the regression model. This is repeated such that each sample is
used once as test data. The column from D, with the smallest root-mean-
squared (RMS) LOOCV error and absolute regression coefficient larger
than one, is selected and added. The iterative process of adding columns is
discontinued when the P-value, as output by a t-test that determines whether
the regression coefficient significantly differs from zero, exceeds 0.05/C.
To prevent the inclusion of spurious combinatorial effects, the following
strategy is applied: when a combinatorial effect column is selected, we check
whether the addition in explained variance is larger than the addition in
explained variance when adding the two main effect columns that constitute
the combinatorial effect. Only in the cases where this is true, we add the
combinatorial effect column. Otherwise the two main effect columns are
added, provided that they satisfy the P-value threshold and their absolute
regression coefficients are larger than one.

Note that only coefficients larger than 1 or smaller than −1 are allowed.
In terms of the absolute expression measure, this means we only take into
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(a) (b)

(c)

Fig. 2. Schematic overview of the approach. The goal is to build R̂, the optimal approximation of the discretized regression coefficients in R. (a) The
coefficients in R are derived from a regression analysis, which assesses the influence of cultivation parameters on gene expression by employing these
parameters as predictors in the regression model. The discretization procedure maps non-zero regression weights to 1 or −1, depending on their sign. (The
schematic representation of R is given for five genes and three cultivation parameters.) (b) The elements of R̂ are determined by T and M. T is fixed and
indicates binary TF binding potential to gene promoters. The elements of M are estimated and indicate the activity of TFs as enhancers or repressors under
the different (combinatorial) cultivation parameters. A logic circuit derived from M is graphically depicted above the representation of M. (c) Visualization
of the active TFs on the gene promoters of genes g1, g2 and g3 under cultivation parameter A. Enhancers are depicted as red boxes; repressors are depicted
as green boxes. (TF γ can bind the promoter of g1, but is not active under A.) The height of a box indicates the enhancer or repressor strength. The strength
of a particular enhancer or repressor is the same for all genes. A gene is upregulated when its activator strength, i.e. the sum of the heights of the red boxes,
is larger than the repressor strength, which equals the sum of the heights of the green boxes. Downregulation is inferred in the opposite situation. See text for
details.

account expression differences of 1-fold change or more. (The expression
data are on log2 scale.) So, we focus on the cases where a cultivation
parameter has a large influence on expression.

Finally, the regression coefficients for all yeast genes are discretized and
put in R ([G×C]∈Z[−1,0,1]), where G is the number of yeast genes.
The discretization procedure maps positive coefficients to 1 and negative
coefficients to −1. R is quite sparse since for most of the genes only two or
three columns from D were selected as significant predictors.

2.3 TF binding data
For 111 TFs we extracted their known regulatory sites from TRANSFAC
(Wingender et al., 2000) and ChIP–chip data (Harbison et al., 2004; MacIsaac
et al., 2006) (no conservation, binding P-value cutoff 0.001). These gene–TF
pairs were put in the binary [G×F] TF-binding matrix T, where 1 indicates
that a TF can bind a gene promoter. F equals 111 and is the number of TFs.

2.4 Inferring TF activity and TF strengths
The goal of our optimization problem is to infer the activity of TFs as
a function of cultivation parameters, such that we can optimally explain
the regression coefficients, which were distilled from the observed gene
expression data. These TF activities form tertiary matrix M ([F ×C]∈
Z[−1,0,1]). A non-zero element in M indicates that a TF is activated under
a cultivation parameter and either acts as an enhancer (1) or a repressor
(−1). Other data used in the optimization problem are: TF binding matrix
T ([G×F]∈Z[0,1]), discretized regression coefficient matrix R ([G×C]∈
Z[−1,0,1]) and its reconstructed version R̂ ([G×C]∈Z[−1,0,1]). First,
from the tertiary matrix R̂ two binary matrices with the same dimensions,
R̂+ and R̂−, are derived. R̂+ has non-zero entries, where R̂ contains 1s, and
thus indicates the elements, where genes are upregulated under influence of a
particular cultivation parameter. R̂− has non-zero entries, where R̂ contains
−1s, and thus indicates the downregulated elements. A similar procedure is
undertaken for tertiary matrix M, thereby obtaining M+, which contains the
active enhancers and M−, which contains the active repressors. Now, all
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variables consist of binary integers (and are restricted to remain binary
integers).

The objective function for the optimization problem is as follows:

minimize
∑

∀g,c∈I+
[Rgc −R̂+

gc]+
∑

∀g,c∈I−
[−Rgc −R̂−

gc]+

+λ

F∑
f =1

C∑
c=1

[M+
f ,c +M−

f ,c] (2)

where I+ is the set of index pairs referring to the elements where R is 1,
and similarly, I− refers to the negative elements of R. Thus, we only try
to explain the non-zero elements of R, which represent the large expression
changes due to the influence of the cultivation parameters. The zero elements
of R do not only contain cases where there is no change in expression, but
they contain the whole spectrum of no change in expression up to moderately
large changes in gene expression. Therefore, we do not want to enforce TFs to
be deactivated because of these zero elements. The last term of Equation (2)
restricts the model complexity by penalizing the number of activated TFs.
Parameter λ can be interpreted as the number of non-zero elements in R that a
TF needs to help explain in order for it to be activated. Below, the constraints
of the optimization problem are stated. These constraints are linear in M+,
M−, R̂+ and R̂−, which are the variables in the system. In the appendix a
detailed explanation for constraints c5, c8 and c12 is given.

The first two constraints are straightforward. Constraint c1 states that a
TF cannot be an active repressor and an active enhancer at the same time.
Constraint c2 states that a gene cannot be upregulated and downregulated at
the same time.

c1: M+
fc +M−

fc ≤1 ∀f ,c

c2: R̂+
gc +R̂−

gc ≤1 ∀g,c

Constraint c3 states that if there is at least one active enhancer in a gene
promoter, i.e. the inner product is positive then the gene can be upregulated,
i.e. the regression coefficient can be 1. Constraint c4 is the analogue
constraint for the case of active repressors. Constraint c5 forces a gene to
be either upregulated or downregulated, when there is at least one active
enhancer or one active repressor in the gene promoter.

c3:
〈
Tg·,M+·c

〉≥ R̂+
gc ∀g,c

c4:
〈
Tg·,M−·c

〉≥ R̂−
gc ∀g,c

c5:
〈
Tg·,M+·c

〉+ 〈
Tg·,M−·c

〉≤F ·(R̂−
gc +R̂+

gc) ∀g,c

To decide upon upregulation or downregulation when multiple active
enhancers and repressors bind a promoter, four continuous variables are
introduced: S+ and S−; both ([F ×C]∈R[0,F]) and S̃+ and S̃−; both
([F ×1]∈R[1,F]). S+

fc , represents the ‘strength’ of TF f as an enhancer under

cultivation parameter c. S+
fc is zero when M+

fc is zero, i.e. when f is not

activated as an enhancer under c. This rule is stated in constraint c6. S+
fc

equals the generic TF strength for f , S̃+
f , when M+

fc is one. Thus, the strength
of a TF f is the same for all genes under the cultivation parameters, where
the gene is activated (and zero otherwise). This rule is stated in constraints c7
and c8. Analogue rules apply for S− and S̃−. The corresponding constraints
c9, c10 and c11 are omitted for brevity.

c6: S+
fc ≤F ·M+

fc ∀f ,c

c7: S+
fc ≤ S̃+

f ∀f ,c

c8: S+
fc − S̃+

f ≥F ·(M+
fc −1) ∀f ,c

Constraint c12 states that when the sum of the strengths of active enhancers
that bind a gene promoter is larger than its repressing counterpart, the gene
is upregulated. Constraint c13 encloses the reverse scenario. Note that if an

identical set of enhancers and repressors is active on a promoter, this will
lead to the same reconstructed regression coefficient for any gene and under
any cultivation parameter.

c12:
〈
Tg·,S+·c

〉− 〈
Tg·,S−·c

〉≥ (F2 +F−2) ·R̂+
gc −F2 ∀g,c

c13:
〈
Tg·,S−·c

〉− 〈
Tg·,S+·c

〉≥ (F2 +F−2) ·R̂−
gc −F2 ∀g,c

The optimization problem is implemented within the MATLAB environment
and executed using the MOSEK optimization toolbox with standard settings
for mixed integer optimization. Given constraints c1 to c13, MOSEK
estimates variables M+, M−, R̂+, R̂−, S+, S−, S̃+ and S̃− such that the
optimization function in Equation (2) is minimized.

3 RESULTS

3.1 TF activity in response to changes in oxygen and
carbon presence

The regulatory network inference algorithm is run on a subset
of the data. In particular, we focus on oxygen and carbon; two
environmental factors, which have a large and well studied effect
on the transcriptional program of S.cerevisiae. Four cultivation
parameters are selected, i.e. aeration type, carbon-limitation and the
combinatorial cultivation parameters, carbon-limited aerobic growth
and carbon-limited anaerobic growth. Note that aeration type is
actually a cultivation parameter type that assumes two values, i.e.
aerobic growth and anaerarobic growth. Since these are mutually
redundant, only aerobic growth was included in the regression
model and subsequent optimization algorithm. (Downregulation
under aerobic growth and upregulation under anaerobic growth are
interchangeable.) There are 40 genes, which are influenced by at
least two of these four cultivation parameters, i.e. there are 40 rows
in R with at least two non-zero elements in the four columns of
interest. These 40 genes are bound by 46 different TFs. In this
experiment λ is set to two. The algorithm correctly inferred the
regression coefficients of 58 of the 84 (70%) non-zero elements in
R. A particularly large concentration of incorrectly predicted values
appears toward the bottom of R̂, where zeros are predicted while
the true expression coefficients are non-zero. See Figure 3d. This
stems from the fact that the promoters of these genes have almost
no motifs for the activated TFs, in which case the model cannot
explain the up- or downregulation.

3.1.1 Inferred TF activity In total, nine different TFs were
activated across the four cultivation parameters, some under more
than one cultivation parameter. Three of these TFs, HAP1, HAP2/3/4
and ROX1, have a significantly larger strength, when compared
to the others. See Figure 3a, b. The large strength indicates their
dominating effect on transcriptional regulation. If one of these TFs
is active and binds the promoter, it will determine the direction
of transcriptional regulation. For example under aerobic conditions
(Aer) the promoter of gene PAU3 (the tenth gene from the bottom
in Fig. 3c) is bound by one active enhancer, i.e. YAP7, and one
active repressor, i.e. ROX1. Since the repressor strength of ROX1
is (much) larger than the enhancer strength of YAP7, the gene
is (correctly) predicted to be downregulated. Interestingly, in the
resulting network for this data, the TF strength of ROX1 equals
45.9995, which is very close to the maximum value of 46, the
number of TFs F. However, this number is slightly smaller than
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(a) (c)

(b)

Fig. 3. Overview of the results obtained for the oxygen and carbon limitation data. (a) Inferred influence of cultivation parameters aerobic growth (Aer),
anaerobic growth (Ana) and carbon limitation (Clim) on TF activity. Only the three dominating TFs are reported. (b) Representation of S, indicating the
strength of the activated TFs under each of the four cultivation parameters. Enhancers are depicted in red; repressors are depicted in green. (c) Representation
of T, indicating which gene promoters can be bound by the activated TFs. The enhancer or repressor strengths for the four cultivation parameters are visualized
by the colored blocks inside the rectangle that represents a binding site. (d) Representation of R̂, indicating the inferred regression coefficients. Upregulation
is indicated by red; downregulation is indicated by green. Incorrectly inferred elements are marked with a gray cross. White boxes without a cross are the
zero elements of R. These elements are not part of the optimization scheme.

the strength of HAP2/3/4 which has the maximal strength of 46.
This difference can be attributed to gene PET9 (the ninth gene
from the top in Fig. 3c). Both HAP2/3/4 and ROX1 can bind the
PET9 promoter. To ensure that this gene is upregulated when grown
aerobically, as was deduced from the regression analysis, the active
enhancers should have a larger strength than the active repressors.
Therefore, the strength of ROX1 is set a bit smaller than the strength
of HAP2/3/4, however, still large enough to dominate other active
enhancers.

3.1.2 Regulation of gene expression by oxygen The role of the
three dominant TFs in the regulation of gene expression by oxygen
is widely reported in the literature. Both HAP1 and the HAP2/3/4
complex activate genes in response to heme, which is synthesized
only in the presence of oxygen (Zitomer and Lowry, 1992). TF
ROX1 is needed for the repression of hypoxic or heme-repressed
genes under aerobic conditions (Lowry and Zitomer, 1988). Also,
the relation between carbon source and the HAP2/3/4 complex
has been investigated. The HAP2 and HAP3 proteins enable DNA
binding of the complex, whereas HAP4 contains the transcriptional
activation domain. The synthesis of the activator subunit HAP4 is
regulated by the carbon source. More specifically, the expression
of HAP4 is repressed by glucose, S.cerevisiae’s preferred carbon
source (Forsburg and Guarente, 1989). Tai et al. (2005) reports
that HAP4 mRNA is present in carbon-limited cultivations even
under anaerobic conditions, where HAP4 has no obvious role.
We can corroborate and even further substantiate these findings
with the observation that the HAP4 protein is an activator under
carbon-limited anaerobic conditions. Note that all genes, which

are upregulated under carbon-limited anaerobic growth are also
upregulated under aerobic growth. See the top 13 genes in Figure 3c.
The expression profile of one of these genes, COX5A, across all
conditions is depicted in Figure 1. This expression profile is typical
for all the 13 members of this group. It shows that these genes are
most highly expressed when grown aerobically. Yet, in the anaerobic
case, where the expression is in general lower, these genes show
different expression behavior in carbon-limited growth compared
to other nutrient limitations. That is, these genes have a higher
expression level in carbon-limited cultivations, where there is hardly
any glucose, compared to the situation, where glucose is abundant.

Also, for the other TFs, which are activated according to the
inference algorithm, evidence is found in literature. For example
REB1, which acts as an enhancer under three cultivation parameters,
is a RNA polymerase I enhancer binding protein as well as an
activator for many genes transcribed by RNA polymerase II (Ju
et al., 1990). STE12 is known to activate genes associated with
pseudohyphal (low oxygen) growth (Norman et al., 1999). SUT1
is reported to encode a glucose transporter (Weierstall et al., 1999),
however SUT1 also has a putative role in the regulation of some
hypoxic genes (Regnacq et al., 2001). In general, the precise
regulatory role of these TFs in (an)aerobiosis and response to the
carbon source is not known. The results of this analysis provide hints
for elucidating the regulatory mechanisms of these factors.

3.1.3 Setting λ Parameter λ, which restricts the model
complexity by penalizing the number of activated TFs, is chosen
using a 5-fold CV scheme. The genes are divided into five parts,
where consecutively four parts are used for training and one part is
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Fig. 4. CV errors for different values of λ.

used for testing. The M and S matrices, which are computed on the
training set, are applied to the test set to obtain the reconstructed
regression coefficients for the test set, R̂test . The error on the test set
is defined as:

Err = 1

J

∑
∀g,c∈I

∣∣∣Rtest
gc −R̂test

gc

∣∣∣ (3)

where I is the set of index pairs referring to the non-zero elements of
Rtest and J the number of these non-zero elements. The CV scheme
is repeated 10 times. Figure 4 depicts the average error over all
CV runs. For small values of λ, many TFs are activated in order
to approximate the regression coefficients. Clearly, this strategy is
prone to overfitting, which is also illustrated by the large CV error.
For large values of λ, activating a TF is severely penalized, such
that only a few TFs will be activated. (For λ=20, no TF is activated
and every element of R̂test is zero). The high CV error in this case,
indicates that a lot of true regulation is missed. The optimal λ will
be found between these extremes. In this experiment, λ=2 led to
the smallest CV error and was therefore selected.

3.2 Transcriptional regulation of nitrogen metabolism
Across the conditions of the compendium, yeast was grown on six
different nitrogen sources. This inspired the second experiment,
where we analyzed the transcriptional regulation of the genes
that comprise the nitrogen compound metabolism category of GO
biological processes (Ashburner et al., 2000). A total of 119 of
these genes are influenced by at least one cultivation parameter and
bound by one of 78 different TFs. In total, there are 68 cultivation
parameters that cause up- or downregulation of at least one of
these 119 genes. The resulting transcription regulation network
(with λopt =2) revealed the activation of 14 different TFs under
28 different cultivation parameters, of which 11 are combinatorial.
Figure 5 depicts the network for the cultivation parameters, which
are most straightforwardly related to nitrogen metabolism, i.e. the
different nitrogen sources, nitrogen as growth limiting element and
combinatorial effects involving these cultivation parameters.

The six different nitrogen sources can be dichotomized into
preferred and non-preferred nitrogen sources. The preferred nitrogen
sources are asparagine (Asn) and ammonium [in ammonium sulfate
(AS)]. Proline (Pro), phenylalanine (Phe), methionine (Met) and
leucine (Leu) are non-preferred (or poor) nitrogen sources (Boer
et al., 2007; Magasanik and Kaiser, 2002). In S.cerevisiae, the use
of nitrogen sources is controlled by a transcriptional regulation
mechanism known as nitrogen catabolite repression (NCR). When
a good nitrogen source is present, NCR shuts down the pathways
for the use of poor nitrogen sources. NCR is mediated by a four-
member family of GATA-binding TFs: GLN3, GAT1, DAL80 and
GZF3 (Hofman-Bang, 1999). In the absence of a good nitrogen
source, GLN3 is activated and in turn activates the transcription
of NCR-sensitive genes. Indeed, for three of the four non-preferred

Fig. 5. Inferred TF activity derived from genes, which are involved in
nitrogen metabolism. Preferred nitrogen sources are printed in bold; non-
preferred nitrogen sources are printed in italic style. Abbreviations for the
nitrogen and sulfur sources are explained in the text.

nitrogen sources, GLN3 acts as an enhancer. When methionine is the
nitrogen source, the MET31/32 complex is activated. This complex
controls the biosynthesis of sulfur containing amino acids (Blaiseau
et al., 1997). (Methionine is also used as a sulfur source.) In the
case of leucine, two additional TFs are activated; LEU3 and GCN4,
the two key regulators in the regulation of branched-chain amino
acid metabolism (Boer et al., 2005). The inferred role of GCN4
as an activator in the presence of a poor nitrogen source and as a
repressor in the presence of good nitrogen sources corroborates the
work of Sosa et al. (2003). It further supports the fact that NCR is
not solely achieved through the action of the abovementioned family
of GATA factors, but conceivably also through GCN4.

3.2.1 Missing and dubious TF activity Remarkably, the other
three GATA factors, GAT1, DAL80 and GZF3, are not part of
generated network. Inspection of the TF binding data in the
promoters of the 119 nitrogen metabolism genes revealed that GAT1,
DAL80 and GZF3 bind only 3, 4 and 0 genes, respectively. This
could indicate that their targets are not transcriptionally regulated
under the influence of the cultivation parameters. However, this
observation should also be related to the ChIP–chip data. From
TRANSFAC, we extracted many TF–gene pairs, which are not
present in the ChIP–chip data. This indicates that not all TF
targets are detected by the ChIP–chip experiments. Furthermore,
Gao et al. (2004) estimate that 40% of the ChIP–chip TF targets
are non-functional. Obviously, this complicates regulatory network
inference. Another dubious result was identified when analyzing
the cases in which two or more TFs were active on a promoter. In
this experiment, there are 72 such cases, of which 10 are unique.
Amongst the most frequent cases, we found the combinatorial
regulation of TFs, which have already been reported in literature,
e.g. the interplay between LEU3 and GCN4 (Boer et al., 2005)
and that of CBF1 and GCN4 (O’Connell et al., 1995). Also, GLN3
and GCN4 were found activated together in a set of nine gene
promoters. These nine genes were upregulated under two cultivation
parameters, i.e. sulfur limitation and zinc limitation, where both
GLN3 and GCN4 are enhancers. However, under another cultivation
parameter, i.e. where leucine is used as a nitrogen source, the same
genes were downregulated, where now GLN3 acts as a repressor
(which is stronger than enhancer GCN4). These results seem
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Fig. 6. Representation of S for the regulatory program inferred using the
compendium. Color coding is identical to Figure 3b.

implausible and imply that this regulation pattern should involve
another TF, which might not be present in the employed TF binding
data set. Preliminary experiments with artificial datasets have
demonstrated that especially missing TFs (simulated by removing
colums from T) can have a large negative effect on the ability to
reconstruct the correct regulatory network (results not shown).

3.3 Compendium analysis
The algorithm was also run on the complete compendium for all
genes that are up- or downregulated under at least two cultivation
parameters and for all cultivation parameters that influence the
expression of at least 10 genes (G=766,C =67,F =101,λopt =5).
In the resulting regulatory network, 41 (61%) cultivation parameters
activated at least one of the TFs, resulting in 29 (29%) different
activated TFs in total. See Figure 6. Network inference on the
complete dataset allows for a more rigorous and unbiased estimation
of the regulatory program. It reveals confounding factors, with
respect to the previously discussed programs, which were based
on a subset of the data. For example, the regulatory program of
GATA factor GLN3, as discussed before, is also depending on
other (combinatorial) cultivation parameters, e.g. zinc limitation and
nitrogen limitation at low temperature. These results offer interesting
leads, however the combinatorial regulation of TFs, as inferred by
this analysis, becomes complicated. There are up to four active TFs
on gene promoters. This calls for an automated procedure that uses
these inferred TF activities and accompanying strengths to derive
logic rules, in which the influence of multiple TFs on transcriptional
regulation is formalized.

Note that the inference algorithm was run on a selection of
genes and cultivation parameters. The number of variables and
constraints in optimization problem is 4FC +2GC and 7FC +6GC,
respectively, which becomes quite large for the complete dataset. It
is yet unclear (due to computation time) if converge is reached for
the dataset with all genes and cultivation parameters.

4 DISCUSSION
The transcriptional program of a cell is largely determined
by its extracellular environment. The accurate measurement of
environmental parameters, e.g. with chemostat cultures, have
inspired several approaches that analyze the (combinatorial) effect
of environmental parameters on gene expression. In this study, we
have, for the first time demonstrated how environmental parameters
can be employed to derive transcriptional regulation networks. In
these networks, the cultivation parameters form the signals that
trigger the activation or deactivation of TFs. Since many TFs are
regulated post-transcriptionally, this approach seems more natural
than the often employed strategy of deducing the TF activity from the
mRNA expression of TFs. The inference algorithm was translated
into a linear optimization problem, solvable without having to rely
on greedy and/or heuristic search strategies.

The combinatorial regulatory code of multiple TFs that are able
to bind a promoter, is modeled using the linearly weighted sum
of inferred enhancers and repressor strengths. Previous approaches
have also modeled gene expression as a linearly weighted sum of
TF contributions, e.g. Gao et al. (2004). The main improvement
of our method is the fact that the activity of TFs can be explicitly
turned on or off, and that the inference algorithm optimizes this
choice with respect to the direction of regulation, i.e whether a
gene is up- or downregulated. This strategy enables the inference of
combinatorial effects between TFs. For example, a repressor, which
interacts directly with the TATA binding protein, thereby completely
blocking transcription independent of the possible enhancers that
bind the promoter, would acquire a strength that is larger than the
sum of the strengths of all enhancers that can bind the promoter.
Thus, the repressor, when active, will cause downregulation of the
gene, thereby nullifying the influence of the enhancers. This is in
contrast with the linear regression strategies, where these enhancers
would still have influence on the gene expression level.

Additional validation experiments indicate that more pairs of
TFs, which are simultaneously active according to our approach,
are found to co-occur in PubMed abstracts when compared to TF
pairs uncovered with Gao et al. (2004). This difference can be
attributed to the fact that we decompose the expression in terms
of cultivation parameters, and analyze these cultivation parameters
separately. When using only the expression data itself, some
cultivation parameters (such as aeration type) can have a much larger
influence than others, thereby dominating the expression pattern and
thus controlling which TFs are found to be the most significant,
leading to less diversity in activated TFs (and thus fewer TF pairs).
An overview of this comparison is published as Supplementary
Material.

A future challenge lies in the integral interpretation of the
inferred regulatory networks, which must be accompanied by a
computational approach that derives logic rules, which are able to
describe the interplay of multiple TFs on gene promoters.
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APPENDIX
A detailed explanation for constraints c5, c8 and c12 is given.

c5:
〈
Tg·,M+·c

〉+ 〈
Tg·,M−·c

〉≤F ·(R̂−
gc +R̂+

gc) ∀g,c〈
Tg·,M+·c

〉
is the inner product of row g from binary matrix T and

column c from binary matrix M+ and indicates the number of
active enhancers that binds a gene promoter.

〈
Tg·,M−·c

〉
indicates

the number of active repressors in the promoter. The sum of these
two terms is an integer between 0, when no active TFs bind the
promoter, and F, when all TFs are activated and bind the promoter.
The right side of constraint c5 can be either 0, when both R̂−

gc and

R̂+
gc are 0, or F, when one of the two equals 1. (Note that because

of constraint c2 the R̂ coefficients cannot both be 1.) When the sum
of the two inner products is zero, both R̂ coefficients can be 0 or
one of them can be 1, since 0≤0 and 0≤F. However, if there is at
least one active enhancer or repressor that binds the promoter, i.e.
the sum of the inner products, denoted by x, is positive, then one
of the R̂ coefficients must be 1, since x �0 and only x≤F holds.
Consequently, constraint c5 forces a gene to be either upregulated
or downregulated, when there is at least one active enhancer or one
active repressor in the gene promoter.

c8: S+
fc −S̃+

f ≥F ·(M+
fc −1) ∀f ,c

Constraint c6 ensures that S+
fc , the strength of TF f under cultivation

parameter c, is 0, when the M+
fc is 0, i.e. when f is not activated under

c. In this case constraint c8 becomes −S̃+
f ≥−F, which is always

satisfied, since S̃+
f , the general enhancer strength of f is at most F. In

the case that the TF is activated, i.e. M+
fc is 1, constraint c8 becomes

S+
fc ≥ S̃+

f . Together with constraint c7, which states that S+
fc ≤ S̃+

f , it

forces S+
fc to be equal to S̃+

f in the case that M+
fc is 1.

c12:
〈
Tg·,S+·c

〉− 〈
Tg·,S−·c

〉≥ (F2 +F−2)·R̂+
gc −F2 ∀g,c

i180



[19:36 18/6/03 Bioinformatics-btn155.tex] Page: i181 i172–i181

Combinatorial influence of environmental parameters on TF activity

〈
Tg·,S+·c

〉
is the inner product of row g from binary matrix T and

column c from continuous matrix S+ and indicates the sum of the
strengths of all active enhancers that can bind the promoter of g
under cultivation parameter c.

〈
Tg·,S−·c

〉
indicates the total repressor

strength. From constraints c3, c4 and c8 we know that if there are
no active TFs that can bind the promoter, both inner products as
well as R̂+

gc are 0. In that case, constraint c12 becomes 0≥−F2 and
is satisfied. In the case that there is at least one active enhancer or
repressor that binds the promoter, the difference between the inner

products can range from −F2, when all F TFs are active, bind the
promoter and act as repressors with the maximal strength of F, to
F2, when the enhancer strength is at its maximum. If we want to
call a gene upregulated, i.e. R̂+

gc is 1, than constraint c12 becomes:〈
Tg·,S+·c

〉− 〈
Tg·,S−·c

〉≥F−2. Here, F−2 plays the role of a small
positive number. Consequently, a gene can only be upregulated, i.e.
R̂+

gc can only be 1, when the enhancer strength is larger than the
repressor strength.
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