
Plasticity of the Chemoreceptor Repertoire in Drosophila
melanogaster
Shanshan Zhou1,2, Eric A. Stone2,3,4, Trudy F. C. Mackay2,4, Robert R. H. Anholt1,2,4*

1 Department of Biology, North Carolina State University, Raleigh, North Carolina, United States of America, 2 W. M. Keck Center for Behavioral Biology, North Carolina

State University, Raleigh, North Carolina, United States of America, 3 Department of Statistics, North Carolina State University, Raleigh, North Carolina, United States of

America, 4 Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America

Abstract

For most organisms, chemosensation is critical for survival and is mediated by large families of chemoreceptor proteins,
whose expression must be tuned appropriately to changes in the chemical environment. We asked whether expression of
chemoreceptor genes that are clustered in the genome would be regulated independently; whether expression of certain
chemoreceptor genes would be especially sensitive to environmental changes; whether groups of chemoreceptor genes
undergo coordinated rexpression; and how plastic the expression of chemoreceptor genes is with regard to sex,
development, reproductive state, and social context. To answer these questions we used Drosophila melanogaster, because
its chemosensory systems are well characterized and both the genotype and environment can be controlled precisely. Using
customized cDNA microarrays, we showed that chemoreceptor genes that are clustered in the genome undergo
independent transcriptional regulation at different developmental stages and between sexes. Expression of distinct
subgroups of chemoreceptor genes is sensitive to reproductive state and social interactions. Furthermore, exposure of flies
only to odor of the opposite sex results in altered transcript abundance of chemoreceptor genes. These genes are distinct
from those that show transcriptional plasticity when flies are allowed physical contact with same or opposite sex members.
We analyzed covariance in transcript abundance of chemosensory genes across all environmental conditions and found that
they segregated into 20 relatively small, biologically relevant modules of highly correlated transcripts. This finely pixilated
modular organization of the chemosensory subgenome enables fine tuning of the expression of the chemoreceptor
repertoire in response to ecologically relevant environmental and physiological conditions.
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Introduction

Responses to the chemical environment play an important role

in animal survival, as chemical cues direct foraging behavior and

food selection, predator avoidance, and, in insects, host plant

recognition for oviposition and larval feeding. Chemical signals are

also essential for the selection of mating partners, maternal

behavior, and kin recognition. As a consequence of the profound

importance of chemosensation for survival and reproduction,

several large families of chemosensory genes have evolved through

repeated processes of gene duplication and diversification [1–4],

including genes that encode odorant receptors (Ors) [4–8],

gustatory receptors (Grs) [4,9], and, in insects, odorant binding

proteins (Obps) [10–12]. In addition, large multigene families

aimed at eliminating toxic chemicals have evolved, most

prominently the cytochrome P450 superfamily [13]. Detoxifica-

tion of plant defense chemicals together with development of

chemosensors that enable fine tuning to host plants has been

instrumental in the establishment of specialized insect-host plant

relationships [14]. For example, the black swallowtail butterfly,

Papilio polyxenes, has developed cytochrome P450s that can

metabolize toxic furanocoumarins, which allows it to feed and

oviposit on plants of the Umbelliferae family [15]. Similarly,

Drosophila sechellia’s host plant, Morinda citrifolia, is toxic to other

Drosophila species. A 4 bp insertion in the upstream regulatory

region of the D. sechellia Obp57e gene eliminates expression of this

odorant binding protein, which elicits avoidance of the Morinda

fruit in Drosophila species in which the gene is intact [16].

The rapid evolution of these large chemoreceptor gene families

has generated functional redundancy between receptors and their

ligands [17,18], which confers sensitivity and robustness to the

chemical recognition process. Animals, however, interact differ-

ently with their chemosensory environments under different

developmental, physiological and social conditions. Therefore, it

stands to reason that expression of the chemosensory repertoire

would be dynamically regulated. This raises several fundamental

questions: (1) Is the expression of chemoreceptor genes that are

organized as clusters in the genome independently regulated or do

genes within a cluster act as co-regulated functional ensembles? (2)

Are all chemoreceptor genes equally sensitive to environmental

fluctuations or is a core group of chemoreceptor genes particularly

responsive to environmental or physiological changes? (3) Are

certain chemoreceptor genes frequently co-regulated when

environmental or physiological conditions change? (4) Is the

expression of particular chemoreceptor genes upregulated or

downregulated as a function of sex (males versus females),
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development (e.g. in larval stages, adult stages and aged flies),

reproductive state (e.g. virgin or mated) or social context (e.g.

solitary or group reared)?

To answer these questions we focused on the chemoreceptor

families of Drosophila melanogaster, where both the olfactory and

gustatory systems have been well characterized [4,6–12,19]. D.

melanogaster provides an advantageous genetic model as inbred

individuals can be readily generated and grown under controlled

conditions, enabling control over both the genotype and the

environment [20]. We constructed expression microarrays that

enable us to survey simultaneously expression of all Obp, Or and Gr

genes. We analyzed chemoreceptor expression as a function of sex,

development, reproductive state, and social environment, and

obtained a systematic description of the plasticity of the chemosen-

sory window through which the fly experiences its chemical

environment. We found that genes in clusters are independently

regulated in the two sexes, during different developmental stages,

and under different physiological and social conditions. Whereas

many chemosensory genes showed plasticity in expression, a smaller

number of exceptionally plastic genes was evident. Analysis of

covariance of transcript levels across all environmental conditions

showed that the chemosensory subgenome is structured as a mosaic

of 20 small modules of highly correlated transcripts. This finely

pixilated modular organization of the chemosensory transcriptome

allows finely tuned phenotypic plasticity of expression of the

chemoreceptor repertoire under different environmental conditions.

Results

Construction and Characterization of the cDNA
Microarrays

To assess to what extent transcription of chemosensory genes

responds to changing conditions, we constructed cDNA expression

arrays that represent 50 Odorant binding protein (Obp), 59 Odorant

receptor (Or), and 59 Gustatory receptor (Gr) genes, four genes that

encode other antenna-specific proteins, and four control genes. To

prepare cDNA probes, primer sets were designed to generate

unique 400–600 bp amplicons. All amplification products were

sequenced and the sequences analyzed using the BLAST

algorithm to ensure absence of cross-hybridizing sequences.

Cross-hybridization is likely to occur in only two cases. Amplicons

for Gr64d and Gr64e do not overlap, but these genes have partially

overlapping transcripts and, therefore, could cross-hybridize. In

addition, Or19a and Or19d are located 50 kb apart in opposite

orientation and share the same sequences, rendering them

indistinguishable. The extent of dye effects was assessed by

hybridization of a mixture of equal amounts of Cy3 and Cy5

labeled RNA of the same sample. There was generally a close

correlation between Cy3 and Cy5 hybridization intensities (Figure

S1), indicating overall minor dye effects.

Among the 168 chemosensory genes represented on the

microarray, we detected expression of 50 Obp genes, 54 Or genes,

and 52 Gr genes, in at least one experimental condition.

Expression levels of Obp genes were generally at least one order

of magnitude higher than those of Or and Gr genes. Expression of

chemoreceptor genes on our customized EST microarrays

correlated well with previously obtained transcriptional profiles

of chemosensory genes represented on high density oligonucleo-

tide microarrays from Affymetrix, Inc. [21] ((Figure S2; r = 0.818,

n = 174), but resolution for detection of chemoreceptor gene

expression was substantially improved. We were not able to detect

expression of Gr22b, Gr58c, Gr59c, Gr77a, Gr93b, Gr93c, Gr93d,

Or10a, Or24a, Or85b, Or85c and Or85d, possibly due to highly

localized expression of rare transcripts.

Modulation of Chemoreceptor Gene Expression during
Development

To assess modulation of chemoreceptor gene expression during

development we compared expression of Obp, Or and Gr genes in

third instar larvae (mixed sexes) and in virgin adult males and

females. We also assessed changes in chemoreceptor gene

expression in aged males and females. Pairwise comparisons

between larvae and adults showed that relative expression of 28

chemoreceptor genes was biased in or specific to larvae at a

Bonferroni corrected significance threshold of P,5.68E-5 (correct-

ed for multiple testing at a nominal significance level of P,0.01)

with a 2-fold change filter; conversely, 35 chemoreceptor genes

showed adult-biased or adult-specific relative expression (Figure 1;

Table S1). To validate our microarray observations, we amplified

transcripts of the Obp58 and Obp99 gene clusters in larvae and

adults. Obp99c was highly expressed in larvae and adults, whereas

Obp99b showed strong adult-biased expression (Figure 2). Similarly,

Obp58c and Obp58d were virtually undetectable in larvae, but

expressed in adults with especially strong adult-specific expression of

Obp58c. The results of the microarray analysis showed good

concordance with results from RT-PCR experiments (Figure 2).

Since many chemoreceptors occur in clusters in the genome [4],

we asked whether individual members of a cluster show

coordinated or independent rexpression during development.

We examined chemoreceptor gene clusters without intervening

genes, including the Gr22a–e cluster, the Obp19a–d, Obp50a–e,

Obp56a–f, and Obp57a–c clusters, and the Or43a–b cluster

(Figure 3). There were extensive differences between larvae and

adults in chemoreceptor gene expression. Gr22d, Gr22e, Obp50d,

Obp56a–d, and Or43a showed larva-biased expression. Especially

striking was the high larva-specific expression of Gr22d, as well as

Gr22e. In contrast, expression of some chemoreceptor genes was

observed only in adults, for example the Obp19a–d and Obp57a–c

gene clusters and Obp56f.

When we compared relative expression of the same chemore-

ceptor genes in males and females, we observed extensive sexual

Author Summary

Rapid adaptation and phenotypic plasticity to the chem-
ical environment are essential prerequisites for survival;
and, consequently, large families of genes that mediate
the recognition of olfactory and gustatory cues have
evolved. We asked how flexible the expression of these
genes is in the face of rapidly changing conditions
encountered during an individual’s lifetime. We used the
fruit fly, Drosophila melanogaster, to address this question,
since both the genetic composition and environmental
rearing conditions can be controlled precisely in this
experimentally amenable model organism. By measuring
expression levels of all chemosensory genes simultaneous-
ly, we identified genes that show altered expression at
different developmental stages, during aging, in males and
females, following mating, and in different social condi-
tions. We asked whether chemosensory genes are
regulated independently or whether their regulation is
structured. We found that chemosensory genes that are
located in close proximity to one another on the
chromosome are often regulated independently. However,
statistical analysis showed that groups of chemosensory
genes are coordinately expressed in response to a range of
environmental conditions, revealing an underlying modu-
lar organization of the phenotypic plasticity of the
chemosensory receptor repertoire.

Plasticity of the Chemoreceptor Repertoire
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dimorphism in transcript abundance levels. Male-biased expres-

sion was evident for Obp50c, Obp56d, and Obp56f, whereas female-

biased expression was observed for Obp19a, Obp19c, Obp56a,

Obp56e, Obp57a, and Or43b (Figure 3; Table S2). These results

show that expression of chemoreceptor genes that are located

within gene clusters can be regulated independently at different

developmental stages and between the sexes.

Next, we asked whether chemosensory gene expression levels

are stable throughout adult live or are subject to age-dependent

plasticity. We compared transcript abundance levels in 10-day old

and 6-week-old virgin males and females maintained under

carefully controlled standard laboratory conditions, and found

extensive age-dependent changes in transcript abundance in all

classes of chemosensory genes (Figure 4). We found 104

chemosensory genes with altered transcript abundance in one or

both sexes. Many genes with altered expression in aged flies were

shared between males and females. However, sexual dimorphism

in age-dependent chemoreceptor gene expression was pervasive.

Interestingly, in males 15 Gr genes and 19 Or genes showed

alterations in expression levels during aging (Figure 4B), while in

females only three Gr genes and four Or genes changed expression

levels during ageing (Figure 4A). The ubiquitous odorant receptor

Or83b showed decreased expression levels with age in both sexes,

whereas expression of Or1a and Gr98a was upregulated in both

sexes during aging. Extensive differences among transcript

abundance levels of Obp genes in young and old flies were

especially prevalent for both sexes. Obp51a, Obp56e, Obp56g,

Obp57a, Obp57c, and Obp99b showed altered expression levels

during aging in both sexes, but in opposite directions (Figure 4).

Again, expression of genes within a cluster appears to be regulated

independently from other genes in the same cluster during ageing.

Modulation of Chemoreceptor Gene Expression by
Reproductive State

Next, we asked to what extent changes in physiological

condition affect expression of the chemoreceptor repertoire.

Mating results in physiological changes in females [22] and males

[23–25]. We compared transcript abundance levels of chemosen-

sory genes in virgin males and females reared separately to those of

individuals that were allowed to mate (Figure 5). Following mating,

only females showed a reduction in transcript levels of a suite of

four Gr and 12 Or genes. In contrast, changes in Obp transcript

abundance were seen in both sexes. Here, 16 out of 23 Obp genes

with altered transcript abundance showed up-regulation in mated

females (Figure 5A). Substantial changes in transcript abundance

of Obp genes and Pino (a.k.a. smi21F), a putative odorant binding

protein [26], were also evident in mated males (Figure 5B). Twelve

Obp genes showed altered expression in both sexes, and among

these five showed antagonistic changes in expression levels

between the sexes (Figure 5). Thirteen out of 19 Obp genes with

altered transcript abundance in mated males showed a reduction

in transcript abundance, in contrast to the predominant up-

regulation of Obp expression levels seen in mated females. Thus,

mating caused profound changes in subsets of chemosensory genes

in both sexes. The identities of the chemosensory genes affected or

the effect on their transcript levels were distinct between males and

females, indicating a profound sexually dimorphic change in the

functional composition of the chemoreceptor repertoire after

mating.

Modulation of Chemoreceptor Gene Expression by Social
Context

Our observation that the expression of the chemosensory

repertoire is modified dramatically by social contact during

reproduction led us to ask whether social context per se can elicit

altered expression of distinct chemosensory genes. We compared

transcript abundance levels in male and female flies that were

reared as single isolated individuals to those of virgin flies reared in

corresponding single sex groups. We observed changes in

expression levels of few Gr or Or genes under these conditions

(Figure 6). However, in females transcript abundance levels of

seven Obp genes and Pino were down-regulated when individuals

were reared in isolation, whereas two Obp genes were up-regulated

(Figure 6A). In males transcription of five Obp genes was down-

regulated when individuals were reared in isolation, whereas three

Obp genes were upregulated (Figure 6B). Compared to our other

experimental conditions, we found less overlap between genes with

altered transcript abundance in males and females. Different

members of the Obp56 gene cluster featured prominently among

transcripts with altered levels in each sex. Only Obp56e, however,

showed down-regulation in isolated individuals in both sexes and

Obp57b was down-regulated in females and up-regulated in males

when flies were reared in isolation (Figure 6).

Chemoreceptors have been implicated in the detection of both

volatile [27] and non-volatile [28] social chemical signals. We

wanted to assess whether exposure to social odor cues alone could

result in altered transcript abundance of chemosensory genes.

Therefore, we separated single flies from groups of same-sex or

opposite sex flies with a double cheesecloth partition that would

allow the transmission of olfactory cues, but would prevent

physical interaction (it should be noted that Canton S w2 flies used

in these experiments are visually impaired). When single flies were

maintained for five days under conditions in which they were

exposed to same-sex group odors, there were virtually no changes

in transcript patterns of chemosensory genes. Only expression of

Obp57c was increased in females exposed to female group odor

(Figure 7A), whereas expression of Obp84a and Obp83b was

increased in males exposed to male group odor (Figure 7B). In

contrast, we saw more extensive changes in transcript levels when

we exposed single flies to opposite sex group odor for the same

time period. Here, nine chemosensory genes in females showed

Figure 1. Volcano plot of differences in transcript abundance
between larvae and adult flies. The figure illustrates differences in
transcript expression levels between RNA extracted from third instar
larvae and from an equal mixture of virgin adult males and females.
Each dot represents a probe on the array. The horizontal dashed line
shows the Bonferroni-corrected significance threshold of P = 5.2E-5. The
vertical dashed lines show 2-fold enrichment boundaries between the
samples.
doi:10.1371/journal.pgen.1000681.g001

Plasticity of the Chemoreceptor Repertoire
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altered transcript levels, including seven Obp genes and the

antenna-specific a5 and a10 genes (Figure 7C). With the exception

of Obp19c, all of these genes were down-regulated when a single

female was exposed to male group odor. In single males exposed to

female group odor, six Obp genes and a gustatory receptor gene

(Gr2a) showed altered transcript levels (Figure 7D). Remarkably,

there was no overlap between the subsets of chemosensory genes

that had altered transcript levels when single males or females

were exposed to opposite sex group odor. Notably, members of the

Obp56 gene cluster (Figure 6) did not show altered expression

under these conditions. The lack of concordance between

transcript abundance of chemosensory genes when isolated

individuals were compared to group reared individuals (Figure 6)

and when isolated individuals were limited only to same sex group

olfactory exposure (Figure 7A and 7B) shows that physical

interactions are instrumental in determining expression of the

chemoreceptor repertoire within same sex groups. However, when

a solitary female is exposed to a group of males behind a cheese-

cloth partition (Figure 7C) or when a solitary male is exposed to a

group of females behind a cheese-cloth partition (Figure 7D), the

patterns of changes in transcript abundance are distinct from those

observed between isolated individuals and individuals maintained

within same sex groups (Figure 6). This indicates that odor cues

influence chemoreceptor gene expression between individuals of

opposite sex (although a possible contribution of courtship song

cannot be excluded).

Figure 2. Confirmation of microarray expression data by RT–PCR. Fragments of cDNA corresponding to transcripts of Obp genes within the
Obp99 (A) and Obp58 (B) clusters were amplified from adult (top panels) or larval (bottom panels) RNA samples using the same primers used to
construct the corresponding microarray probes. Amplification was done after 2 min denaturation at 94uC by 30 s denaturation at 94uC, 30 s
annealing at 55uC, and 1 min extension at 72uC for 30 cycles followed by 4 min incubation at 72uC. Intensity of ethidium bromide stained bands on
agarose gels are compared to fluorescence intensities after hybridization of labeled RNA samples to the microarrays (bar graphs in each panel).
Quantitative comparisons are not precise at low levels of expression. Note, however, that absence of Obp58c in adults and high intensities of Obp58c
in larvae on the arrays are matched by the appearance of the corresponding RT–PCR products. Similarly, high intensity levels of Obp99c in adults and
Obp99b and Obp99c in larvae correspond between fluorescent intensity levels on the microarrays and staining of the corresponding RT–PCR
products.
doi:10.1371/journal.pgen.1000681.g002

Plasticity of the Chemoreceptor Repertoire
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Correlated Phenotypic Plasticity of Chemoreceptor Gene
Transcripts

>We noticed that environmental plasticity of expression was

heterogeneous among chemosensory genes, with certain members

of the chemoreceptor ensemble responding more frequently to

environmental changes than others. Therefore, we decided to

investigate whether groups of chemosensory genes showed

correlated transcript levels across all experimental conditions. We

analyzed transcript levels using the modulated modularity

clustering method. This unbiased, self-organizing paradigm is

based on correlations of transcript abundance levels between

different conditions, and sorts transcripts into modules such that

transcript abundance levels among members within each module

are more closely correlated than with members outside that module

[29,30]. The resulting pairwise correlation matrix can be

represented graphically such that modules of correlated transcripts

are organized in a matrix, with color-coding indicating the strength

of each pairwise correlation [29,30] (Figure 8). This analysis

revealed 20 covariant ensembles (Figure 8; Table S3), indicating

that transcriptional regulation of the chemoreceptor repertoire is

indeed modular. At the same time, however, the large number of

modules and their small sizes reflect the overall heterogeneity in

transcriptional regulation of chemosensory genes. Whereas genes

that are members of the same cluster were by and large

independently regulated (e.g. Figure 2), in some instances genes in

close proximity to each other within a cluster appeared to co-vary

in expression levels. This was the case for Obp58b and Obp58c

(located 376 bp apart in different orientations; Module 3), Obp56b

and Obp56c (located 855 bp apart; Module 8), Obp83cd and Obp83ef

(which have a 56 bp overlap with different orientations; Module 5),

Obp 99b and Obp99d (located 1298 bp apart in different orientation

with one intervening gene, Dup99B; Module 15), Or42a and Or42b

(located 4231 bp apart with one intervening gene, Tsp42A; Module

19) and Or33a and Or33b (located 464 bp apart; Module 14).

Strong negative correlations that reflect the antagonistic regulation

of chemoreceptor gene expression described above were also

observed, e.g. in Module 8. Obp76a (a.k.a. Lush), which binds the

courtship pheromone cis-vaccenyl acetate [31] shows a strong

positive correlation with Or67d, the transcript that encodes the

receptor for cis-vaccenyl acetate [32,33], and a strong negative

correlation with Gr64a and Gr64c (Module 4). However, based on

previously published spatial expression patterns of chemoreceptor

genes [6,10,19,34,35] there appears to be no overall obvious

correlation between spatial expression patterns and transcriptional

covariance. With some exceptions, it appears that by and large Obp

genes are segregated in modules that are distinct from modules that

contain Or and Gr genes (e.g. Modules 7, 8, 15), and Or and Gr genes

are frequently intermixed within covariant ensembles, e.g. Modules

14, 19 and 20 (Figure 8; Table S3). The transcript that encodes the

ubiquitous odorant co-receptor Or83b [6] is found in module 17.

Figure 3. Differential and sexually dimorphic expression of chemoreceptor genes between larvae and adults. Average fluorescent
intensities are shown corresponding to expression of chemosensory genes within the Gr22, Obp19, Obp50, Obp56, Obp57, and Or43 gene clusters in
larvae (top panels), adult virgin females (center panel), and adult virgin males (bottom panels). None of the clusters shown contain intervening genes.
Note the dramatic differences in expression patterns between larvae and adults with strict larva-specific expression of Gr22d, Obp56b, and Obp56c,
the extensive sexual dimorphism among adults, and the apparently independent regulation among genes within the same cluster.
doi:10.1371/journal.pgen.1000681.g003

Plasticity of the Chemoreceptor Repertoire
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The CO2 co-receptor Gr63a [36] is in Module 16, while its

counterpart Gr21a [36,37] forms part of Module 13, indicating that

Gr63a and Gr21a expression is not closely correlated in the range of

environmental conditions investigated in this study. Interestingly,

Gr32a and Gr68a, which have both been implicated in pheromone

recognition during the Drosophila courtship ritual [38,39] occur

together in Module 16 (Figure 8; Table S3).

Analysis of enrichment for shared transcription factor binding

motifs is restricted due to the small size of the modules.

Nevertheless, we analyzed in each module 59 untranslated regions

for enrichment of 62 putative transcription factor binding motifs.

We found enrichment in module 15 of a transcription factor

binding site for mirr shared by Obp83g and Obp99b (P = 0.03), in

module 19 enrichment of a transcription factor binding site for pros

shared by a5 and Or22b (P = 0.01), and in module 20 enrichment

of a transcription factor binding site for Abd-B shared by Or49b,

Gr64d, and Gr93a (P = 0.00035). However, even though some

promoter regions that control cell-specific expression of odorant

receptors have been identified [40,41], transcription factors that

control expression of Or, Gr and Obp genes remain largely

unknown and may not be represented among the group of

common transcription factors which we analyzed.

Discussion

The olfactory and gustatory systems in Drosophila melanogaster

have been well characterized [4,6–12,19], but the central problem

of how ecologically relevant environmental conditions affect

transcriptional variation in expression of the chemoreceptor

repertoire has not been addressed previously in a systematic

manner. As chemoreceptors are distributed over the entire body of

the fly, including the third antennal segment, maxillary palps,

proboscis, cibarial taste organs, tarsi, wing margins and the female

abdominal reproductive plate, we chose to use a comprehensive

analysis whole flies rather than heads. Consequently, some

differences in expression between the sexes may be due to

expression of chemoreceptors in non-chemosensory tissues. It is of

interest to note that expression of odorant receptors in non-

chemosensory organs has been observed using similar customized

cDNA microarrays in both mice [42] and humans [43].

Figure 4. Differential expression of chemoreceptor genes during ageing. Only chemoreceptor genes of which expression levels change
significantly after Bonferroni correction between 7–10 day-old (open bars) and 6 week-old (solid bars) virgin females (A) or males (B) are shown. Red
bars indicate chemoreceptor genes with altered expression in aged flies in both sexes. Note the preponderance of Obp genes. Arrowheads indicate
chemoreceptor genes of which expression changes in opposite directions between males and females (Obp51a, Obp99b, Obp56e, Obp57a, and
Obp57c).
doi:10.1371/journal.pgen.1000681.g004

Plasticity of the Chemoreceptor Repertoire
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One should note that, in the absence of corresponding

quantitative information about the chemosensory proteome, the

relationship between transcript abundance levels and chemosensory

function must be interpreted with caution. Although to date there is

no evidence for posttranslational modifications of Obps, Ors and

Grs might be subject to posttranslational regulatory mechanisms

Figure 5. Differential expression of chemoreceptor genes after mating. Only chemoreceptor genes of which expression levels change
significantly after Bonferroni correction between virgin (open bars) and mated (solid bars) females (A) or males (B) are shown. Red bars indicate
chemoreceptor genes with altered expression after mating in both sexes. Note the preponderance of Obp genes. Differential expression of Gr and Or
genes after mating is only observed in females. Arrowheads indicate chemoreceptor genes of which expression changes in opposite directions
between males and females (Obp8a, Obp19a, Obp57b, and Obp57c).
doi:10.1371/journal.pgen.1000681.g005

Plasticity of the Chemoreceptor Repertoire
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that may affect the amount of active gene product. Similarly,

stability of mRNA has been postulated as a contributing factor to

phenotypic variation in olfactory response to benzaldehyde

associated with polymorphisms in the Obp99 gene cluster in a

population of wild-derived inbred lines of Drosophila melanogaster [44].

Here, we have shown that transcriptional profiles of chemo-

sensory genes in D. melanogaster are highly plastic during early

development and ageing, as a result of mating, and in social

contexts. Expression of chemoreceptor genes is highly sexually

dimorphic and frequently sexually antagonistic, and the extent of

transcriptional responses to changing conditions is heterogeneous

among the chemoreceptor repertoire. Examination of the FlyAtlas

expression data base indicates that Obp50c, Obp56d Obp99a and

Gr32a are expressed in testes, Obp8a, Obp22a, Obp51a, Obp56e,

Obp56f, Obp56g, Obp56i and Or59b in the accessory gland, Obp19c

in the ovaries and Pino in both ovaries, testes and accessory glands,

which suggests pleiotropic functions of these chemoreceptors and

may account in part for the observed sexually dimorphic

expression patterns [45]. In this study we have not included an

analysis of expression of the recently discovered family of

ionotropic odorant receptor (IR) genes, which are expressed in

coeloconic sensilla of the antenna and respond, among others, to

water and amines [46], and which were not represented on our

microarrays. It will be of interest to investigate in future studies

whether these genes show similar plasticity in expression as

observed for the classical chemosensory genes.

A previous study used in situ hybridization to detect GFP

expression of odorant receptors in larvae under the control of

odorant receptor-specific promoters [47] through the GAL4-UAS

binary expression system [48]. This study showed expression of 25

odorant receptors in the Drosophila larval olfactory system and

reported that 14 of these receptors were larval-specific [47].

Figure 6. Regulation of chemoreceptor gene expression by social context. Only chemoreceptor genes of which expression levels change
significantly after Bonferroni correction when flies are reared solitary (open bars) or in same sex groups (solid bars) are shown for females (A) and
males (B). Note the preponderance of Obp genes. Red bars indicate Obp56e and Obp57b which show altered expression in different social contexts in
both sexes. Arrowheads indicate chemoreceptor genes of which expression changes in opposite directions between males and females in opposite
directions.
doi:10.1371/journal.pgen.1000681.g006
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Although most of the larval expressed Or transcripts reported in

this study were also identified on our arrays, the majority of these

Or transcripts was also detectable in adults. There was some

agreement with specificity of odorant receptor expression in larvae

and adults (e.g. Or33a was found to show larval-biased expression

and 10 Or genes were found to be expressed in adults as well as

larvae both by us and others). However, the concordance between

larval specificity detected by GAL4-UAS mediated expression of

GFP in olfactory tissues and direct measurements of transcript

abundance on our arrays from whole flies was generally poor. This

can be due to expression of chemoreceptors in adult tissues not

examined by previous in situ hybridization or reporter gene

expression, differences in detection thresholds between the

techniques used, differences in the strengths of GAL4-linked

odorant receptor promoters in larvae and adults, or possibly

differences in genetic backgrounds between strains used in the two

studies.

A previous study reported sexually dimorphic expression of

Obp99a and Obp99b [49]. Here we showed that sexual dimorphism in

expression of chemosensory genes is widespread. This is especially

evident among Obp genes, but the apparent prevalence of sexual

dimorphism among these genes may be caused by their higher

expression levels compared to those of Or and Gr genes. These broad

sex-dependent differences in levels of expression of chemosensory

Figure 7. Social odor induced differential expression of chemoreceptor genes. Only chemoreceptor genes of which expression levels
change significantly after Bonferroni correction between single fly controls (solid bars) and single flies exposed to same sex odor or opposite sex odor
(open bars) are shown for females ((A), exposed to female group odor; and (C), exposed to male group odor) and males ((B), exposed to male group
odor; and (D), exposed to female group odor). Red bars indicate Obp83b which shows altered expression in both sexes when single flies are exposed
to male group odor, but in opposite directions between the sexes (arrowhead). Note that differential chemoreceptor gene expression is more
prominent when flies are exposed to opposite sex group odor than to same sex group odor.
doi:10.1371/journal.pgen.1000681.g007
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genes suggest that males and females experience, interact with, and

adapt to their chemical environments differently; for example,

females have to evaluate the suitability of oviposition sites.

The independent regulation of genes within clusters, which we

observed, is perhaps not surprising, as it may be a necessary

requirement for subfunctionalization or neofunctionalization

during evolution when daughter genes of duplication events either

allow refinement and/or expansion in perception of the chemical

environment or the acquisition of specialized chemosensory

functions. Such functional diversification is reflected in the

extensive sexual dimorphism where duplication of an ancestral

gene may have resulted in daughter genes with different functions

in males and females [49]. Similarly, gene duplication may enable

adaptations of daughter genes to specialized chemosensory needs

at different developmental stages (Figure 3).

Transcript profiles change drastically after mating, not only in

females but also in males. The altered transcript abundance of

Obp19d, Obp28a, Obp56a, Obp56g, and Obp99c that we observe in

mated females (Figure 5) is consistent with a previous study which

compared mating-induced changes of whole genome transcript

profiles on high density oligonucleotide microarrays [50]. It is of

interest that some odorant binding proteins, including Obp56e,

Obp56f, Obp56g and Obp56i are highly expressed in the male

accessory glands [50]. Thus, in addition to a function in olfaction,

these odorant binding proteins may function also (or primarily) as

carriers for physiologically active ligands that are transferred from

the male into the female during copulation. Chemically-induced

physiological and behavioral changes in females upon mating have

been well characterized [51,52]. Biological consequences of

mating in males have also been documented [23–25].

Both volatile chemicals and cuticular hydrocarbons signal social

information in Drosophila. The gustatory receptor Gr68a, which is

expressed in chemosensory cells in the male tarsi, has been

implicated in tactile chemosensation during courtship [38],

together with Gr32a [39]. Recognition of the courtship phero-

mone, 11-cis-vaccenyl acetate, is mediated via the odorant binding

protein Lush (Obp76a) and the Or67d receptor [31–33]. The

expression of transcripts for Obp76a and Or67d is highly correlated

across the range of environments studied here, as is expression of

transcripts for Gr32a and Gr68a. A large ensemble of chemore-

ceptor genes, however, is sensitive to the social environment and

modulated based on social context and, especially, opposite sex

group odor (Figure 7). The identities of the odorants that are

instrumental in mediating social interactions are not known,

neither are the mechanisms that give rise to alterations in

chemosensory gene expression levels.

Figure 8. Correlated transcriptional response in phenotypic plasticity. (A) Clustering of 172 genes into 20 modules that show correlated
transcriptional responses across environmental conditions. The modules populate the main diagonal and are ordered by decreasing strength from
the upper left; the genes are ordered from left to right and from top to bottom as in Table S3. Color has been used to indicate strength of correlation
as illustrated in the legend. Within a module, each colored square reports the correlation in transcriptional response between a pair of genes. Pairs of
genes that do not share a module are given the color that corresponds to the average absolute pairwise correlation between genes from those
modules. (B–D) Magnification of Module 4 (B), Module 11 (C), and Module 15 (D) with gene labels.
doi:10.1371/journal.pgen.1000681.g008
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POU-domain transcription factors, such as acj-6, have been

implicated in mediating expression of odorant receptors in

Drosophila olfactory neurons [40,53]. A phylogenetic analysis of

conserved regulatory elements among sequenced genomes of 12

Drosophila species has identified regulatory elements that act

combinatorially to promote or repress the expression of specific

odorant receptors in the olfactory sensilla of the maxillary palp

[41]. A similar array of regulatory elements acted on by various

transcription factors may also regulate Or gene expression in the

antenna. Similar elements that regulate expression of Obp genes or

Gr genes have not yet been identified. It is not clear whether

transcriptional regulators and their binding sites that fine-tune

transcription of Or genes in response to environmental changes are

the same as those that control Or gene expression during

development. Our results show that such fine tuning is exquisite

in that genes that are located in close proximity within clusters can

undergo independent transcriptional regulation (e.g. Figure 3).

Elegant electrophysiological studies have provided a detailed

characterization of the molecular response profiles of a large

number of odorant receptors in D. melanogaster [18,54]. We found

that four odorant receptors with documented odorant response

profiles that all respond to alcohols and aliphatic esters [54] are

contained in module 14 (Or35a, Or47a, Or85b and Or98a).

Together with the observation that two of the four genes in

Module 4 (Or67d and Obp76a [Lush]) encode proteins that are

known to respond to cis-vaccenyl acetate, it is reasonable to

extrapolate that the observed covariance in expression may have

functional significance. However, the nature of naturally occurring

ecologically relevant chemical signals that are discriminated by

these receptors and the functional relationships between odorant

binding proteins and odorant receptors and/or gustatory receptors

remain largely unknown.

Our focused analysis of the chemoreceptor gene families using

cDNA microarrays that provide enhanced resolution over

previously used Affymetrix GeneChips revealed that the ensemble

of chemosensory genes fractionates into 20 relatively small

environmentally correlated modules (Figure 8). This observation

shows that plastic transcriptional responses of chemoreceptor

genes to a range of environments is modular, but at the same time

indicates a great capacity of groups of chemosensory genes to alter

their expression levels independently under a wide range of

external environmental conditions.

Methods

Drosophila Rearing
Isogenic Drosophila melanogaster Canton S (B) w2 flies were used for

all experiments and grown under standard culture conditions

(cornmeal-molasses-agar-medium, 25uC, 60–75% relative humid-

ity, 12-hr light-dark cycle) for 4–5 days, unless otherwise specified.

Larvae were collected at the 3rd instar stage. Sexes were reared

separately after eclosion, except where indicated otherwise.

Modulation of Gene Expression during Development
Chemoreceptor gene expression was compared between larval

and adult samples, prepared by pooling an equal number of

females and males. In addition, we compared young flies (10-day

old) and old flies (6 week-old), transferred to fresh food every two

days.

Sexual Dimorphism and Modulation of Gene Expression
after Mating

Chemoreceptor gene expression was compared between virgin

females and virgin males, between virgin and mated females, and

between virgin and mated males. To ensure that males had mated,

we placed single males in vials with two females and collected

males for microarray analysis when they were 5 days old, if females

had oviposited.

Modulation of Gene Expression by Social Context
Chemoreceptor gene expression was compared between flies

reared in isolation and reared in a group of 25 same sex flies. To

assess to what extent modulation of gene expression was

dependent on social odor cues, we exposed single males or

females to the odor from groups of flies of the same sex or opposite

sex. Single flies were separated from groups of flies behind a screen

of two layers of cheese cloth that prevented physical interactions

(visual contact does not occur as our Canton S (B) strain carries a

white mutation that renders them blind).

cDNA Microarrays
We amplified 400–600 bp fragments from genomic DNA or

cDNA corresponding to exon sequences of 50 Obp genes, 59 Or

genes, 59 Gr genes, four genes encoding antennal specific proteins

(a5, a10, smi21F, Os9), plus two housekeeping genes as positive

controls (Gapdh1 and actin-5C), and Gal4 and LacZ as negative

controls (Table S4). The identities of all amplicons were verified by

sequencing and arrays were printed on a Genetix QArray2

microarray printer at the Genomic Sciences Laboratory at North

Carolina State University. Experiments comparing gene expres-

sion between larvae and adult flies used arrays with four technical

replicates per slide; all other experiments used arrays containing

eight technical replicates per slide.

For hybridization to the arrays, fly samples were collected and

frozen between 1:00 and 3:00 pm. RNA samples were extracted

from 25 flies per biological replicate, subjected to one round of

amplification using the MessageAmp aRNA kit from Ambion

Biosystems, Inc. (Foster City, CA) and 5 mg of each RNA sample

was labeled with Cy3 or Cy5 fluorescent dyes (Amersham,

Pharmacia, Piscataway, NJ; cat. # PA23001 and 25001). Labeled

samples were purified using the QIAquick PCR Purification Kit

(Qiagen, Inc., Valencia, CA). Six biological replicates of each

sample were used for each experiment and included dye swaps to

control for possible dye effects. Hybridization was performed for

60 h in a water bath at 42uC in the dark.

Arrays were scanned in a GenePix 4000B scanner, and raw data

gathered by GenePix Pro software.

Microarray Data Analysis
The raw data were subjected to log2 transformation and first

normalized using a mixed analysis of variance (ANOVA) model

accounting for dye, array, technical replicates (nested within array),

and dye6array effects, where array, rep (array) and dye6array are

random effects. Residuals were then extracted from the model and

used for further ANOVA analyses to assess significant differences in

gene expression among the samples. We used factorial, mixed

model ANOVA according to the model: Residual =m+dye+
array+rep (array)+stage/sex/condition+e, where m represents the

overall mean value and e the error variance, to further partition

variation of transcriptional expression between dye (fixed), array

(random), technical replicates nested within array (rep (array)

random) and stage (or sex, or treatment) terms by gene for each

experiment. We also extracted residuals from raw data across all

experiments after mixed model normalization to account for

technical variation for cluster analysis. We used Modulated

Modularity Clustering (MMC) [29] to organize the 172 genes into

modules of correlated transcripts. MMC returned 20 modules as

illustrated in Figure 8. Statistically significant differences were
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determined following normalization of the data by mixed model

ANOVA. Bar graphs in the figures show fluorescent intensities of

the raw data standardized for average array intensity and dye effect

by adjusting fluorescent intensities based on the overall mean

fluorescent intensities across arrays and between dyes. Comparisons

of chemoreceptor gene expression between virgin females, mated

females, virgin males and mated males employed a loop design. The

data normalization procedure and analysis were identical except for

an additional post-hoc pairwise comparison Student’s t-test. A

detection threshold was established based on two standard

deviations from the mean lacZ signal intensity of the negative lacZ

control. A Bonferroni corrected significance threshold of P,5.68

E-05 was established as a criterion for statistical significance.

Supporting Information

Figure S1 Correlation between Cy3 and Cy5 hybridization

intensities. To assess dye effects we performed hybridization with a

mixture of equal aliquots from the same RNA sample, extracted

from an equal number of male and female flies, labeled separately

with Cy3 and Cy5. There were four replicates of each cDNA

probe on the array. Note the close correlation between Cy3 and

Cy5 hybridization intensities with only minor dye effects, skewed

towards Cy3 at low signal intensities and towards Cy5 at high

fluorescent intensities.

Found at: doi:10.1371/journal.pgen.1000681.s001 (1.88 MB EPS)

Figure S2 Correlation between chemoreceptor gene hybridiza-

tion signal intensities on Affymetrix and cDNA microarrays. The

figure shows the correlation between fluorescence intensities of an

Affymetrix microarray and our customized cDNA microarray for

independent RNA samples extracted from young mated adult

male flies. The Affymetrix microarray data are obtained from

[21]. The scatter diagram includes 174 comparisons, excluding the

lacZ and GAL4 genes, which were included on the cDNA

microarrays as background controls.

Found at: doi:10.1371/journal.pgen.1000681.s002 (1.20 MB EPS)

Table S1 Genes that are differentially expressed in larvae and

adult flies.

Found at: doi:10.1371/journal.pgen.1000681.s003 (0.09 MB PDF)

Table S2 Genes that show sexual dimorphic expression.

Found at: doi:10.1371/journal.pgen.1000681.s004 (0.09 MB PDF)

Table S3 MMC analysis of array data.

Found at: doi:10.1371/journal.pgen.1000681.s005 (0.10 MB PDF)

Table S4 Primer pairs of array probes.

Found at: doi:10.1371/journal.pgen.1000681.s006 (0.07 MB PDF)
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