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Cancer is a complex disease in which cells progressively accumulate

mutations disrupting their cellular processes. A fraction of these mutations

drive tumourigenesis by affecting oncogenes or tumour suppressor genes,

but many mutations are passengers with no clear contribution to tumour

development. The advancement of DNA and RNA sequencing technologies

has enabled in-depth analysis of thousands of human tumours from various

tissues to perform systematic characterization of their (epi)genomes and tran-

scriptomes in order to identify (epi)genetic changes associated with cancer.

Combined with considerable progress in algorithmic development, this expan-

sion in scale has resulted in the identification of many cancer-associated

mutations, genes and pathways that are considered to be potential drivers

of tumour development. However, it remains challenging to systematically

identify drivers affected by complex genomic rearrangements and drivers

residing in non-coding regions of the genome or in complex amplicons or

deletions of copy-number driven tumours. Furthermore, functional character-

ization is challenging in the human context due to the lack of genetically

tractable experimental model systems in which the effects of mutations can

be studied in the context of their tumour microenvironment. In this respect,

mouse models of human cancer provide unique opportunities for pinpoint-

ing novel driver genes and their detailed characterization. In this review,

we provide an overview of approaches for complementing human studies

with data from mouse models. We also discuss state-of-the-art

technological developments for cancer gene discovery and validation in mice.
1. Introduction
Cancer is a disease in which normal cells are deregulated by disruption of their

cellular processes, resulting in increased proliferation, survival and invasion of

surrounding tissues. This disruption is generally attributed to mutations in so-

called driver genes, which provide cells with a selective growth advantage and

drive their malignant transformation. Broadly speaking, driver genes can be

divided into two classes of genes: oncogenes and tumour suppressor genes

(TSGs) [1]. Oncogenes drive tumour development when activated by mutations

and typically promote cellular proliferation and/or survival [2], whereas TSGs

are inactivated during tumourigenesis and are generally involved in processes

protecting cells from DNA damage and malignant transformation.

Tumours are however not the product of single mutations, but develop pro-

gressively over time through the accumulation of multiple mutations.

Depending on the affected genes, these mutations can increase the fitness or

tumourigenic potential of cells (additional driver mutations), or have no clear

contribution towards tumourigenesis (passenger mutations). Over time, this

accumulation gives rise to subpopulations of cells (subclones) harbouring dis-

tinct sets of mutations, which are subject to Darwinian competition (clonal

evolution) within the tumour lesion [3] (figure 1). This competition selects for

further mutations, resulting in increased fitness and the continued evolution
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Figure 1. Darwinian evolution during tumour development. Tumourigenesis is a multi-step process in which initially healthy cells progressively acquire multiple
mutations that disrupt their cellular processes and increase their tumourigenic potential. Although many of these mutations are passengers with no clear effect on
the ability of cells to survive and proliferate, a few rare driver mutations may strongly increase the fitness of individual cells, allowing them to outcompete neigh-
bouring cells. Over time, this stochastic process gives rise to Darwinian competition between subclones of cells harbouring different sets of mutations, driving
selection towards subclones with increasing tumourigenic potential. External interventions such as drug treatments can influence this process by eradicating sub-
clones that are sensitive to the given treatment. However, they can also drive selection towards subclones that are resistant to the treatment, leading to the
emergence of therapy resistance as seen in many cancer patients.
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of competing subclones within the tumour. External influ-

ences such as the immune micro-environment or drug

treatment can also strongly influence the evolutionary pro-

cess, either by selecting for specific subclones that are

intrinsically resistant to immune surveillance or treatment,

or by applying additional evolutionary pressure to acquire

new mutations that confer resistance [4].

Effective treatment of cancer patients is increasingly based

on precision medicine, i.e. tailored treatments designed to

target specific mutation-associated dependencies and/or vul-

nerabilities of a patient’s tumour. It is therefore crucial to

identify exactly which mutations contribute to tumourigenesis

and how they do so. Although human sequencing studies

have identified many genes contributing to cancer develop-

ment, they do not provide evidence for causality or detailed

insight into the biological mechanisms by which these genes

drive tumour development. These studies also do not reveal

whether drivers are essential for tumour maintenance and

may therefore be of limited use for designing effective thera-

peutic strategies. In contrast, preclinical model systems such

as genetically engineered mouse models (GEMMs) provide

an experimentally tractable approach in which the biological

effects of specific mutations can be studied in detail in a con-

trolled genetic background. In this review, we describe several

aspects of mouse models and how these can ultimately be

applied to improve treatment of cancer patients. To this end,

we first highlight several challenges in translating findings

from human sequencing studies to the clinical setting, before

explaining how some of these challenges can be addressed

using complementary approaches in mouse model systems.
2. Challenges in human tumour
sequencing studies

Several major human sequencing studies have been under-

taken over the past years, aiming to identify and catalogue
potential driver mutations across many different cancer

types [5–8]. One of the key challenges in analysing data

from these efforts has been the separation of driver mutations

from passenger mutations. To address this issue, many com-

putational approaches have been developed to select driver

genes using signals of positive selection in the pattern of

somatic mutations in genes across tumour samples. Examples

include approaches based on mutation frequency [9,10],

biases in the functional consequences of mutations [11–14]

and clustering of mutations within genes [15].

Although these approaches have proven successful in iden-

tifying many driver genes affected by hotspot mutations, other

types of mutations have proven more challenging. This is

especially the case for DNA copy-number driven diseases

such as breast cancer, in which approaches aimed at identifying

recurrent copy number alterations typically identify regions

harbouring many genes [16,17]. Similarly, complex genomic

rearrangements [18] and mutations in non-coding regions

[19] make it difficult to pinpoint specific target genes, requiring

further prioritization of candidate genes using complementary

approaches and/or exhaustive validation of potential drivers.

Besides the validation of putative driver genes, another

important challenge is the further characterization of their

biological roles. This insight is crucial for the identification

of potential therapeutic opportunities. Currently, most

large-scale studies perform no or limited in vivo validation

of candidate genes [20–24], as this additional follow-up is

typically time- and labour-intensive. Furthermore, although

some studies do perform in vitro validation of candidate

genes in human cell line models, this is likely to be of limited

relevance [25] as cancer cell lines harbour many additional

mutations and are grown in a highly artificial environment.

Other in vitro models such as three dimensional (3D)

tumour organoids [26,27] may provide an interesting alterna-

tive but also lack a tumour microenvironment and need to be

grown in specific media [28], which may limit the clinical

translatability of findings in these models.
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Finally, many promising targeted therapies fail in the clinic

due to the emergence of treatment resistance. To understand

why this is the case, it is important to determine how different

therapies impact the clonal evolution of a tumour and how

this leads to the development of treatment resistance. These

insights can then be used to develop new strategies that aim

to prevent or overcome resistance. However, detailed studies

of clonal evolution and treatment resistance are challenging

as the development of resistance is often a stochastic process,

as is evident from the observation that patients frequently

develop multiple mechanisms of resistance to the same

treatment [29–31]. Combined with the limited availability of

pre- and post-treatment tumour samples from patients, this

limits the potential of human studies for the analysis of resist-

ance mechanisms. Identification and prediction of potential

resistance mechanisms therefore requires experimental sys-

tems that allow us to quantify the range of expected

resistance mechanisms for a given tumour and determine

how these are impacted by different treatments or other

factors such as diverse genetic backgrounds.
3. Experimental models of human cancer
3.1. Patient-derived models
Experimental models of human cancer should be easy to

manipulate and recapitulate the genetic features and micro-

environment of the original patient tumour as much as

possible. Human cancer cell lines have often been used for

cancer research, as these are derived from patient tumours

and are easy to manipulate in vitro. However, human cancer

cell lines are grown in a highly artificial environment and

therefore undergo a stringent selection process when being

established, resulting in homogeneous populations that no

longer fully represent the genetic heterogeneity of the original

tumour [32]. More recently, 3D organoid models have been

developed to overcome this limitation by growing cells in

three-dimensional media, which allows the formation of

more realistic organ-like structures [33]. This technique has

enabled the development of in vitro models for tissues that

could not be established as cell lines [28], suggesting that orga-

noids are subject to less evolutionary pressure and are

therefore more likely to reflect the heterogeneity of the original

patient tumours.

Human cell lines have been very popular in cancer

research, as they remain relatively close to the human setting,

while providing a convenient platform for studying cancer

cell biology. As such, these in vitro models have proved

instrumental in delineating key biological signalling path-

ways and in preclinical drug screening [34,35]. A drawback

of human cell lines and organoids is, however, that they do

not model interactions with the tumour microenvironment

and the effects of angiogenesis and drug metabolism. To

address these limitations, cell lines and organoids can be

injected into immune-deficient mice (figure 2a) to create

in vivo xenograft models. However, although these cell line-

derived xenograft models do capture interactions between

tumour cells and the (mouse) microenvironment, they do

not recapitulate interactions with the immune system due

to the use of immunocompromised mice.

An alternative approach is to directly transplant human

tissue into immunodeficient host mice, thereby creating
patient-derived tumour xenograft (PDX) models. Compared

to cell line-based transplantation models, PDX tumours

more faithfully retain the molecular, genetic and

histological heterogeneity observed in the respective cancer

patients, even after serial passaging in mice [36,37]. As

such, PDX models have been a popular in vivo platform for

preclinical drug screening in a large variety of cancer types,

such as breast cancer [38,39], melanoma [29,40] and colorectal

cancer [41–45]. However, drawbacks of PDX models are that

certain tumour types are much harder to establish in mice

than others, and xenografts may undergo mouse-specific

tumour evolution [46]. Moreover, similar to cell line-based

xenograft models, PDX models generally lack an active

immune system and therefore do not capture interactions

with the immune system.

Humanized mouse models aim to address this gap by

engrafting components of the human immune system into

otherwise immunocompromised mice [47,48]. One such

approach is to engraft CD34þ human haematopoietic stem

and precursor cells into the marrow of sublethally irradiated

immunocompromised mice, allowing these cells to develop

into a functional, humanized immune system [49]. Ideally,

this engrafted immune system should mirror that of a

human cancer patient, enabling detailed studies of inter-

actions between tumours and the immune system.

However, it currently remains challenging to faithfully reca-

pitulate the full human tumour microenvironment in mice

[48]. Moreover, accurate modelling of a patient’s immune

response requires the development of personalized xenograft

models [50] in which both the immune system and implanted

tumour tissue are derived from the same cancer patient.

3.2. Genetically engineered mouse models
A significant limitation of patient-derived models is that they

are typically established using heavily mutated, end-stage

tumours and can therefore not be used to study the effects

of individual mutations on tumour initiation and pro-

gression. In contrast, genetically engineered mouse models

(GEMMs) can be used to introduce individual mutations

identified from human sequencing projects into a clean gen-

etic background, allowing detailed characterization of these

mutations and their effects on cancer susceptibility, tumour

formation, progression and maintenance (table 1).

The first GEMMs were developed by introducing cloned

cancer genes into the genome of transgenic mice (figure 2b),

providing the first conclusive evidence that mice could be

made prone to developing tumours in a specific tissue by

introducing transgenic expression of oncogenes such as

MYC, ERBB2 or mutant KRAS under control of a tissue-

specific promoter [51]. Later, with the rise of gene-targeting

technology, the effects of inactivating mutations in tumour

suppressor genes (TSGs) such as Trp53 or Rb1 on tumour for-

mation could be studied in knockout mice [52]. However, a

significant limitation of these conventional GEMMs is that

oncogenes are expressed in all cells of a particular tissue in

transgenic mice, while TSGs in knockout mice are inactivated

in all cells. In this respect, conventional GEMMs fail to mimic

sporadic cancers, in which the accumulation of genetic events

in a single cell results in tumourigenesis in an otherwise

healthy organ.

To address this issue, conditional GEMMs were devel-

oped by employing somatic activation of oncogenes (e.g.
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Figure 2. Schematic overview of different types of mouse models of human cancer. (a) Patient-derived models are created by transplanting human material into
immune-deficient mice. This can be done by injecting either tumour-derived cell lines or tumour organoids, or by directly grafting human tumour pieces into mice.
(b) In conventional GEMMs, de novo tumourigenesis is induced either by tissue-specific expression of an oncogene or by germline inactivation of a TSG. The engin-
eered genes are typically selected based on pre-existing data from (human) sequencing studies. (c) In conditional GEMMs, de novo tumourigenesis is induced by
tissue-specific inactivation of conditional TSG alleles and/or activation of conditional oncogenes via Cre-loxP-mediated recombination. (d ) In somatic GEMMs, tumour-
igenesis is induced either by injecting lentiviral vectors expressing specific oncogene(s) into the tissue of interest, or by injecting Cas9 together with sgRNAs
targeting specific TSGs. In the latter approach, Cas9 can also be expressed conditionally in the host mouse.

rsob.royalsocietypublishing.org
Open

Biol.8:180080

4

Bcr-Abl1, Erbb2, Myc, Hras and Kras) and somatic inactivation

of tumour suppressors (e.g. Apc, Brca1, Brca2, Nf1, Nf2, Pten,

Rb and Vhl) (figure 2c) [53]. One of the most frequently used

conditional strategies is the Cre/loxP recombinase system

[54], in which (parts of) target genes are flanked by loxP

recombinase recognition sites that recombine in the presence

of Cre-recombinase to delete intervening DNA sequences.

Using this system, oncogenes can be activated by removing

engineered stop sequences that prevent gene expression in

the absence of the recombinase, whereas TSGs can be inacti-

vated by deleting exons that are crucial for gene function.

Conditional GEMMs have been developed for a large variety

of different cancers, generating a wealth of models that
closely mimic the histopathological, molecular and clinical

features of human tumours [55,56].

A limitation of conditional GEMMs is that generating new

models is still time-consuming and expensive. Recent devel-

opments in somatic gene-editing techniques provide

incredible potential to speed-up this process by allowing

mutations to be introduced somatically into existing mouse

models (figure 2d ). Using these approaches, oncogenes can

be introduced by injecting (viral) vectors expressing these

gene(s) into the tissue of interest [57]. Similarly, TSGs can

be inactivated using CRISPR/Cas9-mediated gene editing

by injecting constructs containing Cas9 and single guide

RNAs (sgRNAs) targeting the TSGs into Cas9-proficient
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mice [58]. Further developments such as CRISPR interfer-

ence/activation [59] and CRISPR-based mutagenesis

approaches [60,61] promise to further expand this toolkit,

enabling the use of somatic engineering to rapidly model a

wide variety of cancer-associated mutations in mice.

Another approach for upscaling experiments is to ortho-

topically transplant mouse tumour fragments into

syngeneic mice, allowing further stages of tumour develop-

ment to be studied in parallel [62]. A particular advantage

of this strategy is that it enables flexible and rapid expansion

of spontaneous tumours from specific genetic background(s),

which can be used to study stochasticity in tumourigenesis

and therapy response in advanced stages of the disease.

Besides this, orthotopic transplantation models provide

unique opportunities for studying metastatic disease by fol-

lowing metastatic progression after resection of the

transplanted tumour fragment [63,64].
4. Identifying cancer drivers in mouse
models

4.1. Mouse tumour sequencing
Besides candidate cancer driver analysis, mouse models can

also be used to identify additional driver mutations by

sequencing mouse tumours and identifying additional

genes that are frequently mutated across tumours

(figure 3a). Following this approach, driver mutations can

be detected using various computational approaches, in the

same fashion as previously described for human tumours.

This can be particularly powerful when combined with

mouse models of spontaneous tumour development, such

as radiation- or carcinogen-induced [65–67] tumour models

[68–70], which may more accurately reflect the heterogeneity

and stochasticity of patient tumours than GEMMs. An

additional advantage of using mouse tumour sequencing to

identify driver genes is that, by sequencing tumours from

GEMMs, we can specifically identify drivers that collaborate

with the engineered driver mutations. As such, whole-
exome and whole-genome sequencing approaches have

been used to characterize the mutational landscapes of

Kras-mutant mouse skin squamous cell carcinoma [71] and

Egfr-, Myc- and Kras-driven lung cancers [72,73]. Similarly,

whole-exome sequencing, RNA sequencing and DNA copy-

number-based approaches have identified several driver

genes in mouse models of Brca1- and Brca2-deficient breast

cancer [74,75].

In general, mouse tumours tend to have lower mutational

loads than their human equivalents. This reduced complexity

offers easier interpretability, allowing for the extrapolation of

critical genetic driver processes that may not be apparent in

genetically complex human cancers [76], but may also be

indicative of differences in tumour development between

mouse and human tumours [77]. However, in some instances

mouse tumours may harbour as many aberrations as human

tumours, complicating the identification of driver genes. This

is, for example, the case for tumours with high levels of geno-

mic instability, such as Brca1/Brca2-deficient breast cancer

models [74,75].
4.2. Comparative oncogenomics
A more powerful approach for identifying driver genes using

sequencing approaches is to combine insights from mouse

and human datasets and prioritize genes that are mutated

in both species, as these are most likely to represent true

driver genes. This can be done in an ad hoc setting, by identi-

fying drivers of mouse tumours and comparing these with

known mutations in human datasets, or as a deliberate strat-

egy using comparative oncogenomics. In the latter approach,

sequencing data from mouse and human tumours are typi-

cally first analysed to identify candidate driver genes for

both species individually. These species-specific candidates

are then integrated by only selecting genes and/or networks

that are aberrated in both species (figure 3b). Remaining can-

didates can optionally be filtered using additional criteria,

such as correlation with gene expression or prior knowledge

from literature.
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Figure 3. De novo driver gene identification in mice. (a) Driver genes can be identified in mice in the same fashion as for human tumours by using DNA/RNA-
sequencing approaches aimed at identifying recurrent mutations, copy-number aberrations, gene fusions and complex structural rearrangements. (b) Comparative
oncogenomics approaches allow refinement of candidate driver gene lists by focusing on genes that are recurrently mutated in both mouse and human tumours. In
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This comparative strategy has proven particularly effec-

tive for distinguishing driver genes from passengers in

chromosomally unstable tumours. For example, in a mouse

model of hepatocellular carcinoma (HCC), Zender et al. [78]

identified a focal amplicon on mouse chromosome 9qA1,

which was syntenic with amplifications in human HCCs on

11q22. Further filtering based on expression identified two

drivers on this locus, cIAP1 and Yap, which were shown

to act synergistically in tumourigenesis. Similarly, copy-

number sequencing of metastases from an inducible Hras
model of a traditionally non-metastatic melanoma identified

a focal amplification on mouse chromosome 16, which con-

tained only eight candidate driver genes [79]. Further

comparison with human RAS- and MET-driven melanomas

identified a single gene, NEDD9, as the driver of these metas-

tases. A recent study from Liu et al. [75] used whole-exome

sequencing and RNA sequencing data from BRCA1-deficient

mouse mammary tumours to identify multiple aberrations

capable of activating the MAPK and/or PI3K signalling

pathways. Similar mutations were identified in human

triple-negative breast cancers (TNBCs), suggesting that inhi-

bition of these pathways may be an effective therapeutic

strategy for treating BRCA1-deficient TNBC.
5. Identifying drivers using forward genetic
screening

Although additional driver genes can be identified by mouse

tumour sequencing, this approach is not always optimal as

mouse models can have a long tumour latency and may be

more prone to acquire other types of mutations than those

of interest (i.e. copy-number aberrations rather than point

mutations or vice versa). Forward genetic screening

approaches can address these issues by using various muta-

genesis strategies to induce additional mutations and

accelerate tumour formation, after which any tumours that

developed can be studied to identify new drivers. The type

of mutations that occur depends strongly on the type of

mutagenesis that is being employed, meaning that different

mutagenesis strategies can be used to specifically induce

different kinds of mutations.
5.1. Screening using chemical mutagenesis
Chemical-based mutagenesis is one of the oldest mutagenesis

strategies, in which cells or animals are treated with a
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chemical substance that damages the DNA and thereby

induces mutations. The induced mutations are typically

single nucleotide changes; however, the spectrum of these

mutations depends on the used substance and can vary

greatly between different chemicals. In in vivo chemical muta-

genesis screens, animals (typically zebrafish or mice) are

treated with a controlled dose of a chemical mutagen and

subsequently monitored for tumour formation (figure 4a).

Developed tumours can be sequenced using whole-genome

or targeted sequencing strategies to identify mutations that

may be driving tumourigenesis or metastasis [72,80].

An advantage of chemical mutagenesis compared to

other mutagenesis approaches is that its bias towards single

nucleotide changes makes it suitable for modelling the effects
of human variants, which are often single point mutations

that result in changes in the levels of expression or activity

of a gene product. For this reason, chemical mutagenesis

approaches have been used to mimic human mutational pro-

cesses and to characterize the genomic landscapes of the

mutational landscapes of mouse skin squamous cell carci-

noma [71] and Kras-driven lung cancers [72]. However,

when designing chemical mutagenesis screens, it is impor-

tant to take the inherent mutational bias of chemicals into

account. Currently, N-ethyl-N-nitrosourea (ENU) is a popu-

lar choice for chemical mutagenesis strategies aiming to

model single-nucleotide variants (SNVs), as it results in a

range of point mutations that mirrors the range of mutations

observed in human tumours [81].
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5.2. Screening using insertional mutagenesis
The bias towards point mutations also limits the utility of

chemical mutagenesis strategies for modelling other types

of mutations, such as increased gene expression resulting

from gene amplifications. Insertional mutagenesis (IM) strat-

egies provide an alternative approach, in which viral [82] or

transposon [83–86] sequences are stochastically inserted

into the genome, disrupting the expression of nearby genes

(figure 4b). In transposon-based insertional mutagenesis

(TIM) strategies, this process is mediated by a transposase

enzyme, which excises transposons from a concatemer intro-

duced in the genome of the mice and reintegrates them

stochastically elsewhere. By placing the expression of this

transposase under a tissue-specific promotor, mutagenesis

can be restricted to specific tissues in the mouse.

The effects of insertions depend on the used transposon,

but typically involve the activation of oncogenes using promo-

tor sequences and/or inactivation of tumour suppressors by

truncating genes. For example, the T2Onc/2 transposon,

which is frequently used in Sleeping Beauty IM screens

[83,84], contains enhancer/promotor (MSCV) and splice

donor (SD) sequences that allow the transposon to initiate tran-

scription and drive the (over-)expression of nearby genes. The

T2Onc/2 transposon also contains two splice acceptor sites

(SA/En2SA) combined with a bi-directional polyA sequence,

which allow the transposon to truncate transcripts if integrated

within a gene. Depending on the gene and the relative location

of the insertion, these truncations can inactivate genes by result-

ing in an unstable transcript or inactive protein, or activate

genes by removing inhibitory protein domains [87,88].

A considerable advantage of IM strategies is that inser-

tions can be specifically captured via PCR amplification

before sequencing, enabling cheap and efficient retrieval of

the insertion sites compared to genome-wide sequencing. A

drawback of transposon-based systems is that they generally

show some bias in terms of their insertion patterns, due to

sequence integration biases or biases towards specific gene

features (e.g. gene bodies or promotors) [89]. For this

reason, screens using different transposon systems (such as

the Sleeping Beauty [83,84] or PiggyBac [85,86] systems)

may identify different candidate genes, even if screens are

performed in the same genetic background. Moreover, target

genes are typically identified using windows around the

insertion sites [89,90], which may lead to the identification of

false-positive candidate genes.

Despite these drawbacks, TIM and other mutagenesis

systems have been valuable for identifying cancer-associated

driver genes in mouse models of a large variety of cancer

types, including breast cancer [91–93], melanoma [94], hepato-

cellular carcinoma [95] and gastric cancer [96]. Additionally, as

mutagenesis remains constitutively active in these models, TIM

has also been used to identify drivers of metastasis formation

[97] and acquired resistance to drug treatments [98,99]. Finally,

new computational approaches based on RNA-sequencing

data have been developed to improve target gene prediction

and offer additional insight into the effects of insertions on

the expression of the affected gene [100,101].

5.3. shRNA screening
In contrast to the previously described non-targeted genome-

wide screening approaches, library-based screening
approaches, such as loss-of-function screens based on RNA

interference (RNAi) technology, can be used to target specific

sets of genes. In pooled RNAi screening approaches, cells are

transduced with lentiviruses encoding short hairpin RNAs

(shRNAs) targeting specific genes that, when integrated into

the genome, result in stable and heritable suppression of the

corresponding gene [102]. To perform an in vivo RNAi

screen, (tumour) cells transduced with a lentiviral shRNA

library can be injected orthotopically in animals [103], which

are subsequently monitored for tumour growth (figure 4c).

Once developed, tumours are harvested and sequenced to

quantify the frequency of each shRNA in the tumour cell popu-

lation. By comparing these frequencies to those of the initial

starting population, this approach can identify which shRNAs

are enriched in the tumour and are therefore likely targeting

TSGs whose loss is beneficial for tumourigenesis. Conversely,

depleted shRNAs may identify potential oncogenes and/or

genes that are crucial for tumour maintenance.

The scope of shRNA screens depends entirely on the used

library, meaning that screens can be designed to target all

genes in a genome-wide fashion or to test a small number of

pre-selected candidate genes. As such, shRNA screens can

not only be used to identify novel driver genes, but can also

be used for narrowing down lists of potential drivers or to vali-

date putative driver genes. Compared to in vitro approaches,

in vivo shRNA screens provide the opportunity to expose the

vulnerabilities of tumour cells in the context of their micro-

environment and can be used to study drivers of metastasis

and therapy resistance [104–106]. Drawbacks of shRNA

screening include variable efficiency between shRNAs in the

knockdown of their respective target genes [107] and off-

target effects [108]. Successful in vivo shRNA screens have

been reported for a variety of cancer types, including xenograft

models of hepatocellular carcinoma [109], lymphoma [110,111],

leukaemia [112,113] and glioma [114,115].

5.4. CRISPR screening
With the development of CRISPR-based technologies, it has

also become possible to perform pooled loss-of-function

screens by inactivating genes using CRISPR/Cas9-mediated

genome editing. CRISPR/Cas9-based loss-of-function screens

are generally performed in the same fashion as shRNA

screens by transducing cells with pools of single guide

RNAs (sgRNAs) targeting different genes, injecting the trans-

duced cells in vivo and contrasting the abundance of sgRNAs

in tumours with their abundance in the starting population

[116–118]. However, in contrast to shRNA screening, gene

editing via CRISPR/Cas9 disrupts the genes by DNA clea-

vage and thereby introduces insertions/deletions in their

genomic sequence, resulting in frameshifts that induce het-

erozygous or homozygous knockout of genes rather than a

reduction in expression.

Compared to shRNA screens, CRISPR-based screens have

been reported to be remarkably efficient and suffer less from

off-target effects than shRNA screens [119,120]. CRISPR-

based screening approaches are less amenable to studying

dosage-dependent effects as genes are inactivated rather

than transcriptionally suppressed, although dosage reduction

can be achieved if Cas9 only induces heterozygous loss of the

gene, as we have previously observed for in vivo validation of

candidates from a Sleeping Beauty IM screen [93]. With the

development of new technologies, CRISPR-based screening
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approaches are extending beyond loss-of-function screens by

enabling gene activation using CRISPRa [121], gene inhibition

using CRISPRi [122] and the introduction of point mutations

with dCas9-AID or dCas9-APOBEC base editors [60,61].

6. Validating and characterizing candidate
driver genes

After identifying putative driver genes, it remains important

to verify that these genes actually contribute to tumourigen-

esis. In many studies, human tumour cell lines are used for

this purpose by studying the effects of perturbations in candi-

date driver genes on tumour cell growth. However, as

previously described, these in vitro models suffer from several

drawbacks, including the presence of additional mutations

and the lack of a tumour microenvironment. An alternative

approach is to introduce candidate driver mutations into an

established GEMM of the cancer type in which the mutations

were identified, in order to study their effect on tumourigen-

esis (figure 5a). These additional mutations can be introduced

using either germline approaches (such as the GEMM-ESC

strategy [123]) or somatic approaches (e.g. via injection of

viral vectors), as described in previous sections.

Once established, the resulting mouse models can be

studied to determine how the additional mutations affect

tumour incidence, latency and/or metastasis compared to

the baseline mouse model. The new models can also be

used to study the effects of the extra mutations on therapy

response. Any developed tumours can be studied in detail

to determine how the additional mutations affect tumour

morphology and the tumour (immune) microenvironment.

Additionally, by using sequencing strategies or screening

approaches to identify additional driver genes in these

more complex GEMMs, mutational landscapes can be com-

pared between models with different drivers to determine

how additional drivers affect the evolution of tumours

initiated by the engineered mutations and if this provides

clues to any driver-specific vulnerabilities.

In particular, CRISPR/CAS9-based somatic cancer mod-

elling approaches enable rapid in vivo testing of

(combinations of) candidate cancer genes and have been

used to validate driver genes for a wide range of cancer

types, including breast cancer [58], colorectal cancer [124],

pancreatic cancer [125] and liver cancer [126]. Additionally,

multiplexed somatic engineering methods provide the oppor-

tunity to rapidly validate multiple candidate genes at the

same time, while simultaneously studying Darwinian selec-

tion between the different candidates and how this selection

is influenced by cellular/tissue contexts and pre-existing

mutations [126,127]. Finally, using iterative approaches, dri-

vers can be identified and introduced progressively into

mouse models of increasing complexity. This type of

approach can be used to study tumour formation and pro-

gression in detail and establish the contributions of different

driver genes at various stages of tumourigenesis [128].
7. Studying drug response and treatment
resistance

Ultimately, knowledge of driver genes and their effects is

used to develop novel therapeutic strategies that target
specific vulnerabilities of the tumour, enabling effective treat-

ments with minimal side effects. Following this premise,

personalized therapies are generally designed by either tar-

geting identified driver genes directly (if possible) or by

targeting other genes in the same signalling pathway. A

well-known example is BRAF-mutant melanoma, which is

targeted by inhibiting the mutant BRAF kinase and/or

MEK, a protein downstream of BRAF in the RAS/MAPK sig-

nalling pathway. Alternatively, tumours can be targeted

therapeutically by exploiting a synthetic lethality resulting

from the driver mutation(s). A classic example of synthetic

lethality is poly(ADP-ribose) polymerase (PARP) inhibition

in BRCA-deficient tumours, which specifically targets cells

with defects in their homologous recombination (HR)

pathway due to loss of HR factors such as BRCA1 and BRCA2.

Before moving into the clinic, drugs are generally first

tested for anti-cancer efficacy in a preclinical setting, either

using in vitro models (cell lines, organoids) or in vivo
models (xenograft models, GEMMs, PDXs). To identify

which treatments are most effective in different cancer

types or tumours with different genetic backgrounds, several

efforts have been made to set up large biobanks of PDX

models for high-throughput drug screening purposes

[39,42,129,130]. By correlating treatment sensitivity with

sequencing data from the same tumours, these approaches

can also be used to identify genetic markers of intrinsic

(pre-existing) therapy resistance. An example of this

approach has been given by Bertotti et al. [42], who identified

HER2 amplification to be driving resistance in a subset of

cetuximab-resistant colorectal PDX tumours and showed

that combined inhibition of HER2 and EGFR induces overt,

long-lasting tumour regression.

Besides intrinsic therapy resistance, many targeted thera-

pies fail in the clinic due to the emergence of drug resistance

which is acquired during treatment. As such, a key challenge

for improving the efficacy of these therapies is to identify

(and ideally pre-empt) (epi)genetic changes that underlie

this acquired treatment resistance. Both GEMMs and PDXs

can be used to identify potential in vivo resistance mechan-

isms by grafting cell lines, organoids or tumour fragments

into multiple recipient mice, which are then subjected to

different treatments (figure 5b). Upon relapse, resistant

tumours can be sequenced and compared with tumours

from vehicle-treated mice to identify possible resistance

mechanisms. Using this approach, our laboratory identified

several resistance mechanisms to PARP inhibitor treatment

in mouse models of BRCA1- and BRCA2-deficient breast

cancer [131–133]. This type of approach can also be com-

bined with various mutagenesis strategies, for example by

using insertional mutagenesis to induce resistance and

identify potential resistance mechanisms [98,99,134].

Besides identifying potential resistance mechanisms, an

important challenge is to determine how resistance actually

arises and to design therapeutic strategies accordingly. For

example, in cases where tumours acquire additional (epi)-

genetic changes during treatment (as described above),

therapies should ideally be designed to pre-empt and prevent

the most likely paths of resistance. On the other hand, cases

where resistance is driven by pre-existing sub-populations

of intrinsically resistant cells [135] will require different

treatment strategies. Traditionally, studying intra-tumour

heterogeneity has been challenging with bulk-sequencing

technologies. Single-cell sequencing approaches [136,137]
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promise to revolutionize these analyses by providing detailed

insight into the (transcriptional) heterogeneity of tumour

cells, enabling the identification of sub-populations of cells

that may be driving resistance [138]. Furthermore,

approaches such as lineage tracing can be used to track the

dynamics of tumour evolution, providing detailed insight

into which cell populations expand and contract during treat-

ment. As such, lineage tracing-based approaches have been

used to identify origins of resistance in mouse models of

squamous cell carcinoma [139], prostate cancer [140] and

mouse intestinal adenomas [141].
8. Conclusion and future perspectives
The success of personalized anti-cancer therapies hinges on

how accurately we can predict whether a given patient

tumour will respond to a given treatment, allowing clinicians

to select the most effective therapeutic strategy for treating a

patient. Ideally such an approach would be implemented by

feeding omics data and other data types (e.g. imaging, path-

ology) from patient tumours into (computational) models

that predict which therapies are most likely to be effective

based on specific tumour biomarkers (figure 6). Creating
such models requires detailed insight into which mutations

are driving tumour development and how these affect

therapy response. Combined with high-throughput drug

screening approaches, in vitro and in vivo model systems pro-

vide crucial platforms for assessing sensitivity to different

therapies across multiple cell lines or tumours, enabling the

construction of correlative models that predict the efficacy

of these treatments for new tumours. More detailed genetic

modelling in (mouse) model systems can further refine

these correlative models by providing causative evidence

that combinations of mutations drive cancer development

and/or affect therapy response. In addition, mouse model-

ling enables detailed characterization of the effects of

drivers on other tumour phenotypes, such as tumour latency,

morphology, mutational landscape and interactions with the

(immune) microenvironment. Genetically engineered mouse

models also provide powerful platforms to critically evaluate

new candidate drug targets [142] and thereby improve the

robustness of preclinical cancer target identification [143].

Modelling of human cancer using genetically engineered

mice is complicated by the observation that tumours gener-

ally contain multiple driver lesions, which can strongly

influence their sensitivity to treatments targeting specific dri-

vers. As a result, accurately assessing therapy response may
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require the generation of complex mouse models containing

multiple driver genes that are frequently encountered

together in a given type of cancer. Using germline engineer-

ing approaches, generating models with multiple driver

lesions has been challenging due to the extensive breeding

and animal husbandry involved. Somatic approaches using

CRISPR/CAS9-based gene editing and over-expression vec-

tors alleviate this bottleneck, by providing the technology

to quickly create new mouse models by introducing different

combinations of mutations into a pre-existing baseline mouse

model. The rapidly ongoing refinement of these tools will

further expand the repertoire of mutations that can be mod-

elled in this manner, enabling the rapid creation of new

models reflecting the mutations observed in patient tumours,

which can be used to test the effects of novel therapeutic

strategies targeting these mutations.

Mouse models are of particular interest for studying

immune-based therapies, which have recently garnered

much interest due to their high efficacy in treating advanced

stages of several cancer types [144–147]. However, responses

to immune therapies have been highly variable, with some

patients responding well to treatment while others exhibit

severe side effects [148,149]. This indicates that a better

understanding of the complex interactions between the
immune system and tumour cells is needed for continued

improvement in immune-based therapies, which cannot be

studied using in vitro models or xenograft models lacking

an active immune system. As such, immune-competent

mouse models such as GEMMs are better suited for studying

interactions between tumours and the immune system,

although care should be taken to ensure that used models

reflect the variety of genetic and other factors that may influ-

ence an immune response. Additionally, differences in the

mouse and human immune systems may limit the relevance

of GEMMs, requiring the use of humanized mouse models to

accurately model immune responses in human patients.

Besides designing novel therapies, other important

clinical challenges include identifying which patients are

most at risk of developing cancer and should be screened

for preventative treatments. Although factors such as genetic

background and lifestyle have been shown to have a pro-

found influence on cancer risk and survival, our insights

into how these factors influence cancer development is still

limited. Due to their tightly controlled genetics, mouse

models are uniquely suited for examining the effects of gen-

etic backgrounds and how these interact with specific driver

genes in an in vivo setting. Similarly, mouse models may also

be used to model the effects of specific lifestyles (e.g. diet, gut



rsob.royalsocietypublishing.org
Open

Biol.8:180080

12
microbiome, circadian rhythm, exposure to mutagens) on

cancer risk and development [150]. Combined, insights

from such models will hopefully allow us to incorporate

knowledge of genetic modifiers and lifestyle influences into

clinical tests that improve the identification and clinical

management of individuals at high risk for cancer.

Improved screening imposes its own challenges, as popu-

lation screening programmes identify many early lesions that

will not necessarily progress to cancer and therefore do not

actually require treatment. Unfortunately, in many cases it

is currently not possible to distinguish which lesions are

indolent and which will progress to invasive cancer, leading

to overdiagnosis and overtreatment [151]. Identifying which

tumour cell-intrinsic and -extrinsic factors contribute to

tumour progression will hopefully provide important insight

into the tumourigenic process and allow us to develop tests

that distinguish between high- and low-risk lesions. These

studies will require models that allow us to study the early

stages of cancer, which is not possible using end-stage

tumour material from patients. GEMMs can provide a power-

ful platform for this type of research, as lesions in these

models can be studied at any stage during de novo tumour

development. Moreover, by introducing mutations identified

in pre-malignant lesions from patients, mouse models can be

used to determine the contributions of these mutations to

tumour initiation and progression, and to screen for

additional factors that may be required for malignant

transformation.

Tumour progression, metastasis and escape from therapy

are phenomena which are driven by intra-tumour heterogen-

eity [152]. Single-cell sequencing approaches provide a

particularly promising approach for studying tumour

progression by enabling detailed characterization of distinct

cell populations within a given tumour [136,137]. Combined

with (CRISPR-based) lineage tracing [153,154], single-cell

approaches in GEMM tumours can be used to study the

early dynamics of pre-malignant lesions and determine

which cell populations play a role in driving eventual tumour-

igenesis. Similarly, longitudinal sampling of mouse tumours

may be used to determine how cell populations within

tumours evolve during tumour progression and under thera-

peutic pressure, providing insight into how certain

(epi)genetic changes may drive tumour evolution and the

development of therapy resistance. Finally, detailed character-

ization of non-transformed cells within the tumour—such as

cancer-associated fibroblasts and tumour-infiltrating

immune cells—can be used to explore the complex

interactions between tumour cells and the (immune)
microenvironment [155,156] and how these interactions

change during tumour progression or during therapy stress.

It is important to keep in mind that tumours arising in

GEMMs of human cancer may not necessarily reflect all

characteristics of human tumours. For example, GEMM

tumours may contain lower numbers of somatic mutations

compared to the cognate human tumours [73] and fewer

mutations seem to be required for cancer formation in mice

compared to humans [157]. As such, it remains important

to establish whether mouse tumours accurately reflect the rel-

evant aspects of the cognate human cancers, in terms of

histopathology, mutational landscape and transcriptional

profile. Additionally, due to their limited genetic heterogen-

eity, it is unrealistic to expect that mouse models will

sufficiently represent the heterogeneity of patient popu-

lations. It will therefore remain crucial to combine findings

from GEMMs with information from other sources, including

sequencing data from patient populations and experimental

data from other model systems, such as (human) tumour

organoids and PDX models.

Finally, efforts to collect and catalogue mouse sequencing

data have been relatively limited compared to efforts invol-

ving human sequencing studies. To fully exploit the large

compendium of mouse sequencing and screening data, it

will be important to collect these data in centralized reposi-

tories and create portals to query these data, allowing

researchers to quickly explore existing datasets and compare

tumour characteristics across different mouse models. Fortu-

nately, several efforts are already underway to collect data in

application-specific databases [158], to create portals visualiz-

ing data from PDX models and to adapt software like

cBioPortal [159] for visualizing tumour data from non-

human organisms. We expect that these initiatives will play

an important role in disseminating insights from mouse

models and improve accessibility for cross-pollination with

human sequencing efforts.
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