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Introduction: Intrinsic vitamin D affects the proliferation, apoptosis, invasion, metastasis, and tumorige-
nesis of lung cancer by regulating tumor signaling pathways. Histidine-rich calcium-binding protein
(HRC) maintains Ca2+ homeostasis, which plays crucial roles in the occurrence and development of can-
cer.
Objectives: Our study aims to investigate the ability of vitamin D in the regulation of HRC and the role of
HRC playing in lung cancer.
Methods: We investigated the effects of vitamin D on lung cancer and the underlying mechanisms, by
measuring HRC and vitamin D receptor (VDR) expression in lung cancer, paracancer, and normal tissues
from patients using immunohistochemistry, western blotting, and real time RT-PCR. We transfected
H460 lung cancer cells (supplemented or not with vitamin D) with PX458-HRC and pcDNA3.1-HRC plas-
mids and injected mice with lung cancer cells harboring pcDNA3.1-vector or pcDNA3.1-HRC plasmids.
Results: Vitamin D inhibited HRC expression and H460 cell migration and proliferation，and promoted
apoptosis compared with controls. The expression of HRC and VDR was significantly upregulated and
downregulated, respectively, in lung cancer versus paracancer or normal tissues. Cell proliferation and
migration were reduced, apoptotic cells were more and tumors were smaller in mice treated with vita-
min D/cholecalciferol cholesterol emulsion (CCE) than in vitamin D/CCE+HRC+/+ mice.
Conclusion: Vitamin D inhibited lung cancer tumor growth, migration, and proliferation by downregulat-
ing HRC.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The global incidence and mortality of lung cancer are higher
than those of other tumors. About 85% of lung cancers are non-
small cell lung cancer, large cell cancer, adenocarcinoma, and squa-
mous cell carcinoma, all of which are prone to local lymph node
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metastasis and blood transmission. Epidemiological studies in
2018 identified 2.09 million new cases and 1.76 million deaths
due to lung cancer [1]. Although the treatment of lung cancer
has improved over the past decade, the 5-year survival rate for
patients remains <17% [2]. Therefore, basic research is required
to understand the molecular events that occur during lung cancer
and determine more effective treatments.

Histidine-rich calcium-binding protein (HRC) maintains Ca2+

homeostasis [3], which regulates the uptake, storage, and release
of Ca2+ from the sarcoplasmic reticulum [4]. HRC overexpression
decreases the rate of Ca2+ uptake in the sarcoplasmic reticulum,
but it also increases Ca2+ extrusion by increasing the levels of
Na+/Ca2+ exchange protein (NCX) [5–7]. Ca2+ plays a key role in
tumor invasion and metastasis [8–10]. Many calcium binding pro-
teins such as S100A4 are involved in the emergence and develop-
ment of cancer [11,12]. HRC increases the expression of cyclin D1
and cyclin-dependent kinase 2 (CDK2), promotes the G1/S cell
cycle progression, and accelerates the invasion, migration, and
metastasis of hepatocellular carcinoma (HCC) cells [13]. A defi-
ciency of HRC inhibits the invasion and metastasis of HCC cells
in vitro [14]. The anti-apoptotic effect of HRC is associated with
endoplasmic reticulum stress, which can help cells to restore
homeostasis to some extent and induce persistent apoptosis [15].
The pro-invasion and pro-migration effects of HRC are closely asso-
ciated with focal adhesion turnover, which is the result of FAK
phosphorylation [14]. Investigations into the role of HRC in pro-
moting the invasion, migration, and metastasis of hepatocellular
carcinoma indicate that HRC might serve as an anti-tumor target.
However, the status of HRC expression and the mechanism of
HRC action in lung cancer remain unclear.

Vitamin D is a steroid hormone that maintains calcium and
phosphorus homeostasis. Calcitriol, the most important active vita-
min D analog, is mainly used to treat hypoparathyroidism and
osteoporosis [16]. Cholecalciferol cholesterol emulsion (CCE)
becomes active vitamin D through secondary hydroxylation in
the liver and kidneys in vivo, and it is clinically used to treat vita-
min D deficiency [17]. After binding to the vitamin D receptor
(VDR), vitamin D forms a dimer with the retinol X receptor
(RXR), and combines with vitamin D reaction elements (VDREs)
in the promoter of a target gene to form complexes and recruit
co-modulators to further regulate the transcription of the down-
stream genes [18–22]. Vitamin D status also negatively correlates
with morbidity and mortality from various cancers [23,24]. Intrin-
sic vitamin D inhibits the growth of lung cancer cells [25,26], and
active vitamin D3, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; cal-
citriol) reduces their proliferation, apoptosis, invasion, metastasis,
and tumorigenesis by regulating various tumor signaling pathways
[27–30]. Srinivasan et al. suggested that levels of VDR negatively
correlated with survival rates in a study of 73 patients with lung
cancer [31]. Vitamin D has broad-spectrum inhibitory effects; they
inhibit the growth of colon cancer and many other tumor cells by
inhibiting the Wnt/b-catenin signaling pathway [32]. However, the
ability of vitamin D to regulate HRC remains obscure.

We hypothesized that HRC downregulation and VDR activation
might be novel treatment approaches for lung cancer. Therefore,
we determined whether HRC overexpression attenuates the inhibi-
tory effect of calcitriol on the metastasis and proliferation of lung
cancer cells.
Materials and methods

Tissue specimens and cell culture

All patients provided written informed consent to the use of
their specimens for research purposes, and the Clinical Research
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Ethics Committee of Shengjing Hospital of China Medical Univer-
sity approved the study (Approval No: 2019PS533K). Specimens
of lung cancer, paracancer and normal tissues were obtained from
the biological specimen banks of Shengjing Hospital of China Med-
ical University. We also cultured the non-small cell lung cancer
H460 cells in RPMI1640 medium containing 10% fetal bovine
serum (FBS), and 1% penicillin-streptomycin under a 5% CO2 atmo-
sphere at 37 �C. We applied calcitriol at a concentration of
2 � 10�8 M, which we previously determined to be effective.

Chemicals and reagents

Calcitriol and CCE were supplied by Shengjing Hospital of China
Medical University. The plasmid pcDNA3.1 was a kind gift from Dr.
Yuan Zhengwei at the Key Laboratory of Congenital Malformation,
Ministry of Health of Shengjing Hospital. Anti-HRC and anti-VDR
antibodies were respectively purchased from Proteintech (Chicago,
IL, USA) and Santa Cruz Biotechnology Inc. (Dallas, TX, USA).

RNA extraction and real time RT-PCR

Total RNA was isolated using TRIzol reagent (Invitrogen, Carls-
bad, CA, USA). First-strand cDNA templates were synthesized using
the Prime Script RT reagent kit (Takara Bio Inc., Kusatsu, Japan).
Real time RT-PCR was conducted using a 7500 Fast sequence detec-
tor to quantify mRNA expression levels. Differences between sam-
ples were determined using the 2�44Ct method. Primer pairs
designed for real time RT-PCR were as follows:

HRC: forward, 50-CGCTTCACCATCATCCCCAAC-30 and reverse, 50-
CTGGCTGGTAGTTCCCATACT-30;

GAPDH: forward, 50-AAATCAAGTGGGGCGATGCT-30 and reverse,
50-TGGTTCACACCCATGACGAA-30.

Plasmids and transfection

We amplified the CDS sequence of the HRC gene and inserted it
into the pcDNA3.1 vector to construct plasmids overexpressing
HRC. The forward and reverse primers used for amplification were
respectively: 50-ATGGGCCACCATAGGCCA-30 and 50-TCAGGGTTCC
GGCGTTTC-30. We confirmed that the plasmids overexpressed
HRC by sequencing (Invitrogen). The pcDNA3.1-HRC plasmid and
pcDNA3.1 vector were transfected into H460 cells using Lipofec-
tamine 3000 (Invitrogen) as described by the manufacturer. This
experiment included vitamin D (VD), HRC+/+, VD+HRC+/+, and con-
trol (Con) groups.

CRISPR/Cas9 gene knockout in cells

We used CRISPR designer (http://crispr.mit.edu/) to design the
following single guide (sg) RNA primers to knock out HRC genes
in H460 cells: forward: 50-CACCGACAACAGCACTGGAGTCGCC-30,
and reverse: 50-AAACGGCGACTCCAGTGCTGTTGTC-30. The sgRNA
sequences were annealed and inserted into the PX458-vector after
digestion with the restriction enzyme BpiI (Thermo Fisher Scien-
tific Inc., Waltham, MA, USA). The construct was checked by
sequencing (Invitrogen). This experiment included VD, HRC�/�,
VD+HRC�/�, and Con groups.

Western blotting

Cells were collected at 24 h after transfection, lysed with RIPA
buffer, then lysates were resolved by electrophoresis on 10% agar
gels. Separated proteins were transferred to PVDF membranes
(Millipore Sigma Co., Ltd., Burlington, MA, USA), then non-
specific binding was blocked in 5% skimmed milk for 1 h. There-
after, the blots were incubated with primary antibody overnight

http://crispr.mit.edu/
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followed by the secondary antibody for 1 h. Bound proteins were
detected using Amersham ECL reagents (Cytiva, Little Chalfont,
UK).

Wound healing assays

Monolayers of H460 cells transfected or not with plasmids in 6-
well dishes were wounded by scratching the surface with a plastic
200 lL pipet tip. The cells were cultured under experimental con-
dition mediummentioned above with or without calcitriol at 37 �C
for 24 h. The area of the remaining wound was assessed using Ima-
geJ software, and the distance that the cells migrated was esti-
mated by the calculation.

Cell migration

Cell migration was assessed using Transwell chambers with
8 lm pores (Corning Inc., Corning, NY, USA). Four hours after trans-
fection, H460 cells were digested with trypsin and suspended in
serum-free 1640 medium. Cells (1 � 105) in 100 lL of medium
were seeded into the upper chamber and 1640 medium containing
10% FBS was used as the chemotactic agent in the lower chamber.
After 24 h, non-migrated cells were removed from the upper sur-
face of the Transwell using a cotton swab. The Transwell mem-
branes were fixed in methanol for 20 min, dried, then stained
with crystal violet for 30 min. Cells that had migrated through
the cell membrane to the lower surface were examined by optical
microscopy and counted using Image Pro software.

Cell proliferation assays

Transfected H460 cells were digested with trypsin, suspended
in medium, and seeded in 96-well plates at a density of
1 � 103/100 lL. Cell viability was detected using the Cell Titer
96� AQueous One Solution Reagent (Promega Corp., Madison, WI,
USA). After incubating the cells for 3 h with 20 lL 3-(4,5-dimethyl
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTS) per well, the
degree of cell proliferation represented by absorbance at 490 nm
was measured with a microplate reader.

Xenograft tumor models

All animal studies were conducted in accordance with the
guidelines of the Ethics Committee of Shengjing Hospital and the
local animal care and use committee (Approval No:
2017PS311K). Male, 3–4-week-old Balb/c nude mice were ran-
domly assigned to groups that were injected with 5� 106 cells har-
boring pcDNA3.1 (group V), or pcDNA3.1-HRC+CCE (group C), HRC
(H), or CCE+HRC (C+H). The CCE+vector and the HRC+CCE groups
received CCE in drinking water (1 lL/mL) for 28 days.

Immunohistochemistry (IHC)

Tumor tissue sections were routinely dewaxed, boiled in 10 mM
Na citrate solution for 10 min, then incubated with HRC or VDR
antibody and stained with 3,30-diaminobenzidine (DAB) as
described [33]. Images were acquired by optical microscopy.

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end
labeling (TUNEL) assays

Apoptotic cells were detected using TUNEL assays as described
by the manufacturer (WLA029a; Wanleibio Co., Ltd., Shenyang,
China) [34,35]. Apoptotic nuclei in tumor cells were detected by
staining cells with DAB.
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Apoptosis assays

The induction of apoptosis was determined using Annexin V- PE
Apoptosis Detection Kit I (BD Pharmingen, San Diego, CA, USA).
Cells were washed twice with cold PBS, then resuspended in 1�
binding buffer at a density of 1 � 106 cells/mL. Suspensions
(100 lL containing 1 � 105 cells) were transferred to 5 mL tubes
and incubated with annexin V-phycoerythrin (PE) and 7-amino-
actinomycin (7-AAD) for 15 min at 25 �C in darkness. Thereafter,
400 lL of 1� binding buffer was added to the tubes and apoptotic
cells were assessed by flow cytometry.

Chromatin immunoprecipitation assays (ChIP)

Protein-bound DNA was assayed using Simple ChIP Plus Sonica-
tion Chromatin IP Kits (Cell Signaling Technology, Danvers, MA,
USA) and the forward and reverse PCR primer sequences: 50-GCA
CGTATCATTCCAGC-30 and 50- ACCAGTGAGGGGTCTCTCC -30,
respectively.

Luciferase assays

The transcriptional sites of VDREs on the HRC promoter were
predicted using the University of California, Santa Cruz genome
browser, and primers containing these transcriptional sites were
designed. The HRC-PGL3 recombinant plasmid was constructed
by inserting PCR products into the pGL3 basic vector and con-
firmed by sequencing (Invitrogen). Recombinant plasmids contain-
ing the HRC promoter were transfected into Cos-7 cells with
LipofectamineTM 3000 (Invitrogen). Renilla and firefly luciferase
reporter activities were quantified using Dual-GloTM Luciferase
Assay Systems (Promega).

Statistical analysis

Dataarepresentedasmeans±SD.Datawerestatisticallyanalyzed
usingunpairedtwo-tailedStudent t-testsorone-wayanalysisofvari-
ance followed by Bonferroni post hoc tests, as appropriate. Values
with P < 0.05were considered statistically significant.

Results

HRC was upregulated and VDR was downregulated in lung cancer
tissues from patients

Compared with corresponding normal and paracancer tissues,
HRC protein and mRNA expression was significantly upregulated
in the lung cancer tissues, whereas that of VDR was remarkedly
downregulated (Fig. 1A–C), suggesting that the expression of
VDR was inhibited, whereas that HRC was increased in lung cancer
specimens.

Vitamin D inhibited HRC expression and H460 cell migration and
proliferation and promoted H460 cell apoptosis

We explored the effects of 2 � 10�8 M vitamin D on HRC in
H460 cells. Western blot and real time RT -PCR findings showed
that vitamin D downregulated the expression of HRC compared
with the control group (Fig. 2A–B). Wound healing, Transwell,
and MTS assays showed that vitamin D inhibited the migration
(Fig. 2C–D) and proliferation (Fig. 2E) of H460 cells. The ratio (%)
of apoptotic cells was increased by vitamin D in comparison with
Control group (Fig. 2F). These results might probably indicate that
vitamin D could inhibit the migration and proliferation of H460
cells, and promote apoptosis.



Fig. 1. Expression of VDR and HRC respectively decreased and increased in lung cancer. (A) Immunohistochemical staining and (B) western blot of HRC and VDR protein
expression in lung cancer, paracancer and normal tissues. The expression is shown as relative to GAPDH protein levels determined using Prism 5. Blue arrow, positive area
(original magnification, �200; partial magnification of �400). (C) Levels of HRC and VDR mRNA expression in lung cancer, paracancer and normal tissues measured using real
time TR-PCR. Values are shown as means ± SD. Statistical significance is shown as *P < 0.05, **P < 0.01, ***P < 0.001. HRC, histidine-rich calcium binding protein; VDR, vitamin
D receptor. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Synergistic effects of vitamin D and HRC�/� on cancer cell migration,
proliferation, and apoptosis

We investigated the effects of HRC on the migration and prolif-
eration of H460 cells. We knocked down the HRC gene in H460
cells using CRISPR-Cas9 technology. Fig. 3A–D shows the knock-
down efficiency of HRC gene at the protein and mRNA levels. The
16
results of migration and proliferation experiments showed that
both HRC�/� and vitamin D inhibited cell migration and prolifera-
tion and that the effect was synergistic (Fig. 3E–G). Furthermore,
HRC�/� and vitamin D significantly and synergistically increased
the ratio of apoptotic cells (Fig. 3H). These results suggested that
VD and HRC�/� have synergistic effects on lung cancer cell metas-
tasis, replication, and apoptosis.



Fig. 2. Vitamin D downregulated HRC expression and inhibited H460 cell growth. (A) Levels of HRC protein expression in H460 cells incubated with or without vitamin D. The
histogram shows that vitamin D significantly reduced HRC expression. (B) Real time RT-PCR results show that vitamin D significantly reduced HRC mRNA levels. (C) Wound
healing assay. Vitamin D significantly reduced cell mobility, expressed as the ratio (%) of healed areas after 24 h. Red line, edge of cell migration. (D) Transwell migration
assays. The histogram shows vitamin D-inhibited cell migration and numbers of migrated cells. (E) Cell proliferation assays. Vitamin D inhibited H460 cell proliferation. (F)
Apoptosis induction assessed by flow cytometry after Annexin V-PE/7-AAD staining. Vitamin D promoted apoptosis. Values are expressed as means ± SD. Statistical
significance is shown as *P < 0.05, **P < 0.01, and ***P < 0.001. HRC, Histidine-rich calcium binding protein. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Vitamin D-induced inhibition of lung cancer was attenuated by HRC+/+

We constructed full-length plasmids (pcDNA3.1-HRC) to stabi-
lize HRC gene expression and investigate how vitamin D inhibits
H460 cell migration and proliferation. Fig. 4A–D shows that the
HRC gene was overexpressed at the protein and mRNA levels.
The mobility and proliferation of H460 cells transfected with plas-
mids overexpressing HRC and incubated with vitamin D were par-
tially reduced in the VD+HRC+/+ group compared with those in the
HRC+/+ group, whereas the difference did not reach statistical sig-
nificance. However, mobility and proliferation capacity of cells
were higher in the VD+HRC+/+ group than in the VD group
(Fig. 4E–G). The ratio (%) of apoptotic cells was lower in the VD
+HRC+/+ group than in the VD group, whereas that in the HRC+/+
17
and VD+HRC+/+ groups did not significantly differ (Fig. 4H). The
above results indicated that HRC+/+ partially abolished the regulat-
ing effects of vitamin D on migration, proliferation and apoptosis of
lung cancer cells.

Tumor growth was partially inhibited in the CCE+HRC group compared
with that in the HRC group

Inhibition of CCE to tumor growth was further confirmed by
subcutaneous xenotransplantation model. H460 cells transfected
with an empty vector and pcDNA3.1-HRC plasmids were subcuta-
neously injected under axillae of left front paws into nude mice.
The tumor volume (Fig. 5A) and weight (Fig. 5B) were lower in
the CCE than in the Con group, whereas the inhibitory effects on



Fig. 3. Synergistic effect of vitamin D and HRC�/� on cell migration, proliferation and apoptosis. (A) Protein expression of HRC in H460 cell lines with HRC knockdown.
Western blots show that HRC has been knocked out. (B) HRC was detected at the level of mRNA by real time RT-PCR. (C) Western blots of HRC expression show that vitamin D
and HRC�/� further reduced HRC expression. (D) Levels of HRC mRNA detected by real time RT-PCR. (E) Wound healing assay. Vitamin D and HRC knockdown both reduced
cell mobility, but together, the reduction in cell migration was further reduced. (F) Transwell migration assays revealed that vitamin D and HRC�/� synergistically inhibited
H460 cell migration. (G) Proliferation of H460 cells. Results of MTS assays showed good synergistic effects. (H) Apoptosis induction assessed by flow cytometry after annexin
V-PE/7-AAD staining. Vitamin D and HRC�/� synergistically promoted apoptosis. Values are expressed as means ± SD. Statistical significance is shown as *P < 0.05, **P < 0.01,
and ***P < 0.001. HRC, Histidine-rich calcium binding protein.
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tumors were lower in the CCE+HRC group than in the CCE group.
Immunohistochemical staining revealed more HRC expression in
the HRC and CCE+HRC groups than in the Con and CCE groups
(Fig. 5C). TUNEL staining results similarly indicated that the apop-
tosis of tumor cells promoted by CCE was significantly reduced by
HRC overexpression (Fig. 5D). These results suggested that CCE
could inhibit tumor growth in vivo by affecting the expression of
HRC.
HRC is a direct target gene of vitamin D

We predicted a VDRE site (HRC-VDRE) in 2000 bp upstream of
the HRC gene promoter using the PROMO database (Fig. 6A). The
ChIP assays showed that VDR bound to the VDRE on the HRC pro-
18
moter, indicating that vitamin D could transcriptionally regulate
HRC expression (Fig. 6B). Real time RT-PCR findings showed that
vitamin D promoted the binding of VDR to HRC-VDRE (Fig. 6C).
Vitamin D reduced HRC transcriptional activity in Cos-7 cells trans-
fected with HRC-PGL3 plasmids (Fig. 6D). Based on these findings,
we concluded that the regulatory effect of vitamin D on HRC may
directly target VDRE on HRC promoter.
Discussion

We found that HRC and VDR were significantly upregulated and
downregulated, respectively, in lung cancer tissues from patients.
Others have similarly shown that vitamin D/VDR levels are inver-
sely related to lung cancer progression [36,37]. Furthermore,



Fig. 4. HRC+/+ attenuated the effects of vitamin D on cell migration, proliferation and apoptosis. (A) Western blots show HRC overexpression in H460 cells; a 200-fold increase
in HRC expression was noted. (B) Overexpressed HRC detected by real time RT-PCR. (C) The histogram shows HRC protein expression after 24 h incubation with vitamin D. (D)
Effects of vitamin D on HRCmRNA expression determined by real time RT-PCR. (E) Wound healing assay. Vitamin D with HRC+/+ partially reduced cell mobility compared with
that with HRC+/+, but the effect was weaker than that in the VD group. (F) Transwell migration assays. The histogram shows that vitamin D with HRC+/+ partially inhibited
H460 cell migration. (G) Assays of H460 cell proliferation showed that HRC+/+ attenuates the effects of vitamin D on cell migration and proliferation. (H) Apoptosis induction
assessed by flow cytometry after staining with annexin V-PE/7-AAD. Vitamin D-induced H460 cell apoptosis was significantly reduced by HRC+/+. Values are expressed as
means ± SD. Statistical significance is shown as *P < 0.05, **P < 0.01, and ***P < 0.001. HRC, Histidine-rich calcium binding protein.
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another study indicated that the expression of VDR is significantly
lower in hepatocellular carcinoma compared with non-tumorous
liver [38]. Moreover, HRC expression positively correlates with
the migration and proliferation of HCC cells [14]. Therefore, we
investigated the roles of VDR and HRC in the occurrence and
development of lung cancer. We used H460 cells in subsequent
studies to further validate the underlying mechanism described
above.

Vitamin D levels in the blood negatively correlate with the inci-
dence of breast, colorectal, prostate, and lung cancers [39,40].
Studies suggested that vitamin D could reduce carcinogenesis by
inducing apoptosis [41–43]. We found that vitamin D along with
decreased HRC expression in vitro inhibited the migration and pro-
liferation of H460 cells, which has not previously been reported.
The expression of HRC was significantly decreased in the groups
treated with vitamin D. Therefore, we predicted that the invasion,
tumorigenesis, and metastasis of HCC cell lines would be inhibited
by vitamin D, playing an antagonistic role by regulating the HRC
pathway [13].
19
We knocked down HRC and used pcDNA3.1 to overexpress HRC
in H460 cells to determine whether vitamin D affects tumor cell
metastasis, proliferation and apoptosis through the HRC pathway.
Vitamin D was involved in regulating the migration, proliferation
and apoptosis of cancer cells and was synergistic with HRC knock-
down and antagonistic toward HRC expression. These findings
indicated that vitamin D is relevant to not only limiting tumor
invasion, metastasis and proliferation but also promoting tumor
apoptosis, possibly by regulating HRC. Vitamin D alters the expres-
sion of many cancer-related genes, including HDAC2 and VEGF-A,
which are involved in cancer cell migration and proliferation
[14]. Here, we identified the impact of vitamin D on HRC gene reg-
ulation. High levels of HRC expression significantly weakened the
ability of vitamin D to inhibit the migration and proliferation of
H460 lung cancer cells and promote their apoptosis. Therefore,
inhibition of lung cancer by vitamin D depends on decreased
HRC expression. Consistent with in vitro findings, CCE inhibited
tumorigenesis in nude mice. However, the effect was partially
reduced by HRC +/+, which further supports the notion that HRC



Fig. 5. Tumor growth was partially inhibited in the CCE+HRC group compared with the HRC group in vivo. (A) Images of tumors in the xenograft nude mice. Tumors were the
smallest in the CCE group, and tumor reduction by CCE was weakened by HRC. (B) Mean tumor weight of nude mice. Tumor growth was partially inhibited by CCE under HRC
overexpression, but the effect was weaker than that under CCE treatment alone. (C) Immunohistochemical staining shows HRC expression among groups. (D) TUNEL staining
was more intense in the CCE group than in the CCE+HRC group. Arrow, site of apoptosis. Values are expressed as means ± SD. Statistical significance is shown as *P < 0.05,
**P < 0.01, and ***P < 0.001. CCE, cholecalciferol cholesterol emulsion; HRC, histidine-rich calcium binding protein; TUNEL, terminal deoxynucleotidyl transferase-mediated
dUTP nick-end labeling.

Fig. 6. HRC is the direct target of vitamin D. (A) Schema of the HRC promoter region. (B) ChIP assays of H460 cells using anti-VDR antibody. Vitamin D response elements in
the HRC promoter amplified by PCR. (C) Immunoprecipitated DNA with protein detected by ChIP-qPCR. The bar graph shows the ratio (%) of relative fold enrichment of VDR
across the HRC promoter region. (D) Cos-7 cells transfected with HRC-PGL3 reporter plasmid. Vitamin D reduced the transcriptional activity of HRC. Values are expressed as
means ± SD. Statistical significance is shown as *P < 0.05 and **P < 0.01. HRC, histidine-rich calcium binding protein; VDR, vitamin D receptor.
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could serve as a new target of vitamin D for tumor cell inhibition.
The effects of HRC on tumor growth in nude mice may be due to its
ability to upregulate the expression of cyclin D1 and CDK2 and pro-
mote the G1/S cell cycle progression [13]. In contrast, vitamin D
transcriptionally downregulates the cyclin D1 site, which not only
attenuates the expression of this gene during mucosal cell matura-
tion and tumorigenesis but also abrogates the conserved sequence
20
in cyclin D1 intron 3 [44]. Vitamin D might inhibit the harmful sig-
nal transduction of cancer pathways such as cyclin D1 and many
others, by inhibiting the calcium binding role of HRC protein. Nota-
bly, HRC downregulation significantly reduces the invasion, metas-
tasis, and proliferation of cancer cells [45–47].

We predicted VDRE sites using a PROMO database, and ChIP
analysis showed that vitamin D bound to VDRE sites in the HRC
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promoter region. Luciferase assay showed that vitamin D reduces
the transcriptional activity of HRC, indicating that a VDR-binding
site in the HRC gene promoter transcriptionally regulates the
expression of HRC. Since the discovery of VDR as a transcription
factor in steroid nuclei, the regulatory effect of vitamin D on genes
has becomemore apparent. Vitamin D regulates the transcriptional
activity of target genes, such as SLC1A5, by binding to the VDRE,
which is the locus where the vitamin D complex binds to specific
DNA on the target gene promoter [48]. Therefore, we believe that
VDRE is vital to the regulation of HRC gene expression by vitamin
D and the subsequent inhibition of cancer.

Conclusion

Vitamin D inhibits tumor growth, migration and proliferation,
and promotes apoptosis by downregulating HRC. Therefore, the
HRC gene could serve as a novel potential therapeutic target of
vitamin D to inhibit tumor growth.
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