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Abstract: Bacterial biofilms are a growing problem as it is a major cause of nosocomial infection
from urinary catheters to chronic tissue infections and provide resistance to a variety of antibiotics
and the host’s immune system. The effect of pectolinarin on the biofilm formation in Enterococcus
faecalis, Enterococcus faecium, Escherichia coli, Streptococcus mutans, Streptococcus sobrinus, Staphylococcus
aureus, Pseudomonas aeruginosa, Cutibacterium acnes, and Porphyromonas gingivalis was studied in
TSBg (tryptic soy broth supplemented with 1% glucose). Pectolinarin inhibited biofilm formation of
E. faecalis (IC50 = 0.39 µg/mL), E. faecium (IC50 = 0.19 µg/mL), E. coli (IC50 = 0.25 µg/mL), S. mutans
(IC50 = 1.2 µg/mL), S. sobrinus (IC50 = 1.4 µg/mL), S. aureus (IC50 = 0.39 µg/mL), P. aeruginosa
(IC50 = 0.9 µg/mL), P. acnes (IC50 = 12.5 µg/mL), and P. gingivalis (IC50 = 9.0 µg/mL) without
inhibiting the bacterial growth. Pectolinarin also showed increased susceptibility of antibacterial
activity with commercially available antibiotics including ampicillin, vancomycin, streptomycin,
and oxytetracyclin against E. faecalis and E. faecium. Finally, pectolinarin dose-dependently reduced
the expression of genes including cytolysin genes (cylLS, cylR2 and cylM), quorum sensing (QS)
genes (fsrB, fsrC, gelE, ebpA, ebpB, acm, scm and bps), and biofilm virulence genes (esp) of E. faecalis
and E. faecium. Pectolinarin reduced the bacterial biofilm formation, activated the antibacterial
susceptibility, and reduced the bacterial adherence. These results suggest that bacterial biofilm
formation is a good target to develop the antibacterial agents against biofilm-related infections.
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1. Introduction

Bacterial biofilms are microbial communities encased within a complex matrix and
capable of colonizing natural body surfaces such as the epithelium, lungs, and heart, as well
as implanted medical devices such as central venous and urinary catheters, intrauterine
devices, and prosthetic heart valves [1]. The biofilm offers many advantages to bacteria,
including the ability to acquire increased resistance toward antibiotics, which is of particular
importance. This resistance leads to complications in the management of biofilm infections
and limits therapeutic options [2–4]. In addition, bacterial biofilms pose a challenge to the
host immune system [5]. During the past few decades, Enterococcus spp. have emerged as
important healthcare-associated pathogens. The continuing progress of modern medical
care with the overuse of antibiotics has undoubtedly contributed to increase the emergence
of antibiotic resistance among clinical Enterococcus spp. isolates including E. faecium,
which is essentially more drug-resistant than E. faecalis, with more than half of the isolates
appearing resistant to the antibiotics [6]. Healthcare-associated infections due to E. faecalis
and E. faecium more frequently showed resistance to high-level vancomycin and ampicillin,
and unsusceptibility to antibiotics [7,8]. Therefore, it is necessary to control bacterial biofilm
formation to control the bacterial infection [1,8,9].

Pectolinarin is a flavonoid group, which is present in Cirsium spp. that is commonly
known as plume thistle (Figure 1). Cirsium spp. has been reported with bioactive potential
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including antidiabetic, antioxidant, hepatoprotective, anti-inflammatory, vasorelaxant, and
anti-cancer properties [10,11].
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Figure 1. Chemical structure of pectolinarin.

In this work, pectolinarin was tested for anti-biofilm formation of pathogenic bacteria
for the candidate as an antibiotic’s adjuvant. Pectolinarin showed inhibitory effect of the
biofilm formation and thereby increasing the susceptibility of antibiotics. These results
indicate that pectolinarin has the potential as an antibacterial adjuvant to treat the biofilm-
related infections.

2. Results
2.1. Pectolinarin Inhibited the Biofilm Formation of Bacteria

The bacterial biofilm is important for bacteria to survive from the treatment of an-
tibiotics or a hard environment. Pectolinarin was tested and showed the dose-dependent
inhibition of bacterial biofilm formation by E. faecalis (IC50 = 0.39 µg/mL), E. faecium
(IC50 = 0.19 µg/mL), E. coli (IC50 = 0.25 µg/mL), S. mutans (IC50 = 1.2 µg/mL), S. sobri-
nus (IC50 = 1.4 µg/mL), S. aureus (IC50 = 0.39 µg/mL), P. aeruginosa (IC50 = 0.9 µg/mL),
P. acnes (IC50 = 12.5 µg/mL), and P. gingivalis (IC50 = 0.9 µg/mL) (Table 1, Figure 2,
Supplementary Figure S1).

Table 1. Pentoliniums inhibited biofilm formation of bacteria spp. (IC50 value).

Strain Strain Number IC50 (Half Maximal Inhibitory
Concentration; µg/mL) Source

Enterococcus faecalis CCARM 5511 0.39
Purchased from KACC (Korean
Agricultural Culture Collection,

Wanju, Korea), CCARM (Culture
Collection of Antimicrobial

Resistant Microbes, Seoul, Korea),
or KCTC (Korean Collection for
Type Cultures, Daejon, Korea)

Enterococcus faecium KACC11954 0.19
Escherihia coli KACC11598 0.25

Streptococcus mutans KACC16833 1.2
Streptococcus sobrinus CCARM3506 1.4
Staphylococcus aureus KCTC5809 0.39

Pseudomonas aeruginosa KACC14021 0.9
Cutibacterium acnes CCARM9009 12.5

Porphyromonas gingivalis KCTC5352 0.9

Pectolinarin exhibited the strongest inhibitory effect of biofilm formation against
E. faecalis and E. faecium, so those bacteria were used for further studies.
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Figure 2. Pectolinarin inhibited biofilm formation of E. faecalis and E. faecium. Biofilm of E. faecalis and
E. faecium was induced in medium supplemented with pectolinarin at the indicated concentrations at
37 ◦C for 24 h. Data are the mean values ± SD of triplicate experiments.

2.2. Pectolinarin Increased the Susceptibility of E. faecalis and E. faecium to
Commercialized Antibiotics

Biofilm formation was performed as described above, and the bacterial growth in
the presence or absence of pectolinarin (PEC) with ampicillin (AMP), vancomycin (VAN),
oxytetracycline (OXY), or streptomycin (STR) was tested after an additional 24 h. Pec-
tolinarin increased the bacterial susceptibility to antibiotics regardless of whether the
bacteria showed resistance against the antibiotics (Figure 3). An amount of 1.56 µg/mL
of pectolinarin treatment significantly activated the antibacterial activity of ampicillin,
which reduced the viable cells to 0.9% compared with 9% of the only-ampicillin treatment
condition. Pectolinarin treatment also reduced the bacterial viability by approximately
10% to 20% compared with only oxytetracycline, streptomycin, or vancomycin treatment
(Figure 3a). A total of 0.39 µg/mL of pectolinarin treatment also approximately increased
by 10% to 20% the antibacterial activity of ampicillin, oxytetracycline, streptomycin, and
vancomycin against E. faecium (Figure 3b).

2.3. Pectolinarin Reduced Bacterial Adherence to T24 Cells in a Dose-Dependent Manner

Pectolinarin showed significant inhibition of biofilm formation at 0.01–50 µg/mL.
Microscopic analysis revealed that pectolinarin inhibited adhesion of the bacteria to the
human urinary bladder cancer T24 cells (Figure 4) without inhibition of the growth of
T24 cells (data not shown). Especially, 0.01 µg/mL of pectolinarin treatment decreased
E. faecium adherence by 26% compared to planktonic bacteria.

2.4. Pectolinarin Did Not Affect Bacterial Growth

Several antimicrobial compounds also inhibit bacterial biofilm formation because
antibiotics kill the bacteria and indirectly decrease biofilm formation [12]. To test whether
the biofilm formation inhibition of pectolinarin was due to the antibacterial activity, E.
faecalis and E. faecium were treated with 100 µg/mL of pectolinarin for 24 h. Pectolinarin,
despite its notable inhibition of biofilm formation, did not show any effect on the bacterial
growth (Figure 5).
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Figure 3. Pectolinarin increased antibiotic susceptibility. (a) Pectolinarin increased the susceptibility of
E. faecalis to conventional antibiotics. Biofilms formed for 24 h by growing E. faecalis in TSBg followed
by treatment with OXY (3.125 µg/mL), AMP (6.25 µg/mL), STR (100 µg/mL), or VAN (100 µg/mL)
alone or in combination with pectolinarin (0.39 and 1.56 µg/mL) for 24 h. (b) Pectolinarin increased
the susceptibility of E. faecium to conventional antibiotics. Biofilms formed for 24 h by growing E. fae-
cium in TSBg followed by treatment with OXY (3.125 µg/mL), AMP (6.25 µg/mL), STR (100 µg/mL),
or VAN (100 µg/mL) alone or in combination with pectolinarin (0.01 and 0.39 µg/mL) for 24 h. Data
are the mean values ± SD of triplicate experiments. * = p < 0.05 was considered significant.
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Figure 4. Pectolinarin reduced bacterial adherence to host cells. (a) Pectolinarin reduced E. faecalis
adherence to the host cells. After E. faecalis was allowed to infect T24 cells for 24 h, cultures were
washed with PBS, and adhered bacterial cells were counted by plating. (b) Pectolinarin reduced
E. faecium adherence to the host cells. After E. faecium was allowed to infect T24 cells for 24 h, cultures
were washed with PBS, and adhered bacterial cells were counted by plating. Data are the mean
values ± SD of triplicate experiments.



Antibiotics 2022, 11, 598 6 of 12

Antibiotics 2022, 11, x FOR PEER REVIEW 6 of 13 
 

2.4. Pectolinarin Did Not Affect Bacterial Growth 
Several antimicrobial compounds also inhibit bacterial biofilm formation because an-

tibiotics kill the bacteria and indirectly decrease biofilm formation [12]. To test whether 
the biofilm formation inhibition of pectolinarin was due to the antibacterial activity, E. 
faecalis and E. faecium were treated with 100 μg/mL of pectolinarin for 24 h. Pectolinarin, 
despite its notable inhibition of biofilm formation, did not show any effect on the bacterial 
growth (Figure 5). 

 
Figure 5. Pectolinarin did not inhibit the growth of E. faecalis and E. faecium. (a) 100 μg/mL of pecto-
linarin with OD600 = 0.1 of E. faecalis was incubated at 37 ℃ for 24 h. (b) 100 μg/mL of pectolinarin 
with OD600 = 0.1 of E. faecium was incubated at 37 °C for 24 h. The means and standard deviations 
from at least triplicated determinations are represented. Data are the mean values ± SD of triplicate 
experiments. 

Figure 5. Pectolinarin did not inhibit the growth of E. faecalis and E. faecium. (a) 100 µg/mL of
pectolinarin with OD600 = 0.1 of E. faecalis was incubated at 37 ◦C for 24 h. (b) 100 µg/mL of
pectolinarin with OD600 = 0.1 of E. faecium was incubated at 37 ◦C for 24 h. The means and standard
deviations from at least triplicated determinations are represented. Data are the mean values ± SD of
triplicate experiments.

2.5. Pectolinarin Inhibited the Expression of Genes Related to the Biofilm Formation and Virulence
of Bacteria

To understand the molecular basis of pectolinarin inhibition of biofilm formation, the
expression of genes related to biofilm-associated factors, Cytolysin and QS system, was
tested by qRT-PCR. After treatment with 0.01 to 25 µg/mL of pectolinarin, the expressions of
biofilm-associated factors including ebpB (IC50 = 0.09 µg/mL), esp (IC50 = 0.01 µg/mL), and
gelE (IC50 = 0.01 µg/mL) in E. faecalis and acm (IC50 = 0.01 µg/mL), bps (IC50 = 0.01 µg/mL),
ebpA (IC50 = 0.01 µg/mL), esp (IC50 = 0.09 µg/mL), gelE (IC50 = 0.09 µg/mL), and scm
(IC50 = 0.01 µg/mL) in E. faecium were significantly decreased (Figures 6a and 7a, respec-
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tively). The expressions of fsrB (IC50 = 0.01 and 0.09 µg/mL) and fsrC (IC50 = 0.01 µg/mL)
genes comprising the Fsr quorum-sensing system were reduced by treatment of pec-
tolinarin (Figures 6b and 7b). The treatment of pectolinarin also dose-dependently re-
duced the expression of genes related with Enterococcal cytolysin synthesis including cylR2
(IC50 = 0.09 µg/mL), cylM (IC50 = 0.09 µg/mL), and cylLS (IC50 = 0.09 µg/mL) (Figure 6c).
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Figure 6. Pectolinarin inhibited the expression of genes related to the biofilm formation and bacterial
virulence in E. faecalis. (a) Pectolinarin inhibited the expression of genes for biofilm formation
in E. faecalis. (b) Pectolinarin inhibited the expression of genes for the quorum-sensing system in
E. faecalis. (c) Pectolinarin inhibited the expression of genes for the bacterial virulence in E. faecalis.
Total RNA was extracted from biofilm control bacteria and the biofilm-induced bacteria that were
treated with the indicated concentration of pectolinarin, converted to cDNA, and analyzed by qPCR
with the respective primers. The means and standard deviations from at least triplicate determinations
are represented. * = p < 0.05 was considered significant.
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Figure 7. Pectolinarin inhibited the expression of genes related to the biofilm formation and the
bacterial virulence in E. faecium. (a) Pectolinarin inhibited the expression of genes for biofilm formation
in E. faecium. (b) Pectolinarin inhibited the expression of genes for the quorum-sensing system in
E. faecium. Total RNA was extracted from biofilm control bacteria and the biofilm-induced bacteria
that were treated with the indicated concentration of pectolinarin, converted to cDNA, and analyzed
by qPCR with the respective primers. The means and standard deviations from at least triplicate
determinations are represented. * = p < 0.05 was considered significant.

3. Discussion

Pathogenic bacteria such as E. faecalis, E. faecium, E. coli, P. gingivalis, S. mutans,
S. sobrinus, S. aureus, C. acnes, and P. aeruginosa contribute to the important global cause
of nosocomial infections including community- and hospital-acquired infections [7]. This
causes community spreading of pathogenic bacteria that leads to a large increase in the
at-risk and high cost to controlling pathogens [7]. The bacterial biofilm reduced the an-
tibacterial susceptibility that make it difficult to eradicate pathogenic bacteria. Enterococcus
spp. in biofilms are more resistant to antibiotics than planktonic enterococci are [8,13]. The
development of natural products with bioactive ingredients will, therefore, help over-
come the issue of drug resistance in bacteria [14]. Cirsium species are considered edible
plants and are used as various ailments including hemorrhaging, jaundice, and gastroin-
testinal disorders [10,11]. Pectolinarin is a secondary metabolite of Cirsium spp. with
demonstrated biological activities including antimicrobial, antioxidant, antidiabetic, and
anti-inflammatory activity [10,11]. In this study, pectolinarin was identified as an inhibitor
of biofilm formation caused by bacteria including E. faecalis, E. faecium, E. coli, P. gingivalis,
S. mutans, S. sobrinus, S. aureus, C. acnes, and P. aeruginosa (Figure 2). Pectolinarin also
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showed increasing susceptibility of an antibacterial effect in combination with antibiotics.
Even though E. faecalis and E. faecium showed resistance against vancomycin, pectolinarin
decreased their growth by approximately 20%. Pectolinarin dose-dependently decreased
bacterial adherence to T24 cells (Figure 4). These results suggest that pectolinarin should be
useful as the inhibitor of infection of E. faecalis and E. faecium. Pectolinarin dose-dependently
inhibited the QS system and virulence factor expression (Figures 6 and 7). Virulence factors
contribute to the pathogenesis of E. faecalis and E. faecium and many of them were involved
in bacterial adhesion to host cells or abiotic surfaces, leading to biofilm formation. In
addition, genes for biofilm-associated factors and virulence factors including acm, scm,
ebpA, ebpB, esp, bps, gelE, cylR2, cylLS, and cylM were significantly down-regulated by the
treatment of pectolinarin (Figures 6 and 7). Therefore, the QS system, virulence factor
expression, bacterial adherence, and antibiotic resistance were connected with each other,
and thus, biofilm inhibition is for not only the biofilm inhibition but also the reduction in
the bacterial survival and infection.

In conclusion, pectolinarin inhibited the bacterial QS system (Figures 6 and 7) to block
biofilm formation (Figure 2), enhanced the antibiotic susceptibility (Figure 3), and reduced
bacterial adherence to the human host cell (Figure 4). Additional studies including the
determination of the molecular mechanism, the relation between adherence, biofilm forma-
tion, and virulence, and preclinical animal experiments increase the proof for pectolinarin
as an agent for a new antibacterial agent or adjuvant.

4. Materials and Methods
4.1. Bacterial Strains

Strains used in this study are listed in Table 1. E. faecalis, E. faecium, E. coli, and S.
aureus were maintained in tryptic soy broth (TSB) and tryptic soy broth supplemented with
1% glucose (TSBg). S. mutans and S. sobrinus were maintained in Brain Heart Infusion (BHI)
broth. P. gingivalis was maintained in tryptic soy broth supplemented with 10% defibrinated
horse blood agar. P. aeruginosa was maintained in nutrient agar, and C. acnes was maintained
in Reinforced Clostridial agar. All cultures were incubated at 37 ◦C [13,15,16].

4.2. Biofilm Formation Assay

Biofilm formation was performed using TSBg as previously described [12,15,17–21].
E. faecalis, E. faecium, E. coli, S. mutans, S. sobrinus, S. aureus, P. aeruginosa, C. acnes, and
P. gingivalis were added (OD600 = 0.1) to individual wells of 96-well flat-bottomed plates.
Pectolinarin with concentrations ranging from 0.01 to 100 µg/mL was added to respective
wells, and the cells were incubated at 37 ◦C for 24 h. The inhibition of biofilm formation
by compound was detected by the crystal violet staining method. Briefly, after 24 h of
treatment, the supernatant was removed and the wells were rinsed with physiological
saline. In addition, 1% crystal violet (CV) solution was added to each well and incubated
for 30 min. The excess of dye was removed by washing the plates under running water. The
bound CV was released by adding 125 µL of 30% acetic acid followed by an incubation for
15 min at room temperature. The absorbance was measured at 595 nm using a microplate
reader (Bio Tek Instruments, CA, USA) [15,22].

4.3. The Combinatorial Antibacterial Effects of Pectolinarin with Commercialized Antibiotics

The antibacterial effects by the combinatorial treatment of pectolinarin with antibiotics
were evaluated using the plate-counting method. The bacterial culture at an absorbance of
OD600 = 0.1 was prepared, and 1 mL of the bacterial suspension with pectolinarin (final
concentrations of 1.56, 0.39, 0.09, and 0.01 µg/mL) was added. Planktonic bacteria were
removed using sterile saline and the medium (TSBg and Pectolinarin) was incubated for
24 h. The bacteria in the biofilm were enumerated using the plate-counting method [12].
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4.4. Bacterial Adherence Assays

The human urinary bladder carcinoma T24 cell was purchased from the Korean Cell
Line Bank (Seoul, Korea). T24 cells were maintained in RPMI 1640 media supplemented
with 10% fatal bovine serum in a 5% CO2 incubator at 37 ◦C [12,23,24]. T24 cells were
added to 24-well plates (0.5 × 106 cells per well) for 24 h prior and co-incubated with
0.01–50 µg/mL of pectolinarin-treated E. faecium or E. faecalis (100 MOI, 5 × 107 CFU
per well) for 24 h. Cells were then washed three times with PBS. Gram iodine mordant
was applied for 1 min and briefly washed with PBS. To remove any nonspecific crystal
violet, a Gram decolorizer solvent was added to the plate for 30 s. After washing with PBS
until the PBS ran clear, safranin was applied for 30 min. Samples were assessed under a
microscope [25,26].

4.5. Time Kill Assay

Growth curves were obtained as previously described with slight modification [22].
E. faecalis and E. faecium cultures were prepared with tryptic soy broth at an OD600 = 0.1.
Pectolinarin (100 µg/mL) was added and then the cells were incubated at 37 ◦C. Growth
was evaluated by measuring the optical density of OD600 using a microplate reader after 0,
1, 2, 4, 8, 12, 24, and 72 h [11].

4.6. Quantitative RT-PCR Analysis

Bacterial cultures and the pectolinarin treatment condition was the same as the method
to check the biofilm formation inhibition. Total RNA was isolated using TRIzol reagent
(Life Technology, Thermo Fisher Scientific, MA, USA) according to the manufacturer’s
instructions, and the reverse transcriptase (NanoHelix, Daejeon, Korea) reaction was pre-
pared using 1 µg of RNA to obtain cDNA. qRT-PCR was carried out using the 2X Sybr
Green qPCR Mater Mix (CellSafe, Yongin, Korea). Primer sets for the fsrB, fsrC, gelE, acm,
scm, ebpA, ebpB, esp, bps, cylM, cylR2, and cylLS genes are listed in Table 2. Genes encoding
23 sRNA and tufA were used as endogenous controls.

Table 2. Gene-specific primers used for real-time RT-PCR.

Genes Primer Sequence: 5′ to 3′ Function Reference

For E. faecium

esp F: CCACGAGTTAGAGGGAACAG
R: TTGGAGCCCCATCTTTTTCA Biofilm formation [13]

bps F: TATCAGCAACAAGCGGTCAA
R: AATCCTGCCCTTTTTCGATT Biofilm formation [27]

fsrC F: GCTTATTTGGAAGAACAACGTATCAA
R:CGAAACATCGCTAGCTCTTCGT Efae regulator [12]

gelE F: CGGAACATACTGCCGGTTTAGA
R: TGGATTAGATGCCACCCGAAAT Gelatinase [12]

fsrB F: TGCTCAAAAAGCAAAGCCTTATAA
R: GATGACGAGACCGTAGAGTATTACTGAA Efae regulator [12]

ebpA F: ACCAAGCCAGACGAAATAGAAGAAG
R: ATTGTTTTGGTCAGGTGCATCATAGA Biofilm-associated pili [27]

acm F: TCAGCAGTAATGTCACTTCGTTG
R: GAATAGGCTGTTCATCTGCTCG Gelatinase [28]

scm F: CTAACTGGTAACTATGGCTTGT
R: GTCCGTGCTGTCACTTGT Gelatinase [28]

tufA F: TACACGCCACTACGCTCAC
R: AGCTCCGTCCATTTGAGCAG Housekeeping gene [12]
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Table 2. Cont.

Genes Primer Sequence: 5′ to 3′ Function Reference

For E. faecalis

gelE F: CGFAACATACTCAACGTTTGAC
R: TGGATTAGATGCADDDGAAAT Gelatinase [21]

esp F: GCATCAGTATTAGTTGGT
R: TTCCTTGTAACACATCAC Biofilm formation [21]

fsrB F: TGCYCAAAAAGCAAAGCCTTATAA
R: GATGACGAGACCGTAGAGTATTACTGAA Efae regulator [21]

ebpB F: CGTACAGGAGGCAAGTCTTT
R: AGGTATTCCCCGCTTGATTT Biofilm-associated pili [21]

cylLS F: CTGTTGCGGCGACAGCT
R: CCACCAACCCAGCCACAA Cytolysin toxin [21]

cylR2 F: TTTATTTTTATTGGATATCATTCTGTAGTC
R: TTCGCTCATCTTTTTTGAATACAG Cytolysin regulatory [21]

4.7. Statistical Analysis

All experiments were performed at least three times, and all data are represented as
the mean ± S.D.

5. Conclusions

Pectolinarin showed the reduced bacterial biofilm formation, activated the suscepti-
bility of commercially available antibacterial agents, and reduced the bacterial adherence
to host cells. These results recommend the bacterial biofilm formation as a good target to
develop the antibacterial agents against biofilm-related infections with low cytotoxicity,
and pectolinarin should be a promising candidate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics11050598/s1, Figure S1. Pectolinarin inhibited biofilm formation of (a) E. coli,
(b) S. mutans, (c) S. sobrinus, (d) S. aureus, (e) P. aeruginosa, (f) C. acnes and (g) P. gingivalis. Biofilm of
E. coli, S. mutans, S. sobrinus, S. aureus, P. aeruginosa, C. acnes and P. gingivalis was formed in medium
supplemented with pectolinarin at the indicated concentrations at 37 ◦C for 24 h.
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