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Abstract

Multiple myeloma (MM) is a cancer of antibody-making plasma cells. It frequently harbors alterations in DNA and
chromosome copy numbers, and can be divided into two major subtypes, hyperdiploid (HMM) and non-hyperdiploid
multiple myeloma (NHMM). The two subtypes have different survival prognosis, possibly due to different but converging
paths to oncogenesis. Existing methods for identifying the two subtypes are fluorescence in situ hybridization (FISH) and
copy number microarrays, with increased cost and sample requirements. We hypothesize that chromosome alterations have
their imprint in gene expression through dosage effect. Using five MM expression datasets that have HMM status measured
by FISH and copy number microarrays, we have developed and validated a K-nearest-neighbor method to classify MM into
HMM and NHMM based on gene expression profiles. Classification accuracy for test datasets ranges from 0.83 to 0.88. This
classification will enable researchers to study differences and commonalities of the two MM subtypes in disease biology and
prognosis using expression datasets without need for additional subtype measurements. Our study also supports the
advantages of using cancer specific characteristics in feature design and pooling multiple rounds of classification results to
improve accuracy. We provide R source code and processed datasets at www.ChengLiLab.org/software.
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Introduction

Multiple myeloma (MM) is a plasma cell malignancy charac-

terized by complex and heterogeneous cytogenetic abnormalities

[1]. In the U.S., multiple myeloma is the second most common

hematological malignancy and constitutes 1% of all cancers [2].

Aneuploidy, defined as copy number changes of chromosomes or

regions, is a common feature of many human cancers including

MM [3]. Common chromosome amplification and deletion events

can be used as a feature to subdivide multiple myeloma into two

subtypes. Using fluorescence in situ hybridization (FISH), multiple

myeloma is divided into hyperdiploid multiple myeloma (HMM)

and non-hyperdiploid multiple myeloma (NHMM) [4,5]. Approx-

imately 55–60% of patients have the hyperdiploid karyotype, with

trisomies of eight specific chromosomes, including chromosome 3,

5, 7, 9, 11, 15, 19 and 21 [6,7]. The remaining cases form the non-

hyperdiploid group, frequently involving translocations and

hemizygous deletion of chromosome 13.

The two MM subtypes have different prognosis and survival

outcome. Patients with hyperdiploid multiple myeloma tend to

have a better prognosis than those with non-hyperdiploid subtype

[4,8,9]. Therefore, cytogenetic and genomics based prognosis

models should use the subtype status as a covariate to help uncover

novel and independent factors for prognosis and drug response.

Furthermore, the two MM subtypes may be driven by different

but overlapping paths to oncogenesis. As genomics profiling of

RNA and DNA is increasingly used in myeloma studies, with the

subtype status of patient samples we can perform meta-analysis of

genomics profiling datasets to study common and specific

pathways dysregulated in the two subtypes and corresponding

drug candidates.

However, most genomics profiling myeloma studies do not have

HMM status measured. The existing standard method for

distinguishing the two subtypes is FISH, which measures a few

chromosomes’ trisomy status and can be inaccurate for determin-

ing the hyperdiploidy status of cancer samples. Using array

comparative genomics hybridization (aCGH) or SNP arrays to

detect genome-wide copy number changes can also readily identify

the two major subtypes [10], but paired copy number and
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expression datasets are few. In this study, we hypothesize that

chromosome alterations have their imprint in gene expression

through dosage effect, and aim to build a robust, cross-platform

method to classify multiple myeloma subtypes using gene

expression profiles. The resulting MM subtype status will greatly

help the analysis of existing and future myeloma profiling datasets

in better understanding the commonalities and differences of

disease biology and prognosis in HMM and NHMM subtypes.

Materials and Methods

Gene expression profiles
GSE6477, GSE19784, GSE6401 are 3 gene expression

profiling datasets from GEO (http://www.ncbi.nlm.nih.gov/

geo/) [11–13]. All of them have been separated into HMM and

NHMM with FISH, and the exact method are in the

corresponding papers. Among these data, GSE6477 and

GSE6401 are of the same array platform (HG-U133A) while

GSE19784 is different (HG-U133_Plus2). To test classification

accuracy using copy number-based HMM status, we use

GSE29023 with paired expression and array CGH profiling

[14], and GSE12896 and GSE39754 with paired expression and

SNP array profiling [10].

Training, validation and test datasets
We use GSE6477 and GSE19784 as training data and

validation data to build the method and select parameters, and

use GSE6401 as test data to test the accuracy of method.

GSE6477 was one of the early datasets about multiple myeloma
Figure 1. A general flowchart of the classification analysis steps.
doi:10.1371/journal.pone.0058809.g001

Figure 2. Scatterplot of trisomy and nontrisomy chromosome means of GSE6477 samples. Each point represents a patient sample. ‘TC
mean’ on X-axis is the average scaled expression values for the genes on the 8 trisomy chromosomes. ‘NTC mean’ on Y-axis is the average scaled
expression values for the genes on nontrisomy chromosomes. The light purple circles are HMM samples and the dark purple circles are NHMM
samples determined by FISH. The green circle is the left-out sample to be classified.
doi:10.1371/journal.pone.0058809.g002
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Figure 3. GSE6477/19784 classification accuracy for different k values in KNN. When k equals 16, both datasets have good classification accuracy.
doi:10.1371/journal.pone.0058809.g003

Figure 4. Scatterplot of trisomy and nontrisomy chromosome means of both GSE6477 and GSE19784 samples. See Figure 2 legend for
details. The top right part are GSE19784 samples separated into two FISH subtypes by color. The two datasets are far from each other.
doi:10.1371/journal.pone.0058809.g004
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with identified subtype by FISH. It contains 140 samples with the

same number of two subtypes (70 HMM and 70 NHMM). We use

GSE19784 to improve the method for cross platform/dataset

classification and as validation data to minimize over-fitting. The

rest datasets are used for testing the classification accuracy.

Microarray data processing
All gene expression profile analysis procedures were performed

using R (version 2.13.1). Package ‘affy’ was used for primary

process [15]. Custom CDF files were used for R 2.13 (http://

brainarray.mbni.med.umich.edu/). The probe level data was

converted to expression values using the BioConductor project

with the Robust Multi-Array average (RMA) procedure, in which

perfect match intensities were background adjusted, quantile-

quantile normalized, and log2-transformed [16,17]. R package

‘kknn’ was used for KNN and KKNN classification (http://cran.r-

project.org/web/packages/kknn/).

Definition of trisomy chromosomes
Based on frequent trisomy status of eight chromosomes in

HMM, we separate genes into two groups: trisomy-chromosome

genes (genes on chromosomes 3, 5, 7, 9, 11, 15, 19 and 21) and

nontrisomy-chromosome genes (genes on the rest chromosomes)

[6]. We use UCSC hg19 RefSeq gene table as reference (http://

genome.ucsc.edu/).

Determine HMM status from copy number microarray
data

We used two test datasets with paired copy number microarray

samples as gold standard for HMM status. In GSE29023, for each

sample we computed the ratio between the median copy number

of the trisomy chromosomes and that of the non-trisomy

chromosomes, and plotted the histogram of the ratios. We

expected this ratio to be around 1.5 (3 copy/2 copy) for HMM

samples and 1 (2 copy/2 copy) for NHMM samples, since HMM

samples usually have 3 copies in most of the 8 trisomy

chromosomes, but NHMM samples have 2 copies in these

chromosomes. With the expectation that the patients should be

separated into two groups, we observed the histogram and chose

the boundary 1.125 as half-way between the two peaks in the

distribution. The fact that we didn’t observe a cutoff midway

between 1 and 1.5 could be due to sample normalization during

microarray analysis, where the overall signal distribution in one

sample is adjusted to be similar across all samples. This may lead

to a downward shifting of all signals in a HMM sample, where 8

chromosomes are usually in trisomy. A cutoff of 1.10 or 1.15 is also

possible from this histogram, but this leads to only 3 samples to be

assigned differently and a difference in accuracy of ,2.6% (3/115

of samples in GSE29023).

In GSE12896, we plotted the distribution of the median copy

number of the trisomy chromosomes and expected the median to

be around 3 for HMM and around 2 for NHMM. We observed

the corresponding two peaks, although the HMM samples peak at

2.6 due to possible normalization effect as above. We chose the

Figure 5. Scatterplot of adjusted trisomy and nontrisomy chromosome means of both GSE6477 and GSE19784 samples. Adjusting
and overlapping the distributions of GSE6477 and GSE19784 makes classification more accurate. For all the sample points in a dataset from Figure 4,
we shift their locations by the same amount, so the center of the samples points locates at (0, 0).
doi:10.1371/journal.pone.0058809.g005
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midway value (2.3) between the two peaks as the cutoff to call

HMM and NHMM samples from the copy number data.

Results

Develop classification method for HMM status by cross-
validation

We used K-nearest neighbor (KNN) method and leave-one-out

cross-validation (LOOCV) to develop the classification method for

HMM status. Based on this method, we leave one sample out of

GSE6477 and use the remaining data as training samples for

fitting the classification model. A list of genes differentially

expressed between HMM and NHMM of the training samples

are used to construct a two-dimensional feature vector to classify

the left-out sample. The overall classification accuracy from cross-

validation is used to select the optimal model parameters. An

overview of the procedure is in Figure 1 and the detailed steps are

as follows.

First, using GES6477, we left one sample out and used the rest

139 samples to perform Student’s t-test between HMM and

NHMM using each gene’s expression data. Controlling for FDR

(False Discovery Rate) that is less than 0.01, we obtained a list of

genes that are differentially expressed between HMM and

NHMM. We subdivided these genes into trisomy-chromosome

genes (TC genes) and nontrisomy-chromosome genes (NTC genes)

according whether a gene belongs to trisomy chromosomes or

nontrisomy chromosomes (see Methods). Table S1 lists the

intersection genes used in the 140 leave-one-out classification

models.

Next, we standardized GSE6477 to make the mean of each

sample’s expression values of all genes to be 0 and the variance of

each sample to be 1, and got the GSE6477_scale data. This step is

necessary for cross-platform/dataset classification in the next

section. Then, for each sample in the training and validation sets

of GSE6477_scale, we computed the mean expression of the TC

genes and NTC genes, respectively, and denote the two means as

TC mean and NTC mean. Figure 2 shows that when plotting

NTC mean vs. TC mean for all the samples, HMM and NHMM

samples largely separate.

Last, we used TC mean and NTC means as the feature values

of each sample to perform K-nearest neighbor algorithm (KNN) to

classify the left-out sample using the 139 training samples. KNN is

a method for classifying objects based on closest training examples

in the feature space, which is our core algorithm for classification

[18,19]. The main parameter of KNN is the k value, the number

of neighbors considered [18]. We used different k parameters from

1 to 69 to explore the best k value for classification. For a given k

value, we performed leave-one-out cross-validation to classify

every sample, and compared the classified subtypes to the original

FISH-based subtypes of all samples to assess the overall

classification accuracy. Figure 3 shows the classification accuracy

with various value of k from 1 to 69 for GSE6477 cross-validation

results. When the k value is more than 2, the accuracy of

classification is more than 80%.

Figure 6. Scatterplot of adjusted trisomy and nontrisomy chromosome means of GSE6401. The green triangles indicate misclassified
samples. Most of them locate at the boundary area between the samples of two FISH subtypes.
doi:10.1371/journal.pone.0058809.g006
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Develop cross-dataset classification method
We next used GSE19784 to check the applicability of the

classification method developed from GSE6477 when applied to

an independent dataset and patient cohort. GSE19784 uses a

different array platform, comes from a different research study and

has more MM samples (201 MM samples with FISH status).

These factors may affect the accuracy of cross-dataset classifica-

tion. To minimize platform and batch differences between the two

datasets, we also standardized GSE19784 to make the mean

expression values of all genes in each sample to be 0 and the

variance of each sample to be 1, and obtained the GSE19784_s-

cale data. To apply a classification model from one cross-

validation run of GSE6477 (Figure 2), we retrieved the

corresponding differential expressed gene list from the classifica-

tion model and computed TC mean and NTC mean for every

sample of GSE19784_scale. However, the distribution of the two

data sets was far in distance, making the KNN classification

challenging and less accurate across datasets (Figure 4).

On a closer look, we observed that the relative locations and

overall shape of HMM and NHMM samples within a dataset are

similar for the two datasets (Figure 4). In order to adjust for dataset

specific characteristics, we overlaid the two datasets’ distributions

(Figure 5). Specifically, we shifted the locations of all the sample

points in a dataset in the TC mean vs. NTC mean plot, so that all

the sample points in the dataset have the 0 average in both X-axis

and Y-axis values. As the result, both datasets have their data

points centered at (0, 0) and their overall distributions are

overlapping (Figure 5), facilitating KNN classification across array

platform and datasets.

Last, we used the adjusted TC mean and NTC mean as sample

features to classify samples in GSE19784_scale using models

trained from GSE6477. We classified each sample in GSE19784

140 times using each of the leave-one-out cross-validation models

from GSE6477. The subtype classified as the majority of 140 times

is the final classified subtype of the sample. We then compared the

classified subtype of GSE19784 samples to their FISH-based

subtype to check the cross-dataset classification accuracy. Figure 3

shows that for k.8, we obtained classification accuracy .82%.

Test the classification method using independent
datasets with FISH and copy number-based HMM status

Using the classification results of GSE6477 (within-dataset

cross-validation) and GSE19784 (cross-dataset classification), we

explored values of k from 1 to 69 that resulted in high classification

accuracy (Figure 3). We selected k = 16 to classify three

independent test datasets, GSE6401, GSE29023 and GSE39754.

We performed similar procedure as above, using the GSE6477-

trained models to classify GSE6401, and obtained a cross-dataset

classification accuracy of 0.88 when compared to FISH (Figure 6).

We also tested the classification method using two MM

expression datasets with paired copy-number profiling samples.

The first is GSE29023, consisting of paired gene expression and

Figure 7. Determine the copy number-based HMM status in GSE29023. For each sample, the ratio between the median array-CGH based
copy numbers of the trisomy chromosomes and that of the non-trisomy chromosomes is computed. See Methods for details. With the expectation
that the patients should be separated into two groups, we observed the histogram and chose the boundary 1.125 as half-way between the two
peaks in the distribution.
doi:10.1371/journal.pone.0058809.g007
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array CGH samples [14]. Array CGH is a technique to detect

genomic copy number variations at a high resolution. We first

utilized the CGH data to compute the ratio between the median

copy number of trisomy chromosomes and of nontrisomy

chromosomes for each patient. For HMM samples we expect

higher ratios because they tend have three copies in the trisomy

chromosomes. The histogram of the ratios shows a division of

samples (Figure 7), and we set the cutoff as 1.125 to call real HMM

status based on copy numbers. Last, we applied the expression-

based classification method to call HMM status, which agreed

with the copy number-based HMM status at a accuracy of 0.835

(96/115).

The second MM dataset is GSE12896 and GSE39754 with 170

paired gene expression and SNP array profiling samples [10]. The

survival outcome of the patients is also available. We used the

median copy number of trisomy chromosomes in each sample to

call real HMM status of the samples (Figure 8). The expression-

classified subtype agreed with copy number-based HMM status at

a accuracy of 0.876 (149/170). Furthermore, the expression-

classified subtype separated the patients into two groups of

significantly different survival (Figure 9, p-value = 0.0208), agree-

ing with known survival differences between HMM and NHMM

groups [4,8,9].

Pool multiple rounds of classification results to improve
accuracy

When we applied our classification method trained from

GSE6477 to other datasets, we classified each new sample 140

times using the 140 cross-validation models that built from

GSE6477. In the above we assigned the final classified subtype

using majority voting from the 140 classified subtype calls. We also

computed a confidence score for each sample as the proportion of

140 classified subtype calls for the winning majority. When we

classified only those samples with confidence score .0.9, the

classification accuracy for GSE39754 improved from 0.876 to

0.913 (147/161). This is due to that in the 9 unclassified samples

with confidence score ,0.9, 7 were misclassified previously. For

GSE6401, If we only classified samples whose confidence score is

more than 0.9, the accuracy increased from 0.88 (66/75) to 0.93

(62/67).

Discussion

Multiple myeloma is a malignant cancer of bone marrow

plasma cells. Researchers are making progress in diagnosing and

treating multiple myeloma in innovative ways; however, it cannot

be fully cured by current treatment regimes. The two main

aneuploidy-based subtypes of multiple myeloma, HMM and

NHMM, correspond to different survival prognosis and potential

underlying different pathogenic pathways and altered regulatory

Figure 8. Determine the copy number-based HMM status in GSE12896. The median copy number of SNPs in trisomy chromosomes is
computed for each sample. The histogram suggests a cutoff of 2.3 to determine HMM status (median copy .2.3 for HMM samples). See Methods for
details.
doi:10.1371/journal.pone.0058809.g008
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networks. Since most expression profiling studies of MM do not

measure HMM status, we have developed an expression-based

method to classify HMM status of patients with high accuracy

across datasets and array platforms. Compared with FISH and

copy number based HMM status, the test accuracy in three

independent datasets ranges from 0.83 and 0.88. Our method

opens up the opportunity for meta-analysis of many MM

expression datasets for the disease biology of HMM and NHMM

subtypes, and for incorporating HMM status as a covariate in

genomics-based survival prognosis models. The lessons we learned

in this study, such as using cancer specific characteristics in feature

design and pooling multiple rounds of classification results to

improve accuracy, are applicable to similar genomics-based

classification. We also provide R package and processed datasets

publicly at www.ChengLiLab.org/software.

Use cancer-specific characteristics in classification
features

Inferring chromosome abnormalities using gene expression

profiles can help predict clinical outcomes and identify causal

genomic alterations [14,20,21]. In a recent myeloma study, Zhou

and colleagues reported cytogenetic abnormalities classification

based on gene expression profiles with accuracy up to 0.89 [14].

Similar to their study, our classification method also based on

expression data and considered special genes. Due to different

purposes, Zhou et al. emphasized copy number-sensitive genes,

while we focused on genes in trisomy and non-trisomy chromo-

somes.

Importantly, we found that the carefully selected gene features

considering trisomy and non-trisomy chromosomes resulted in

more classification power than using the whole list of differentially

expressed genes between the two subtypes. We decided that the

adjusted TC mean and NTC mean are good features for cross-

dataset KNN classification (Figure 5). The classification accuracy

is higher than when we use all differential expressed genes as

features to classify new samples (Table 1). The reason lies in that

we took biological features of multiple myeloma into consider-

ation. Abundant copy number changes of whole and partial

chromosomes are a characteristic feature of multiple myeloma and

its two subtypes (Figure 10), which lead to dosage effect of many

expressed genes located in these chromosome regions. Such

dosage alterations affect global gene expression more strongly than

platform differences and batch effect do. By using two summa-

rizing features (TC mean and NTC mean) to capture these

subtype specific characteristics, such as 8 trisomy chromosomes in

HMM and chromosome 13 deletion in NHMM, we achieved

better classification accuracy than not considering these charac-

teristics.

Figure 9. Survival difference between expression-classified HMM and NHMM groups in GSE39754. HMM patients (red) classified by our
method have a better overall survival than the NHMM patients (blue). The log-rank test p-value is 0.0208.
doi:10.1371/journal.pone.0058809.g009
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Causes of misclassified samples and future
improvements

Although we developed an effective method to classify multiple

myeloma subtypes, we did not achieve 100% accuracy. There are

both biological causes and analytical causes for misclassified

samples. Biologically, multiple myeloma genome is not strictly

altered following main HMM and NHMM characteristics. Some

MM samples could have both trisomy chromosomes and deletion

of chromosome 13 (Figure 10, samples in the middle between

HMM and NHMM clusters). These samples may possess

expression profiles that partially resemble to both HMM and

NHMM, and therefore lie in the boundary between the two

Table 1. Comparison of accuracy between standard KNN
classification using all differentially expressed genes and the
two-feature method (k = 16).

Dataset Standard KNN classification
Two-feature KNN
classification

GSE6477 0.85 0.86

GSE19784 0.57 0.83

GSE6401 0.71 0.88

doi:10.1371/journal.pone.0058809.t001

Figure 10. Clustering MM samples in GSE12896 by genome-wide copy numbers. 170 MM samples are clustered from left to right based on
their similarities in copy number alterations. SNPs are ordered by chromosome positions from top to bottom. The color scale on the bottom indicates
log2 ratios relative to two copies. Blue color indicates copy number loss, white color indicates copy number close to normal, and red color indicates
copy number gains. The horizontal red and blue bars on the top indicate sample groups of HMM (red) and NHMM (blue) as determined from Figure 8.
Black vertical bars on the top indicate misclassified samples.
doi:10.1371/journal.pone.0058809.g010
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subtypes in the feature space (such as the samples indicated by

triangle in Figure 6 and Figure 11), rendering KNN classifiers

unable to call their HMM status with high confidence. We also

notice that a portion of misclassified samples in the dataset

GSE12896/GSE39754 are NHMM samples with deletion of both

chromosome 1 and 4 (Figure 10, misclassified samples on the left,

indicated by black vertical bars). These observations point to

directions to further improving the classification method based on

biological features of interest.

Another biological cause is inaccuracy of FISH-based HMM

status, which may probe only a few chromosomes to determine

hyperdiploidy. A hypothetical example is a tetraploid sample with

4 copies for most chromosomes. Its transcriptomic profiles may be

similar to NHMM due to equal copy numbers of most genes, but

FISH could report it as hyperdiploidy.

Analytically, as we used all sample points to adjust the center of

a dataset’s sample points in the NTC mean vs. TC mean plot

(Figure 5), the proportion between real HMM and NHMM

samples could affect this adjustment. For example, if a patient

cohort contained all HMM samples, we would have classified half

of the samples as NHMM since this is the subtype proportion in

the training dataset GSE6477. Although HMM proportion is

around 55–60% in a typical MM cohort [7], in the 5 datasets we

used, the HMM proportion ranges between 39% and 56% as

measured by FISH or copy number microarrays (GSE6477: 70/

140, 50%; GSE19784: 113/201, 56%; GSE6401: 37/75, 49%;

GSE29023: 45/115, 39%; GSE39754: 77/170, 45%). A future

improvement in this regard is to iteratively estimate the proportion

of HMM samples during classification.

We have also compared to two other classification methods,

support vector machine (SVM) and weighted k-nearest neighbors

Figure 11. Scatterplot of adjusted trisomy and nontrisomy chromosome means of GSE39754. The green triangles indicate misclassified
samples. Most of them locate at the boundary area between the samples of two copy-number based subtypes.
doi:10.1371/journal.pone.0058809.g011

Table 2. Classification accuracy for original and modified GSE6401 sample sets.

HMM/NHMM 37/23 37/28 37/33 37/38 (original data) 32/38 27/38 22/38 19/38

% of HMM Method 62% 57% 53% 49% 46% 42% 37% 33%

KKNN 0.84 0.87 0.87 0.88 0.86 0.84 0.85 0.80

KNN 0.85 0.86 0.88 0.88 0.86 0.78 0.77 0.71

TC and NTC means are used as features. The kernel ‘optimal’ and ‘rectangular’ of KKNN is used.
doi:10.1371/journal.pone.0058809.t002

Classify Hyperdiploidy Status of Multiple Myeloma

PLOS ONE | www.plosone.org 10 March 2013 | Volume 8 | Issue 3 | e58809



(KKNN). We set GSE6477 as training data and GSE6401 as test

data in the same way as the original KNN classification, and

k = 16 is used for both KNN and KKNN. SVM classifies only one

more sample correctly than KNN (the accuracy increases from

0.88 to 0.89), and KKNN achieves the same accuracy as KNN.

Due to potential better performance of KKNN for unbalanced

datasets, we removed various number of HMM or NHMM

samples from GSE6401 to create unbalanced datasets, and used

KKNN to classify HMM status. Table 2 shows that for both KNN

and KKNN, the classification accuracy decreases for unbalanced

datasets, but KKNN classifies some unbalanced datasets at up to

9% better accuracy than KNN. Therefore the merit of using

KKNN for unbalanced datasets is justified in this setting.

Computing a confidence score by pooling results of multiple

rounds of classification could improve the accuracy, if samples

with low confidence score tend to be misclassified. In our analysis

of GSE39754 and GSE6401, not classifying samples with

confidence score ,0.9 improved classification accuracy from

0.876 to 0.913 and from 0.88 to 0.93, respectively. In the TC

mean vs. NTC mean plots (Figure 6 and Figure 11), most samples

that were misclassified are located near the boundary between the

two subtypes. These samples tend to be classified into either

subtype by multiple KNNs and therefore have lower confidence

scores. Some misclassified samples do not follow clear HMM or

NHMM copy number patterns (Figure 10, samples in the middle,

indicated by black vertical bars). Future studies will better define

smaller genomics subtypes other than HMM and NHMM, such as

those having few chromosomal alterations and those caused by

chromothripsis [22].

Supporting Information

Table S1 The 675 genes that are intersection gene
features among the 140 leave-one-out models of the
training dataset GSE6477. Chro Type: TC: Trisomy

chromosomes, NTC: Non-trisomy chromosomes. FDR: the

median FDR of all comparisons in the 140 models. HMM.Mean

and NHMM.Mean are the mean value of the scaled gene

expression in HMM and NHMM samples, respectively.

(XLS)
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