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Abstract: (1) Background: Machine learning (ML) methods are rarely used for an omics-based
prescription of cancer drugs, due to shortage of case histories with clinical outcome supplemented by
high-throughput molecular data. This causes overtraining and high vulnerability of most ML methods.
Recently, we proposed a hybrid global-local approach to ML termed floating window projective
separator (FloWPS) that avoids extrapolation in the feature space. Its core property is data trimming,
i.e., sample-specific removal of irrelevant features. (2) Methods: Here, we applied FloWPS to seven
popular ML methods, including linear SVM, k nearest neighbors (kNN), random forest (RF), Tikhonov
(ridge) regression (RR), binomial naïve Bayes (BNB), adaptive boosting (ADA) and multi-layer
perceptron (MLP). (3) Results: We performed computational experiments for 21 high throughput
gene expression datasets (41–235 samples per dataset) totally representing 1778 cancer patients with
known responses on chemotherapy treatments. FloWPS essentially improved the classifier quality
for all global ML methods (SVM, RF, BNB, ADA, MLP), where the area under the receiver-operator
curve (ROC AUC) for the treatment response classifiers increased from 0.61–0.88 range to 0.70–0.94.
We tested FloWPS-empowered methods for overtraining by interrogating the importance of different
features for different ML methods in the same model datasets. (4) Conclusions: We showed that
FloWPS increases the correlation of feature importance between the different ML methods, which
indicates its robustness to overtraining. For all the datasets tested, the best performance of FloWPS
data trimming was observed for the BNB method, which can be valuable for further building of ML
classifiers in personalized oncology.

Keywords: bioinformatics; personalized medicine; oncology; chemotherapy; machine learning;
omics profiling

1. Introduction

A personalized approach in oncology was proven helpful for increasing efficacy of drugs
prescription in many cancers [1,2]. Generally, it is based on finding specific biomarkers which can be
mutations, protein levels or patterns of gene expression [3].

High throughput gene expression data can be connected with responsiveness on treatment using
two major approaches. First, drug efficacy can be simulated using hypothesis-driven drug scoring

Int. J. Mol. Sci. 2020, 21, 713; doi:10.3390/ijms21030713 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-1671-5524
http://dx.doi.org/10.3390/ijms21030713
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/3/713?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 713 2 of 20

algorithms which utilize knowledge of drugs molecular specificities and up/downregulated statuses of
target genes and molecular pathways in a tumor [1,3–6].

In turn, agnostic drug scoring approach, including machine learning (ML) methods can offer
even a wider spectrum of opportunities by non-hypothesis-driven direct linkage of specific molecular
features with clinical outcomes, such as responsiveness on certain types of treatment [7,8]. ML has
a variety of methods that could be used for such agnostic approach, e.g., decision trees, DT [9,10],
random forests, RF [11], linear [12], logistic [13], lasso [14,15], and ridge [16] regressions, multi-layer
perceptron, MLP [10,17,18], support vectors machines, SVM [9,10,19], adaptive boosting [20–22].
The high throughput transcriptomic data, including microarray- and next-generation sequencing
gene expression profiles can be utilized for building such classifiers/predictors of clinical response
to a certain type of treatment. However, the direct use of ML to personalize prediction of clinical
outcomes is problematic, due to the lack of sufficient amounts of preceding clinically annotated cases
supplemented with the high-throughput molecular data (~thousands or tens thousands of cases per
treatment scheme) [23].

Several ML methods have been recently successfully applied for distinguishing between cancer
patients with positive and negative responses on various treatments [20,24–26]. However, they were
not successful (area under curve (AUC) < 0.66) in predicting clinical outcomes for several model
datasets, including multiple myeloma expression dataset associated with known clinical responses on
cancer drug bortezomib [20,24–27].

For the classical ML approaches, most of the clinical genetic datasets are insufficient for effectively
solving the task of differentiating treatment responders from non-responders [9,28]. Features measured
by sequencing (e.g., polymorphisms, mutations or gene expression values) are far more numerous than
the cohorts of individual patients with traced clinical outcomes. For generating statistically significant
predictions, extensive reduction of a pool of features under consideration is needed to make their
number comparable with the number of individual samples available [10,29–31]. To leverage the
performance of ML in biomedicine, we recently developed an approach called flexible data trimming
(Data trimming (DT) is the process of removing or excluding extreme values, or outliers, from a
dataset [32]) [8,29,33–35]. This approach is heuristic and based on a common geometrical sense
(Figure 1). It utilizes the following basic principles: (i) When a new sample is analyzed to make a
prediction, the predictor has to be adapted to a new observation, or re-learned; (ii) the re-learned
predictor must be built within a new specific subspace, while using reduced (trimmed) training data.

Excluding non-informative features helps ML classifiers to avoid extrapolation, which is a
well-known Achilles heel of ML [36–39]. Thus, for every point of a validation dataset, the training
dataset is adjusted to form a floating window. We, therefore, called the respective ML approach,
floating window projective separator (FloWPS) [8].

In a pilot trial of this approach, it significantly enhanced robustness of the SVM classifier in all ten
clinical gene expression datasets totally representing 992 cancer patients either responding or not on
the different types of chemotherapy [8]. FloWPS demonstrated surprisingly high performance (the
ROC (receiver-operator curve) is a widely used graphical plot that illustrates the diagnostic ability of a
binary classifier system as its discrimination threshold is varied. The ROC is created by plotting the
true positive rate against the false positive rate at various threshold settings. The area under the ROC
curve, called ROC AUC, or simply AUC, is routinely used for assessment of the quality of the classifier.
AUC can vary from 0.5 till 1 and the standard threshold discriminating good vs. poor classifiers
is AUC > 0.7 or more) of AUC > 0.7 for the leave-one-out scheme in all datasets, including those
where responders and non-responders were poorly distinguishable algorithmically in the previous
works [20,24–27]. However, the applicability and usefulness of FloWPS for a wide variety of ML
methods remained unstudied.

Here, we investigated FloWPS performance for seven popular ML methods, including linear
SVM, k nearest neighbors (kNN), random forest (RF), Tikhonov (ridge) regression (RR), binomial
naïve Bayes (BNB), adaptive boosting (ADA) and multi-layer perceptron (MLP). We performed
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computational experiments for 21 high throughput gene expression datasets (41–235 samples per
dataset) corresponding to 1778 cancer patients with known responses on chemotherapy treatments.
We showed that FloWPS essentially improved the classifier quality for all global ML methods (SVM, RF,
BNB, ADA, MLP), where the AUC for the treatment response classifiers increased from 0.65–0.85 range
to 0.80–0.95. For all the datasets tested, the best performance of FloWPS data trimming was observed for
the BNB method, which can be valuable for further building of ML classifiers in personalized oncology.

Additionally, to test the robustness of FloWPS-empowered ML methods against overtraining,
we interrogated agreement/consensus features between the different ML methods tested, which were
used for building mathematical models for the classifiers. The lack of such agreement/consensus
could indicate overtraining of the ML classifiers built, suggesting random noise instead of extracting
significant features distinguishing between the treatment responders and non-responders. If ML
methods indeed tend to amplify random noise during overtraining, then one could expect a lack of
correlation between the features for geometrically different ML models. However, we found here that
(i) there were statistically significant positive correlations between different ML methods in terms
of relative feature importance, and (ii) that this correlation was enhanced for the ML methods with
FloWPS. We, therefore, conclude that the beneficial role of FloWPS is not due to overtraining.
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 SVM RF RR BNB MLP 

SVM 1 0.53/0.55 0.40/0.39 0.37/0.34 0.46/0.46 

RF 0.34/0.40 1 0.51/0.32 0.48/0.31 0.59/0.38 

RR 0.19/0.14 0.35/0.04 1 0.93/0.79 0.89/0.52 

Figure 1. Area under curve (AUC) (a–d), sensitivity (SN) (e–h) and specificity (SP) (i–l) calculated for
treatment response classifiers for eleven non-equalized datasets. The classifiers were based on SVM
(a,e,i), RF (b,f,j), binomial naïve Bayes (BNB) (c,g,k) and multi-layer perceptron (MLP) (d,h,l) machine
learning (ML) methods. The color legend shows the absence or presence of FloWPS in the classifier
analytic pipeline and the value of relative balance factor B. On each panel, each violin plot shows the
distribution of values for eleven cancer datasets.

2. Results

2.1. Performance of FloWPS for Equalized Datasets Using All ML Methods with Default Settings

In this study, we used FloWPS in combination with seven ML methods, namely, linear support
vector machines (SVM), k nearest neighbors (kNN), random forest (RF), ridge regression (RR), binomial
naïve Bayes (BNB), adaptive boosting (ADA) and multi-layer perceptron (MLP).

First ten over twenty-one gene expression datasets investigated here had equal numbers of
known responders and non-responders and were investigated first. The basic quality characteristics
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of using seven above ML methods for discriminating between responders and non-responders in
these datasets are shown in Supplementary Figures S1_1, S1_2, S1_3, including AUC, sensitivity (SN)
and specificity (SP). Each ML method was applied with its default settings using Python package
sklearn [40], both with and without data trimming, separately for each dataset. Although different
values of relative balance factor B and discrimination threshold τ (see Materials and Methods,
Section 4.3) did not affect the ROC AUC characteristics, they were crucial for sensitivity and specificity
(Supplementary Figures S1_1, S1_2, S1_3).

We found that the use of FloWPS has considerably improved the AUC metric for all global ML
methods investigated (SVM, RF, BNB, ADA and MLP), but had no effect on the performance of local
methods kNN and RR (Supplementary Figures S1_1, S1_2, S1_3). For the global ML methods, FloWPS
improved the classifier quality and increased AUC from 0.61–0.88 range to 0.70–0.94 (Supplementary
Figures S1_1, S1_2, S1_3), and AUC median values—from 0.70–0.77 range to 0.76–0.82 (Table 1).
In addition, kNN and RR also showed poor SN and SP for B > 1 and B < 1, respectively (Supplementary
Figures S1_1, S1_2, S1_3).

Table 1. Performance metrics for seven ML methods with default settings for datasets with equal
numbers of responders and non-responders.

ML
Method

Method
Type

Median AUC
without
FloWPS

Median
AUC with

FloWPS

Paired t-Test p-Value
for AUC

with-vs.-w/o FloWPS

Advantage
of FloWPS

Median SN
at B = 4

Median SP at
B = 0.25

SVM Global 0.74 0.80 1.3 × 10−5 Yes 0.45 0.42
kNN Local 0.76 0.75 0.53 No 0.25 0.34
RF Global 0.74 0.82 1.3 × 10-5 Yes 0.45 0.42
RR Local 0.80 0.79 0.16 No 0.36 0.41

BNB Global 0.77 0.82 2.7 × 10−4 Yes 0.51 0.58
ADA Global 0.70 0.76 2.4 × 10−4 Yes 0.32 0.41
MLP Global 0.73 0.82 6.4 × 10−5 Yes 0.53 0.53

Yes–FloWPS is beneficial for ML quality, No–FloWPS is not beneficial for ML quality.

These findings are summarized in Table 1. Considering quality criterion of combining the highest
AUC, the highest SN at B = 4 and the highest SP at B = 0.25, the top three methods identified for the
default settings were BNB, MLP and RF (Supplementary Figures S1_1, S1_2, S1_3; Table 1).

2.2. Performance of FloWPS for Equalized Datasets Using BNB, MLP and RF Methods with the Advanced Settings

We then checked the performance of three best ML methods (BNB, MLP and RF) for the same ten
datasets with equal numbers of responders and non-responders using advanced settings, see Materials
and Methods (Supplementary Figures S2_1, S2_2, S2_3; Table 2). FloWPS improved the classifier
quality for these three ML methods and increased AUC from 0.75–0.78 range to 0.83-0.84 (Table 2).

Table 2. Performance metrics for BNB, MLP and RF methods with the advanced settings for datasets
with equal numbers of responders and non-responder samples.

ML
Method

Median AUC
without
FloWPS

Median AUC
with FloWPS

Paired t-Test p-Value
for AUC with-vs.-w/o

FloWPS

Median SN
at B = 4

Median SP
at B = 0.25

RF 0.75 0.83 3.5 × 10−6 0.50 0.56
BNB 0.78 0.83 6.7 × 10−4 0.50 0.60
MLP 0.77 0.84 2.4 × 10−4 0.50 0.51

For RF, the best results were obtained with the following parameter settings: n_estimators = 30,
criterion = “entropy” (Supplementary Figures S2_1, S2_2, S2_3). For BNB, the best settings were
alpha = 1.0, binarize = 0.0, and fit_prior = False (Supplementary Figures S2_1, S2_2, S2_3). For MLP,
the best settings were hidden_layer_sizes = 30, alpha = 0.001 (Supplementary Figures S2_1, S2_2, S2_3).
Among these three ML methods, the best results were obtained for BNB with alpha = 1.0, binarize = 0.0,
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and fit_prior = False (Supplementary Figures S2_1, S2_2, S2_3). BNB with these parameter settings can
be, therefore, recommended for further development and implementation of the expression-based
classifiers of individual treatment response, because it showed simultaneously acceptable AUC, SN
and SP for the maximum spectrum of datasets tested (Supplementary Figures S2_1, S2_2, S2_3; Table 2).

2.3. Performance of FloWPS for Non-Equalized Datasets Using BNB, MLP, RF and SVM Methods with the
Advanced Settings

We then applied the best settings previously found for BNB, MLP and RF methods using
responder-equalized data for the new eleven datasets containing different proportions of treatment
responders’ and non-responders’ samples. In addition, we also used linear SVM method (Figure 1,
Table 3) with penalty parameter C = 1 because our previous results [8] showed that C ≤ 1 minimizes
the risk of overtraining for SVM. The output ML classifier quality metrics were obtained for these four
methods, including AUC (Figure 1a–d), SN (Figure 1e–h) and SP (Figure 1i–l). In this trial, the number
of responders and non-responder samples were not equal. To compensate for the possible influence of
the variable proportion of samples in the two classes, SVM and RF calculations were performed using
the balanced-class option.

Table 3. Performance metrics for BNB, MLP, RF and SVM methods with the advanced settings for
eleven datasets with variable numbers of responders and non-responder samples.

Method
Median AUC

without
FloWPS

Median AUC
with FloWPS

Paired t-Test p-Value
for AUC with-vs.-w/o

FloWPS

Median SN
at B = 4

Median SP
at B = 0.25

SVM 0.81 0.83 0.013 0.65 0.70
RF 0.76 0.86 4.9 × 10−6 0.56 0.71

BNB 0.84 0.89 7.5 × 10−4 0.78 0.75
MLP 0.83 0.88 1.0 × 10−4 0.63 0.71

The application of FloWPS improved the classifier quality for these four ML methods, as the median
AUC for the treatment response classifiers increased from 0.76–0.84 range to 0.83–0.89 (Figure 1a–d,
Table 3). In this experiment, we confirmed the advantage of using FloWPS for all four ML methods
tested and the best performance of BNB also for eleven datasets with non-equal numbers of responders
and non-responder samples.

2.4. Correlation Study Between Different ML Methods at the Level of Feature Importance

We showed positive pairwise correlations between the different ML methods at the level of relative
importance (If, see Materials and Methods) of different features tested (Table 4, Supplementary Figures
S3_1, S3_2, Supplementary Table S4_1). Greater similarities between If marks in the different ML methods
reflect more robust applications of the ML. Importantly, the correlations for the ML methods with FloWPS
were always higher than for the methods without FloWPS (Table 4, Supplementary Figures S3_1, S3_2).
This clearly suggests the beneficial role of FloWPS for extracting informative features from the noisy data.
In this model, the biggest similarity was observed for the pair of RR and BNB methods.

Table 4. Median pairwise Pearson/Spearman correlation at feature (gene expression) importance (If)
level. Figures above main diagonal: With FloWPS; figures below: Without FloWPS.

SVM RF RR BNB MLP

SVM 1 0.53/0.55 0.40/0.39 0.37/0.34 0.46/0.46
RF 0.34/0.40 1 0.51/0.32 0.48/0.31 0.59/0.38
RR 0.19/0.14 0.35/0.04 1 0.93/0.79 0.89/0.52

BNB 0.24/0.14 0.33/0.09 0.88/0.64 1 0.81/0.46
MLP 0.33/0.30 0.40/0.17 0.76/0.06 0.61/0.12 1
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3. Discussion

Many ML methods which were designed for global separation of different classes of points in
the feature space are prone to overtraining when the number of preceding cases is low. Global ML
methods may also fail if there is only local rather than global order in the placement of different classes
in the feature space (Figure 2a).
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Figure 2. Schematic view of global-local order hybrid ML analytic pipeline (adopted after [8]; copyright
belongs to the authors of [8], who wrote also the current paper). (a) Global machine learning methods
may fail to separate classes for datasets without global order. (b) ML, coupled with FloWPS, works
locally and handles that cases more accurately.

To improve performance of ML, FloWPS approach includes some elements of the local methods,
e.g., using the flexible data trimming that avoids extrapolation in the feature space for each validation
point and by selecting only several nearest neighbors from the training dataset. In such a way, the whole
ML classifier becomes hybrid, both global and local (Figure 2b).

In this hybrid approach, for each validation point training of ML models is performed in the
individually tailored feature space. Every validation point is surrounded by a floating window from the
points of the training dataset, and the irrelevant features are avoided using the rectangular projections
in the feature space.

This approach was initially tested for the SVM method [8,33–35], and in this study, we for the
first time applied it to supplement other six popular ML techniques. We used twenty-one clinically
annotated gene expression datasets totally, including 1778 patient samples with known clinical
treatment responses. These datasets contained 41–235 samples and represented breast cancer (10)
multiple myeloma (4), acute myeloid leukemia (3), pediatric acute lymphoblast leukemia (1), pediatric
Wilms kidney tumor (1), low grade gliomas (1) and lung cancer (1). The chemotherapeutic treatment
schemes included taxanes, bortezomib, vincristine, trastuzumab, letrozole, tipifarnib, temozolomide,
busulfan and cyclophosphamide.

We confirmed the efficiency of FloWPS for all tested global ML methods: Linear support vector
machines (SVM), random forest (RF), binomial naïve Bayes (BNB), adaptive boosting (ADA) and
multi-layer perceptron (MLP). The paired t-test for FloWPS-vs.-no-FloWPS comparison assures that the
AUC values for FloWPS-empowered ML methods are significantly higher. For all the datasets tested,
the use of FloWPS could increase the quality of binary classifiers for clinical response on chemotherapy.

The regression-like methods, including FloWPS-assisted ML techniques, produce as their outputs
the continuous values for likelihood of a sample belonging to a specific class. A discrimination threshold
(τ) applied to these output values makes it possible to classify the samples as either responders or
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non-responders. To set up this threshold, it is important to evaluate the relative penalties of false
positive and false negative errors. In most clinically relevant applications, this relative balance factor
(B) varies between 0.25 and 4 [41–45]. For higher B values, the test sensitivity (SN) is low, and lower B
means lower specificity (SP).

We found that FloWPS-assisted global ML methods RF, BNB and MLP, exhibited the highest SN
and SP in the range 0.25 ≤ B ≤ 4 (Supplementary Figures S1_1, S1_2, S1_3; Table 1). Our further and
more detailed trial with advanced ML settings confirmed this finding, with the best results shown by
the binomial naïve Bayesian (BNB) method with the settings alpha = 1.0, binarize = 0.0, fit_prior = False
(Supplementary Figures S2_1, S2_2, S2_3; Table 2). When the best settings identified were applied to eleven
cancer datasets with different proportions of the responders and non-responders, FloWPS again was found
beneficial for all local ML techniques, and the BNB method showed the best performance (Figure 1c,g,k;
Table 3).

Overtraining, together with extrapolation, is very frequently considered also an Achilles heel of
ML. We, therefore, tested if FloWPS helps to extract truly significant features or if it simply adapts to
random noise, thus, causing overfitting. We compared four global ML methods (SVM, RF, BNB and
MLP) and one local ML method (RR) to check similarities between them in terms of relative importance
of distinct individual features. We confirmed that all these five ML methods were positively correlated
at the level of feature importance (Table 4, Supplementary Figures S3_1, S3_2). Moreover, using FloWPS
significantly enhanced such correlations in all the cases examined (Table 4 Supplementary Figures S3_1,
S3_2, Supplementary Table S4_1). These results clearly suggest that FloWPS is helpful for extracting
relevant information rather than merely follows the random noise and overfits the ML model.

Overall, we propose that using correlations between different ML methods at the level of relative
importance of distinct features may be used as an evaluation metric of ML suitability for building
classifiers utilizing omics data (Table 5, Supplementary Figure S5_1). In this case, the higher is the
correlation, the bigger should be the probability that the separation of responders from non-responders
is robust and non-overtrained.

Table 5. Minimal, median, mean and maximal Pearson/Spearman correlation values for pairwise
comparison of different ML methods with FloWPS at the level of feature importance (If).

Dataset # Dataset ID Min Median Mean Max

1 GSE25066 0.41/0.28 0.72/0.44 0.67/0.46 0.93/0.81
2 GSE41998 −0.02/−0.10 0.55/0.39 0.49/0.35 0.87/0.83
3 GSE9782 0.37/0.19 0.58/0.41 0.62/0.41 0.97/0.88
4 GSE39754 0.34/0.28 0.50/0.37 0.54/0.41 0.84/0.72
5 GSE68871 0.50/0.43 0.62/0.60 0.68/0.64 0.95/0.93
6 GSE55145 0.32/0.29 0.57/0.42 0.60/0.45 0.85/0.70
7 TARGET50 0.34/0.57 0.69/0.74 0.66/0.72 0.95/0.82
8 TARGET10 0.32/0.30 0.50/0.45 0.58/0.48 0.90/0.77
9 TARGET20 busulfan 0.63/0.55 0.70/0.66 0.76/0.70 0.97/0.89

10 TARGET20 no busulfan 0.16/0.35 0.63/0.53 0.60/0.55 0.92/0.79
11 GSE18728 0.38/0.21 0.54/0.46 0.62/0.45 0.95/0.79
12 GSE20181 0.33/0.17 0.43/0.43 0.56/0.43 0.96/0.79
13 GSE20194 0.06/0.04 0.50/0.30 0.49/0.34 0.93/0.80
14 GSE23988 0.28/0.18 0.46/0.35 0.55/0.39 0.96/0.82
15 GSE32646 0.23/0.11 0.37/0.28 0.49/0.32 0.95/0.74
16 GSE37946 0.40/0.26 0.62/0.45 0.62/0.44 0.92/0.69
17 GSE42822 0.34/0.03 0.52/0.40 0.58/0.38 0.89/0.82
18 GSE5122 0.12/−0.06 0.40/0.20 0.46/0.25 0.93/0.79
19 GSE59515 0.37/0.26 0.47/0.47 0.59/0.49 0.96/0.74
20 TCGA-LGG 0.27/0.13 0.64/0.47 0.63/0.42 0.94/0.76
21 TCGA-LC 0.44/0.23 0.62/0.55 0.66/0.53 0.95/0.90
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Surely, very few gene expression/mutation datasets have enough number of clinically annotated
preceding cases that are sufficient for building any ML model. For the datasets, which does not have
enough cases, the transfer learning approach may be applied. This approach implies that the ML model
is trained on a bigger, similar, but quite different, dataset, and then applied to a smaller (validation)
dataset. The FloWPS technique has been already tested for transfer learning, and gene expression
profiles of cell cultures treated with chemotherapeutic drugs served as training datasets [33–35].
Another possibility is to aggregate different smaller datasets into bigger ones. For such aggregation,
a new harmonizing technique, which is capable to merge arbitrary number of datasets obtained using
arbitrary experimental platforms [46], may be applied.

Of course, transformations in the feature space aimed to adapt it to individual preceding cases
is not a new idea in ML [47–49]. However, our flexible data trimming approach FloWPS is different
because it does not use any pre-selected analytical form of transformation kernels, but instead adapts
the feature space aoristically for every particular validation case. The success of using FloWPS for
the real-world gene expression datasets, including tens to hundreds of samples prompts further trials
of its applicability in biomedicine and in the other fields where increased accuracy of ML classifiers
is needed.

4. Materials and Methods

4.1. Clinically Annotated Molecular Datasets

We used 21 publicly available datasets, including high throughput gene expression profiles
associated with clinical outcomes of the respective patients (Table 6). The biosamples were obtained
from tumor biopsies before chemotherapy treatments. The outcomes were response or lack of response
on the therapy used, as defined in the original reports (Table 6).

The datasets preparation for the analysis included the following steps [8]:

• Labelling each patient as either responder or non-responder on the therapy used;
• For each dataset, finding top marker genes having the highest AUC values for distinguishing

responder and non-responder classes;
• Performing the leave-one-out (LOO) cross-validation procedure to complete the robust core

marker gene set used for building the ML model.
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Table 6. Clinically annotated gene expression datasets used in this study.

Reference Dataset ID Disease Type Treatment Experimental Platform Number NC of Cases
(R vs. NR)

Number S of Core
Marker Genes

[50,51] GSE25066
Breast cancer with
different hormonal
and HER2 status

Neoadjuvant taxane + anthracycline Affymetrix Human Genome
U133 Array

235 (118 R: Complete response +
partial response; 117 NR:

Residual disease + progressive
disease)

20

[52] GSE41998
Breast cancer with
different hormonal
and HER2 status

Neoadjuvant doxorubicin +
cyclophosphamide, followed by paclitaxel

Affymetrix Human Genome
U133 Array

68 (34 R: Complete response +
partial response; 34 NR: Residual

disease + progressive disease)
11

[27] GSE9782 Multiple myeloma Bortezomib monotherapy Affymetrix Human Genome
U133 Array

169 (85 R: Complete response +
partial response; 84 NR: No

change + progressive disease)
18

[53] GSE39754 Multiple myeloma
Vincristine + adriamycin +

dexamethasone followed by autologous
stem cell transplantation (ASCT)

Affymetrix Human Exon 1.0 ST
Array

124 (62 R: Complete,
near-complete and very good

partial responders, 62 NR:
Partial, minor and worse)

16

[54] GSE68871 Multiple myeloma Bortezomib-thalido-mide-dexamethasone Affymetrix Human Genome
U133 Plus

98 (49 R: Complete,
near-complete and very good

partial responders, 49 NR:
Partial, minor and worse)

12

[55] GSE55145 Multiple myeloma Bortezomib followed by ASCT Affymetrix Human Exon 1.0 ST
Array

56 (28 R: Complete,
near-complete and very good

partial responders, 28 NR:
Partial, minor and worse)

14

[56,57] TARGET-50 Pediatric kidney
Wilms tumor

Vincristine sulfate + cyclosporine,
cytarabine, daunorubicin + conventional

surgery + radiation therapy
Illumina HiSeq 2000 72 (36 R, 36 NR: See

Reference [8]) 14

[56,58] TARGET-10
Pediatric acute
lymphoblastic

leukemia

Vincristine sulfate + carboplatin,
cyclophosphamide, doxorubicin Illumina HiSeq 2000 60 (30 R, 30 NR: See

Reference [8]) 14
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Table 6. Cont.

Reference Dataset ID Disease Type Treatment Experimental Platform Number NC of Cases
(R vs. NR)

Number S of Core
Marker Genes

[56] TARGET-20 Pediatric acute
myeloid leukemia

Non-target drugs (asparaginase,
cyclosporine, cytarabine, daunorubicin,
etoposide; methotrexate, mitoxantrone),

including busulfan and
cyclophosphamide

Illumina HiSeq 2000 46 (23 R, 23 NR: See
Reference [8]) 10

[56] TARGET-20 Pediatric acute
myeloid leukemia

Same non-target drugs, but excluding
busulfan and cyclophosphamide Illumina HiSeq 2000 124 (62 R, 62 NR: See

Reference [8]) 16

[59] GSE18728 Breast cancer Docetaxel, capecitabine Affymetrix Human Genome
U133 Plus 2.0 Array

61 (23R: Complete response +
partial response; 38 NR: Residual

disease + progressive disease)
16

[60,61] GSE20181 Breast cancer Letrozole Affymetrix Human Genome
U133A Array

52 (37 R: Complete response +
partial response; 15 NR: Residual

disease + progressive disease)
11

[62] GSE20194 Breast cancer
Paclitaxel; (tri)fluoroacetyl chloride;

5-fluorouracil, epirubicin,
cyclophosphamide

Affymetrix Human Genome
U133A Array

52 (11 R: Complete response +
partial response; 41 NR: Residual

disease + progressive disease)
10

[63] GSE23988 Breast cancer Docetaxel, capecitabine Affymetrix Human Genome
U133A Array

61 (20 R: Complete response +
partial response; 41 NR: Residual

disease + progressive disease)
18

[64] GSE32646 Breast cancer Paclitaxel, 5-fluorouracil, epirubicin,
cyclophosphamide

Affymetrix Human Genome
U133 Plus 2.0 Array

115 (27 R: Complete response +
partial response; 88 NR: Residual

disease + progressive disease)
17

[65] GSE37946 Breast cancer Trastuzumab Affymetrix Human Genome
U133A Array

50 (27 R: Complete response +
partial response; 23 NR: Residual

disease + progressive disease)
14

[66] GSE42822 Breast cancer Docetaxel, 5-fluorouracil, epirubicin,
cyclophosphamide, capecitabine

Affymetrix Human Genome
U133A Array

91 (38 R: Complete response +
partial response; 53 NR: Residual

disease + progressive disease)
13
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Table 6. Cont.

Reference Dataset ID Disease Type Treatment Experimental Platform Number NC of Cases
(R vs. NR)

Number S of Core
Marker Genes

[67] GSE5122 Acute myeloid
leukemia Tipifarnib Affymetrix Human Genome

U133A Array

57 (13 R: Complete response +
partial response + stable disease;

44 R: Progressive disease)
10

[68] GSE59515 Breast cancer Letrozole
Illumina

HumanHT-12 V4.0 expression
beadchip

75 (51 R: Complete response +
partial response; 24 NR: Residual

disease + progressive disease)
15

[69] TCGA-LGG Low-grade glioma Temozolomide + (optionally) mibefradil Illumina HiSeq 2000
131 (100 R: Complete response +
partial response + stable disease;

31 NR: Progressive disease)
9

[69] TCGA-LC Lung cancer Paclitaxel +
(optionally),cisplatin/carboplatin, reolysin Illumina HiSeq 2000

41 (24 R: Complete response +
partial response + stable disease;

17 NR: Progressive disease)
7



Int. J. Mol. Sci. 2020, 21, 713 12 of 20

4.2. Principles of Flexible Data Trimming

We first introduced [33–35] flexible data trimming as a preprocessing tool for transferring to real
patients the gene expression data obtained for cell cultures treated with anti-cancer drugs.

Then this method was overhauled and used to increase the SVM-based classifier’s performance
for the datasets that contained only gene expression data for cancer patients [8,29]. Since the number
of patients with annotated case histories (when treatment method and its clinical success is known,
together with the high-throughput gene expression/mutation profile) is limited, we have tailored the
whole data trimming scheme to match the leave-one-out (LOO) methodology.

This LOO approach in our method is employed three times [8,29]:

• First, it helped us to specify the core marker gene sets (see Materials and Methods), which form the
feature space F = (f 1, . . . ,fS) for subsequent application of data trimming;

• Second, it was applied for every ML prediction act for the wide range of data trimming parameters,
m and k;

• Third, it was used for the final prediction of the treatment response for every patient and optimized
(for all remaining patients) values of parameters m and k.

Now let us describe flexible data trimming in more detail. Imagine that we have to classify the
clinical response for a certain patient I (called patient of interest) from a given dataset. Let the whole
dataset contain N patients, so that the remaining N − 1 patients form the preceding dataset Di, for the
patient of interest. For ML without data trimming, in the feature space F = (f 1, . . . ,fS) all N – 1 remaining
patients are used to build the classifier. However, in the case of FloWPS, LOO procedure will be applied
to classify every sample j , i from the preceding dataset Di without sample i, and N − 2 remaining
samples may be used for such a classification of sample j. To avoid extrapolation in the feature space,
we consider the subset Fij of relevant features [8]. A feature fs is considered relevant for the sample
j if on its axis there are at least m projections from N − 2 training samples, which are larger than fs
(i,j), and, at the same time, at least m, which are smaller than fs (i,j), when m is a non-negative integer
parameter (Figure 3a). The maximum possible m value is (N – 2)/2, since if m is less than (N – 2)/2, then
no relevant features may be chosen. Similarly, the minimal case of m = 0 also corresponds to no feature
selection. Note that the resulting subset of relevant features Fij (m) will be individual for every pair of
samples i and j [8].Int. J. Mol. Sci. 2020, 21, x 2 of 19 
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Moreover, in the space Fij (m) only k closest samples to sample j will be allowed for training
among the remaining (N – 2) cases. As a measure for proximity, the Euclidean distance is used [8].
Here k is another integer parameter that specifies the number of nearest neighbors in the subspace of
selected features (Figure 3b). The maximal possible k is N – 2, which corresponds to no training sample
selection. In contrast, when k is too low, there is an increased risk of ML error, due to the presence of a
too-small number of training points among the k nearest neighbors (Figure 3b).

After selection of relevant features and nearest neighbors for the sample j, the ML model is trained
using nearest neighbors only, and used for prediction of a clinical response, Pij (m,k), for the patient j.
After repeating this procedure for all other j , i, we obtain the area-under the ROC curve, AUCi (m,k),
for all, but i-th samples for fixed values of data trimming parameters m and k.

The AUCi (m,k) can be then analyzed as a function of m and k [8]. Over the range of possible m
and k values, we compare the AUCi function [8]. All pairs of (m,k) values that provide AUCi (m,k)
> p·max (AUCi (m,k)) form the prediction-accountable set Si for the patient of interest i [8], where
p is the confidence threshold, which could vary from 0.90 till 0.95 in our previous computational
experiments [8].

Finally, the FloWPS prediction PFi for the sample of interest i, is calculated by averaging the ML
predictions over the prediction-accountable set Si: PFi = meanSi(Pi(m, k)). By repeating this procedure
for all other samples, a set of FloWPS predictions will be obtained for the whole dataset [8].

The overview of LOO cross-validation algorithm for FloWPS-empowered ML-based predictor is
shown in Figure 4.Int. J. Mol. Sci. 2020, 21, x 3 of 19 
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Figure 4. The algorithm of data trimming used for binomial naïve Bayes (LOO) cross-validation of
the clinically annotated gene expression datasets. Indexes i and j denote samples (patients), index s
denotes pairs of (m0,k0)-values in the prediction-accountable set, and indexes m and k denote the data
trimming parameters.
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The application of ML methods without FloWPS means that prediction is made for each sample i
using the parameter values m = 0, k = N − 1, and a training dataset Di (without sample i).

4.3. Application of ML Methods

All the ML calculations were performed using our R package flowpspkg.tar.gz, ffsdf available
at Gitlab through the link: https://gitlab.com/borisov_oncobox/flowpspkg. This package, which
was prepared for convenience of R users, is a wrapper over a Python code, which is also runnable.
The Python code is based on library sklearn [40].

For the default settings trial, linear support vector machines (SVM), k nearest neighbors (kNN),
random forest (RF), ridge regression (RR), binomial naïve Bayes (BNB), adaptive boosting (ADA) and
multi-layer perceptron (MLP) were used with the default parameter settings for the sklearn package.
For the advanced settings trial, three ML methods, which showed the best sensitivity and specificity
for default settings within the range of relative balance factor 0.25 ≤ B ≤ 4, were run under the
following conditions. For RF, the parameter n_estimators = 10, 30 or 100, and criterion = “gini” or
“entropy” were used (totally 3 × 2 = 6 setting cases). For BNB, the parameters alpha = 0.0 or 1.0,
binarize = 0.0 or 1.0, and fit_prior = True or False, were tried (totally 2 × 2 × 2 = 8 setting cases). For MLP,
the parameters hidden_layer_sizes = 30 or 100, and alpha = 0.01, 0.001 or 0.0001 were checked (totally
2 × 3 = 6 setting cases). For the datasets with an unequal number of responders and non-responder
samples (Table 6), linear SVM and RF calculations were done with setting class_weight = “balanced”
and class_weight = “balanced_subsample”, respectively. All other parameters were used with the
default settings.

4.4. False Positive Vs. False Negative Error Balance

For all ML methods, the FloWPS predictions (PFi) were made which were likelihoods for attribution
of samples to one of the two classes (clinical responders or non-responders).

The discrimination threshold (τ), which may be applied to distinguish between the two classes,
should be determined according to the cost balance between false positive (FP) and false negative (FN)
errors. In our previous study [8], for determination of the τ value, we considered the costs for FP and
FN errors to be equal, and then maximized the overall accuracy rate, ACC = (TP + TN)/(TP + TN + FP
+ FN), since the class sizes were equal.

In a more general case, the penalty value p = B·FP + FN is minimized; here, B is called relative
balance factor. B is less than 1 for the situations when the FN error (e.g., refusal of prescription of a
drug which might help the patient) is more dangerous than the FP error (e.g., prescription of a useless
treatment). Contrary, B is greater than 1, when it is safer not to prescribe treatment for a patient than to
prescribe it. Several practitioners of clinical diagnostic tests have different opinions on how high/low
should be this balance factor. In different applications, the preferred values can be B = 4 [41,42,45], B <

0.16 [70], 4.5 < B < 5 [44], B < 5 [43], B > 10 for emergency medicine only [71], B > 5 for toxicology [72].
In case of oncological disease, B should be low when only one or few treatment options is/are

available for a certain patient, because the refusal to give a treatment may cause serious harm to the
patient. Contrarily, in the situation when the best treatment plan must be selected among multiple
options available, the risk of wrong drug prescription will be higher, and B should be high as well.
For our analyses, we used five model settings of B equal to 0.1, 0.25, 1, 4 or 10.

4.5. Feature Importance Analysis

For linear SVM, RF, RR, BNB and MLP methods and for all transcriptomic datasets tested,
we calculated relative importance, If, of each gene expression feature f in the dataset, using the following
attributes of ML classes in Python library sklearn [40]:

For linear SVM: If = |coef _[0]f|, where coef _[0] is the normal vector to the separation hyperplane
between responders and non-responders in the feature space in the training model.

For RF, If = |feature_importancesf| from the training model.

https://gitlab.com/borisov_oncobox/flowpspkg
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For RR, I f =
∑
t

∣∣∣X_ f itt f
∣∣∣ , where the summation runs through every sample t in the training model.

For BNB,I f =
∑
c

f eature_countc f , where the values named feature_countcf denote the number of

samples encountered for each class c and feature f during fitting of the training model.

For MLP, I f =
∑
t

∣∣∣∣coe f s[0]t f

∣∣∣∣, where coe f s[0]t f is the coefficient matrix in the first layer of the

neural network for feature f of sample t in the training model.
For each validation point I, the If was averaged over all predication-accountable set Si.

5. Conclusions

We applied a flexible data trimming technique FloWPS to enhance performance of seven popular
ML methods, including linear SVM, k nearest neighbors (kNN), random forest (RF), Tikhonov
(ridge) regression (RR), binomial naïve Bayes (BNB), adaptive boosting (ADA) and multi-layer
perceptron (MLP). We performed computational experiments for 21 high throughput gene expression
datasets (41–235 samples per dataset) totally, including 1778 cancer patients with known responses
on chemotherapy treatments. FloWPS essentially improved the classifier quality for all global ML
methods (SVM, RF, BNB, ADA, MLP), where the area under the receiver-operator curve (ROC AUC)
for the treatment response classifiers increased from 0.61–0.88 range to 0.70–0.94. The comparison of
five best ML methods (SVM, RF, RR, BNB and MLP) at the level of relative importance for different
features confirmed that ML models used here were not overtrained and that the usage of FloWPS
increased the correlations between the different ML methods at the level of feature importance. For all
the datasets tested, the best performance of FloWPS data trimming was observed for the BNB method,
which can be valuable for further building of ML classifiers in personalized oncology.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/3/713/s1,
Figure S1_1: Area under the receiver-operator curve (ROC AUC) for treatment response classifiers for ten cancer
datasets (see Table 1). The classifiers were based on SVM (A), kNN (B), RF (C), RR (D), BNB (E), ADA (F) and
MLP (G) with default in-built parameter settings according to the Python package sklearn [40]. The color legend
shows the absence or presence of FloWPS in the classifier analytic pipeline and the value of relative balance
factor B. On each panel, each violin plot shows the distribution of values for eleven cancer datasets, Figure S1_2:
Sensitivity (SN) for treatment response classifiers for ten cancer datasets (see Table 1). The classifiers were based
on SVM (A), kNN (B), RF (C), RR (D), BNB (E), ADA (F) and MLP (G) with default in-built parameter settings
according to the Python package sklearn [40] The color legend shows the absence or presence of FloWPS in the
classifier analytic pipeline and the value of relative balance factor B. On each panel, each violin plot shows the
distribution of values for eleven cancer datasets, Figure S1_3: Specificity (SP) for treatment response classifiers for
ten cancer datasets (see Table 1). The classifiers were based on SVM (A), kNN (B), RF (C), RR (D), BNB (E), ADA
(F) and MLP (G) with default in-built parameter settings according to the Python package sklearn [40]. The color
legend shows the absence or presence of FloWPS in the classifier analytic pipeline and the value of relative balance
factor B. On each panel, each violin plot shows the distribution of values for eleven cancer datasets, Figure S2_1:
Area under the receiver-operator curve (ROC AUC) for treatment response classifiers for ten cancer datasets (see
Table 1). The classifiers were based on RF (A), BNB (B), and MLP (C) with the best settings, as well as RF (D),
BNB (E), and MLP (F) with default settings, and RF (G), BNB (H), and MLP (I) with worst settings in the Python
package sklearn [40] The color legend shows the absence or presence of FloWPS in the classifier analytic pipeline
and the value of relative balance factor B. On each panel, each violin plot shows the distribution of values for
eleven cancer datasets, Figure S2_2: Sensitivity (SN) for treatment response classifiers for ten cancer datasets (see
Table 1). The classifiers were based on RF (A), BNB (B), and MLP (C) with the best settings, as well as RF (D), BNB
(E), and MLP (F) with the default settings, and RF (G), BNB (H), and MLP (I) with worst settings in the Python
package sklearn [40] The color legend shows the absence or presence of FloWPS in the classifier analytic pipeline
and the value of relative balance factor B. On each panel, each violin plot shows the distribution of values for
eleven cancer datasets, Figure S2_3: Specificity (SP) for treatment response classifiers for ten cancer datasets (see
Table 1). The classifiers were based on RF (A), BNB (B), and MLP (C) with the best settings, as well as RF (D), BNB
(E), and MLP (F) with default settings, and RF (G), BNB (H), and MLP (I) with worst settings in the Python package
sklearn [40]. The color legend shows the absence or presence of FloWPS in the classifier analytic pipeline and the
value of relative balance factor B. On each panel, each violin plot shows the distribution of values for eleven cancer
datasets, Figure S3_1: Pairwise correlations (red—Pearson, green—Spearman) at feature (gene expression) level
between different ML methods: Figures above the main diagonal—with FloWPS, figures below—without FloWPS,
Figure S3_2: Overall pairwise correlations as similarity metric for each ML method at feature (gene expression)
level: A—Pearson, FloWPS, B—Pearson, no FloWPS, C—Spearman, FloWPS, D—Spearman, no FloWPS, Figure
S5_1: Correlation values between different ML methods at feature (gene expression) level for each dataset;
dataset numbers (see Table 5 in the Main text) are shown through the horizontal axis). A—Pearson, FloWPS,
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B—Pearson, no FloWPS, C—Spearman, FloWPS, D—Spearman, no FloWPS. Table S4_1: Paired t-test p-value for
FloWPS-vs.-no-FloWPS comparison of correlation coefficients between feature importance for the same datasets.
Figures above the main diagonal: Comparison of Pearson correlation coefficients. Figures below the main diagonal:
Comparison of Spearman correlation coefficients.
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Abbreviations

ADA Adaptive boosting
AML Acute myelogenous leukemia
ASCT Allogeneic stem cell transplantation
AUC Area under curve
BNB Binomial naïve Bayes
FloWPS Floating window projective separator
FN False negative
FP False positive
GEO Gene expression omnibus
GSE GEO series
HER2 Human epidermal growth factor receptor 2
kNN k nearest neighbors
LOO Leave-one-out
ML Machine learning
MLP Multi-layer perceptron
RF Random forest
ROC Receiver operating characteristic
RR Ridge regression
SN Sensitivity
SP Specificity
SVM Support vector machine
TP True positive
TN True negative
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