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Abstract: Photodetectors based on transition metal dichalcogenides (TMDs) have been widely
reported in the literature and molybdenum disulfide (MoS2) has been the most extensively explored
for photodetection applications. The properties of MoS2, such as direct band gap transition in low
dimensional structures, strong light–matter interaction and good carrier mobility, combined with
the possibility of fabricating thin MoS2 films, have attracted interest for this material in the field
of optoelectronics. In this work, MoS2-based photodetectors are reviewed in terms of their main
performance metrics, namely responsivity, detectivity, response time and dark current. Although neat
MoS2-based detectors already show remarkable characteristics in the visible spectral range, MoS2

can be advantageously coupled with other materials to further improve the detector performance
Nanoparticles (NPs) and quantum dots (QDs) have been exploited in combination with MoS2 to
boost the response of the devices in the near ultraviolet (NUV) and infrared (IR) spectral range.
Moreover, heterostructures with different materials (e.g., other TMDs, Graphene) can speed up the
response of the photodetectors through the creation of built-in electric fields and the faster transport
of charge carriers. Finally, in order to enhance the stability of the devices, perovskites have been
exploited both as passivation layers and as electron reservoirs.

Keywords: MoS2; TMD; photodetector; heterostructure; thin film

1. Introduction

Recent improvements in optoelectronics have been partly focused on the use of two-
dimensional materials to produce photodetectors. The possibility of fabricating very thin
optoelectronic devices, having high performance, low production costs and mechanical
flexibility has been emerging in the last decade. Graphene was the first 2D material con-
sidered for photodetection applications, thanks to its outstanding electrical properties, in
particular its impressive planar mobility, reaching 200,000 cm2/(V s), that allows to build
photodetectors with bandwidth up to 40 GHz [1,2]. However, one of its mayor limitation for
its use as photodetector active layer is the absence of an energy band gap, leading to high
noise contribution to the signal, arising from dark currents.

Therefore, the investigation of 2D materials with finite bandgap has increased in
recent years and transition metal dichalcogenides (TMDs) have aroused more and more
interest. Despite the modest mobility reported for these materials, which can reach about
200 cm2/(V s) [3], TMDs possess interesting electro-optical properties. A transition from
indirect to direct bandgap has been observed in TMDs by reducing the dimensions from
the bulk material to the monolayer limit [4]. Moreover, a strong light–matter interaction
is observed for 2D-TMDs, due to the direct band gap and to the strong excitonic nature
of their low dimensional structures. For TMDs, absorbance values that are one order of
magnitude higher than Si and GaAs are reported [5], thus providing strong light absorption
with a very thin layer of the photoactive material. These features, combined with a higher
mechanical flexibility of 2D-TMDs compared to their bulk structures, allow us to fabricate
very thin photodetectors also based on flexible substrates, opening the possibility to realize
flexible and wearable devices. Applications for such devices can be related to medicine,
biosensing, optical communications and security.

Sensors 2021, 21, 2758. https://doi.org/10.3390/s21082758 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6000-6231
https://orcid.org/0000-0003-1320-091X
https://orcid.org/0000-0002-3954-7308
https://doi.org/10.3390/s21082758
https://doi.org/10.3390/s21082758
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082758
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082758?type=check_update&version=2


Sensors 2021, 21, 2758 2 of 22

Among the TMDs, molybdenum disulfide (MoS2) attracted much interest in the last
decade, also due to the relative abundance of molybdenite in nature. MoS2 belongs to the
family of the group VI transition metal dichalcogenides, where a layer of transition metal
atoms (Mo, W) is sandwiched between two layers of chalcogen atoms (S, Se, Te) as depicted
in Figure 1.
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Each MoS2 layer is generally stacked onto each other via weak van der Waals forces in
an ABA stacking sequence, building a hexagonal structure (2H-TMD), which possesses a
semiconducting behaviour. Another metastable phase of MoS2 is known, with a tetragonal
symmetry (1T-MoS2) and ABC stacking sequence (Figure 1). The 1T phase of MoS2 is not
stable at room temperature [7], but it can be induced by several processes such as chemical
treatment [8], plasmonic hot electron transfer [9], electron beam irradiation [6,10], through
charge transfer in the TMD lattice. A subsequent annealing process is then required to
restore the 2H-MoS2 phase [6].

Bulk TMD electronic properties are dominated by indirect transition from the maxi-
mum of the valence band, located at the Γ point of the Brillouin zone, and the minimum
of the conduction band [11–13]. For MoS2, the bulk electronic structure is characterized
by an indirect energy band gap of about 1.2 eV [14]. As with other group VI TMDs, at
the monolayer limit MoS2 modifies its energy band structure towards a direct electronic
transition from the K and K’ points of the Brillouin zone, reaching an energy band gap of
1.8 eV [14,15]. This behaviour can be explained by an increase in the indirect band gap
due to a considerable quantum confinement effect in the out-of-plane direction when the
dimensions of the material are reduced to few layers. On the other hand, the direct transi-
tion remains unaffected, becoming the minimum energetic band-to-band transition [11–13]
(Figure 2a). Moreover, TMDs are reported to have strong spin-orbit coupling (SOC), associ-
ated with the d-orbitals of transition metals [6,16,17]. The SOC breaks the degeneracy in the
valence band, leading to two energetic maxima located at the K and K’ points, separated
by an energy splitting of 160 meV for a monolayer MoS2 [16] (Figure 2b). This broken
degeneracy opens for MoS2 the possibility for optoelectronic applications in the field of
valleytronics [18,19].
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When MoS2 is irradiated with photon energies larger than its bandgap, photons
are absorbed and electrons are promoted to the conduction band, leaving holes in the
valence band. The optical absorption of visible light by MoS2 in the monolayer limit is
dominated by the direct transition from the K and K’ points of the valence band. However,
light absorption experiments show peculiar resonant features in 2D structures of MoS2
(Figure 3), that can be associated with its strong excitonic nature [4,15]. The experimentally
observed absorption peaks at specific energies (EA = 1.88 eV, EB = 2.03 eV in the monolayer
limit [20]) represent the excitonic energies of MoS2. The relative positions of the A and
B peaks are related both to an increase in the SOC and to a reduction in the bandgap,
approaching the bulk structure of MoS2 [20].
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For these reasons, in 2D-MoS2, the bandgap measured with optical techniques turns out
to be lower than the one measured with electronic techniques [6]. The strong light–matter
interaction that characterizes MoS2 is reflected in a high absorption coefficient that can reach
about 106/cm [21], which is at least one order of magnitude higher than standard semicon-
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ductors like Si and GaAs. Moreover, a single MoS2 layer is reported to absorb up to 10% of
the sunlight [5]. This superior light absorption makes MoS2 suitable to build photodetectors
based on very thin layers of material, still having high light conversion efficiency.

Therefore, the production of thin MoS2 films is a central step of the device fabrication
and several approaches have been investigated so far. Thanks to the weak van der Waals
interaction between MoS2 layers, it is possible to obtain mono- or few-layered structures
by a simple mechanical exfoliation of bulk MoS2 [22]. This approach has been extensively
used in many studies [23–36] for its intrinsic simplicity, but suffers from some critical
issues. In fact, MoS2 mechanical exfoliation generally leads to very small flakes (lateral
size < 10 um) [37] and it is a low yield process. Therefore, it is unsuitable for industrially
scalable-applications [38]. Other synthesis methods have been investigated to overcome
these critical aspects. Chemical vapour deposition (CVD) is a powerful bottom-up approach.
This method is the most compatible with the existing semiconductor technology. In CVD,
large area films with high uniformity can be grown directly on the substrate, through the
chemical reactions involved in the process. Despite the high controllability of the process
and the high uniformity that can be achieved, CVD has the limit of being a costly process
and requires high temperatures (700–1000 ◦C), making the process less affordable and not
suitable for deposition on flexible substrates. Moreover, in most of the CVD processes used
to produce MoS2, one of the precursors involved is H2S, which is toxic. As an alternative to
standard CVD, plasma-enhanced CVD (PECVD) has also been exploited in order to reduce
the temperature needed for the reaction (150–300 ◦C), thus allowing film deposition also
on plastic substrates [39].

Among the bottom-up approaches, wet chemical syntheses can also be exploited for
the fabrication of large area MoS2 films on different substrates. MoS2 sols can be pre-
pared both at ambient pressure or under hydrothermal [40] or solvothermal [41] synthesis
conditions. The sols can be used for coating different substrates by spin-coating or dip-
coating. Generally, an annealing process (at 500–800 ◦C) is required in order to improve
the crystallinity of the sample and an additional sulphurisation step is needed. Recently,
Nardi et al. [42] have obtained MoS2 thin layers on Pt, SiO2 and flexible polyimide sub-
strates by the sol–gel approach, using an aqueous sol prepared at ambient pressure; the
coatings were annealed at low temperature (350–400 ◦C) without any additional sulphuri-
sation process.

The advantages of the solution methods are represented by the versatility of the depo-
sition technique, the low costs of production and the process scalability. The drawbacks
with respect to CVD are instead the lower uniformity of the film and its minimum thickness,
which is generally limited to some tens of nanometres.

The fabrication methods cited above generally lead to n-type behaviour of MoS2. The
n-type character of pristine MoS2 is commonly associated to the electron donor nature of the
sulphur atoms [43]. In order to exploit the full potential of MoS2 and to build p–n junctions,
doping is required to tune the energetic levels at the interface of MoS2 with other materials.
Doping through standard ion implantation is not suitable for 2D materials, and other
methods have been investigated in the literature. The most common methods for doping
MoS2 rely on substitutional doping and surface doping, beside the electrostatic gating.
Substitutional doping consists of the substitution of a sulphur atom with an impurity
within the MoS2 lattice. Niobium (Nb) substitutional p-doping has been reported in the
literature by both chemical vapour transport (CVT) [43] and CVD [44]. Moreover, laser
assisted substitutional phosphorous (P) p-doping was reported in [45] and manganese
(Mn) substitutional p-doping has been investigated in [46], via a vapour phase deposition
technique. Finally, p-type substitutions with fluorine (F) and oxygen (O) were obtained via
plasma assisted doping by [47]. On the other hand, surface doping exploits the difference
between the electron surface potential of MoS2 and the redox potential of the chemically
adsorbed species. Nicotinamide adenine dinucleotide (NADH) has been reported to
cause an n-doping to MoS2, while tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) and
7,7,8,8-tetracyanoquinodimethane (TCNQ) have been exploited for p-doping [48]. Other
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molecules exploited as p-dopands for TMDs are O2, H2O and NO2, while potassium (K),
benzyl viologen (BV) and bis(trifluoromethane) sulfonamide (TFSI) have been used for
n-doping [6].

2. MoS2 Photodetectors

The strong light absorption of MoS2, combined with its good mobility and the possi-
bility to fabricate very thin layers, led in the last decade to a great interest in this material
for photodetection applications. In all photodetectors based on semiconductors, photons
with energy larger than the material bandgap are absorbed and generate electron–hole
pairs that can move under the action of an electric field. Devices may rely on different
physical mechanisms for what concerns the charge drift and collection, giving rise to
different photodetector categories. Most light detectors can be grouped into three classes:
photoconductors, phototransistor and photodiodes. This review summarizes the different
photodetector structures based on MoS2 presented so far.

In photoconductors, the radiation creates electron–hole (e–h) pairs, which are then
separated by an external applied bias voltage (Figure 4). The charges drift towards the
electrodes where they are collected, producing a photocurrent. The mechanism beneath the
signal detection is the photoconduction, namely incident photons cause an increase in the
charge density and thus in the conductivity of the material. Moreover, a mechanism called
photoconductive gain can be exploited in photoconductors to enhance the signal level. The
gain is defined as G = τ/t, where τ is the lifetime of one of the charge carriers (e.g., holes)
and t is the transit time of the opposite carriers (e.g., electrons). A gain arises when one of
the charge carriers recirculate many times before it recombines with his opposite counter-
part. Generally, energy states within the bandgap of the semiconductor, often induced by
defects, are able to trap one of the two carriers, prolonging their lifetime and leading to
multiple recirculation of the opposite carriers. The lifetime of the carriers strongly depends
on the presence of trapping center within the material and can vary by several orders of
magnitude, from few nanoseconds [23] to milliseconds [35]. In practice, trapping can be
achieved by controlling the defects present in the material or by introducing sensitizing
centres such as QDs or nanoparticles. Photoconductive gain affects the signal intensity but
also its temporal response, which is governed by the carriers’ lifetime. Generally, devices
relying on the photoconductive gain reach very high values of responsivity, but present
slower response and consequently a lower bandwidth compared to G=1 photoconductors.

On the other hand, phototransistors are able to maximize the detector performance by
reducing the noise rather than enhancing the signal intensity. In addition to the electrical
contacts found in the photoconductors, here called “source” and “drain”, a third terminal
(“gate”) electrically isolated from the semiconductor through a thin dielectric layer is
present. Gate bias is generally exploited to deplete the semiconductor channel from carriers,
in order to suppress dark current signals in the detector and thus maximize its signal-to-
noise ratio (SNR). Moreover, the gate also modulates the mobility of the carriers, leading
to high ON/OFF ratio values and higher values of the responsivity. Photoconductors
and phototransistors unavoidably require an external power supply to sustain a voltage
difference between the electrodes, which may become significant in large area detectors.
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Photodiodes rely on the photovoltaic (PV) effect to collect charges. A built-in electric
field is created at the junction between p- and n-sides of the semiconductor or by a Schottky
barrier between a semiconductor and its metal contact. The built-in electric field can reach
very high values in proximity of the junction, and thus the photogenerated carriers are
driven to opposite contacts through an intrinsic voltage potential rather than an external
power supply. Photodiodes can be composed of p–n junctions of the same material (ho-
mojunctions), of different materials (heterojunctions) or of metal–semiconductor junctions
(Schottky diodes). Moreover, energy band alignment at the heterojunction can be exploited
to suppress the drift of charges between the two sides of the junction, thus reducing the
dark signals. Photodiodes can be arranged in a horizontal fashion, where two materials are
put side by side (in-plane junctions), or vertically stacked, where they are put one on top of
each other (out-of-plane junctions) (Figure 5).

In the next section we will discuss a selection of photodetectors based on MoS2
reported in the literature, chosen from among the most meaningful ones.
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2.1. Neat MoS2 Photodetectors

Neat MoS2-based photoconductors are the simplest photodetectors that will be dis-
cussed in this review. They are generally composed of an insulating substrate material
(e.g., SiO2, Al2O3, Si3N4) over which MoS2 is deposited. The metal contacts can be created
directly on the substrate or can be deposited on the MoS2 surface by physical vapour depo-
sition methods. The metal contacts can be designed properly to maximize the response
and the speed of the device, as in the case of interdigitated finger contacts.

Gonzalez Marin et al. [27] fabricated a phototransistor, based on a mechanically
exfoliated MoS2 monolayer deposited on a Si/SiO2 substrate, which reached a large pho-
toresponsivity (R = 103 A/W) in the visible range. However, such a high response was
obtained via a large photogain mechanism, arising from a very long carrier lifetime, which
resulted in a response time of 13 s. Their device was also implemented into a nanophotonic
circuit to test its applicability in nanophotonics (Figure 6). In fact, a single MoS2 layer was
successfully applied over a waveguide to detect the waveguide losses.

A significantly faster device was produced by Tsai et al. [50], based on a few-layered
MoS2 structure obtained through a wet-synthesis approach, and deposited on a Si/SiO2
substrate. The Au electrodes were fabricated by photolithography in an interdigitated
fashion (Figure 7) to produce a metal–semiconductor–metal (MSM) Schottky photodiode.
The detector showed very fast response to visible light (t_rise = 70 µs, t_fall = 110 µs) and a
responsivity of R = 0.57 A/W. The reason for this performance is the good compromise
between modest photogain and smart geometry of the device which speeds up the carrier
collection. In fact, Au electrodes produced via photolitograpy in an interdigitated fashion
with 8µm finger spacing (Figure 7b), play an important role in diminishing the time needed
to collect the carriers.
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Yore et al. [51] built an array of photodetectors based on MoS2 monolayers through
a CVD deposition process, and achieved a response extending towards the ultraviolet
spectral region (λ∼400 nm). The devices exhibited a photoresponsivity of about 1 mA/W,
with a fast response, t ∼ 0.5 ms. Moreover, the detectors exhibited an extremely low dark
current, Id ≤ 10 fA, attributable both to a bipolar Schottky barrier between the MoS2 and the
metal contacts, and to a negligible doping of the sample from charge impurities introduced
by the substrate through an efficient deposition process.

Lopez-Sanchez et al. [24] developed one of the first phototransistors based on MoS2,
obtained through a mechanically exfoliated single layer deposited on a Si/SiO2 substrate.
The device showed a responsivity of 880 A/W in the visible range, attributable also to a
strong photogain mechanism, which also affected the photoswitching time of the detector,
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which was about 9 s. They reported a very low value of the dark current, Id = 2 pA, although
it was achieved with a strong negative bias of the gate, Vg = −70 V.

A similar device was fabricated by A.R. Klots et al. [29] with faster response, in the
order of 1 ms. The light response, although it was lower, reached 50 A/W, due to a photogain
contribution of 103 times.

Another low-noise device is described in [23], where a multilayer MoS2 structure
obtained through mechanical exfoliation was deposited on Al2O3 (Figure 8). The detector
exhibited a responsivity of 0.12 A/W in the visible region, which dropped to very low
values for near infrared radiation, attributable to the weak absorption in the IR spectral
region. The detector responsivity was also affected by a short carrier lifetime τ, which was
determined to be 1.27 ns, limiting the photogain mechanism. Finally, the measured dark
currents were as low as 10−11 A. The good response, combined with the very low noise
contribution of the system, led to a good detectivity of the device that reached 1011 Jones in
the visible region. Moreover, low dark currents were achieved with a low bias of the gate
terminal (Vg = −3 V).
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Gant et al. [26] demonstrated a strain tunable photodetector based on a single MoS2
layer structure, obtained by mechanical exfoliation. Their device displayed two to three
orders of magnitude of variation in the responsivity when subjected to a strain in the
visible range (Figure 9a). The applied strain also caused a variation of the time response
from 80 ms to 1.5 s. The variation of both magnitude and time response can be attributed
to the creation of trap states in the material during strain. Moreover, the measurements
showed a good reproducibility when the device was tested under multiple bending cycles,
demonstrating the stability of the material under strain (Figure 9b).

Neat MoS2 photoconductors can reach large values of responsivity when a sufficient
voltage bias is applied, attributable to a large photogain contribution and can achieve
relatively fast response times if the detector geometry is designed properly (e.g., with
interdigitated electrodes). Most of the neat MoS2 photodetectors are characterized in the
visible range (400–700 nm) and only very few devices explore the response to the near
ultraviolet (NUV) or near infrared (NIR) spectrum (Figure 10). The IR spectrum generally
leads to limited response of the material, since the absorption edge of MoS2 lays in the
red (≈660 nm) which act as a cutoff for the longer wavelength radiation. On the contrary,
the UV response is expected to increase when decreasing the wavelength, as suggested by
absorption experiments.
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2.2. MoS2 + QDs Based Photodetectors

To enhance the photodetector response both to NUV and near to mid infrared (NIR-
MIR) light spectrum, the MoS2 layer is combined with sensitized centres, namely quantum
dots (QDs) or nanoparticles (NPs). Devices belonging to this category generally show high
responsivity values also in regions outside the visible spectrum (Figure 10), but are also
characterized by slower response, caused by the trap states introduced by the sensitizing
centres, which act as impurities.
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A large area carbon QD-MoS2-based photoconductor was reported by [52] following
a hydrothermal method to grow MoS2 on a paper substrate. The device is sensitive in the
NUV with a response of 8.4 mA/W to a 365 nm light and an external quantum efficiency
(EQE) of 3% for the same wavelength. Carbon QDs possess a higher band-gap compared to
MoS2, which is suitable for UV detection (Figure 11a). A response time of 0.57 s was reported
for this structure, making the device not applicable for high frequency operations. Due to
the intrinsic flexibility of the paper substrate, the device was also tested under multiple
bending cycles, revealing no appreciable variation of the light response (Figure 11b), thus
demonstrating the possibility to build flexible and wearable electronics. As for other
photoconductors, the dark current approached high values (Id = 10−6 A), limiting the
sensitivity of the device.
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Similarly, a ZnS-MoS2 structure, deposited on paper, was fabricated by [53] and tested
under UV, visible and NIR light (365 nm, 554 nm, 740 nm, respectively). The responsivity
of the device in that spectral region remained orders of magnitude lower (10−6–10−5 A/W)
than the previously reported values, with response times in the order of 10 s. Although the
performances were low, the multiple bending test also gave a successful result in this case.

Much better performance has been obtained with phototransistors sensitized with
nanoparticles. These devices require an additional power supply of tens of volts and are
based on toxic compounds such as CdSe ([34]), PbS ([32]) and HgTe ([35]), but the dark
current can be reduced by several orders of magnitude compared to sensitized photocon-
ductors. Noise suppression makes these detectors highly sensitive, with detectivity values
reaching 1013–1015 Jones.

A CdSe sensitized MoS2 phototransistor is reported in [34], based on an exfoliated
MoS2 bilayer over a Si/SiO2 substrate (Figure 12). The device showed a responsivity of
2.5 × 105 A/W at 405 nm of incident light, which is the highest light response of a MoS2-
based photodetector in the NUV spectral range to the best of our knowledge. Although the
responsivity reached very high values, the time response remained as small as 60 ms. The
reasons for such performance have to be attributed to the n–n heterojunction formed by
the MoS2 bilayer and the CdSe nanocrystals as depicted in Figure 12. In fact, when the UV
radiation hits the interface region, the electrons formed in the CdSe nanocrystals are driven
to the MoS2 side, while the holes remained confined in the CdSe nanoparticles. When the
light was switched off, the electrons accumulated in the valley easily recombined and the
n–n barrier prevented the transfer of carriers between the two regions.
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A phototransistor sensitive to the NIR light was reported in [32], composed by a
few-layered MoS2 structure obtained through a micromechanical exfoliation, sensitized
with a colloidal solution of PbS QDs (Figure 13a). This system, although its speed is limited
to a subsecond time response, exhibited a response of 105 A/W to a 980 nm light, and a
detectivity of 7 × 1014 Jones. Additionally, in this case the junction (p-PbS and n-MoS2)
plays an important role in determining the response of the device to the incident light.
Moreover, the electrons are efficiently transferred from PbS QDs to MoS2, while the holes
remain trapped in the PbS side, leading to large photogain and a slow recombination of
the carriers.
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The main limitation of these devices lies in the high gate bias voltage required to
achieve such a high detectivity (Vg = −80 V [34], Vg = −100 V [32]), and the intrinsic
toxicity of cadmium and lead. The strong gate modulation required can be attributed to
the formation of the density of the states within the MoS2 bandgap.
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Some efforts have been done to reduce the required gate bias, as in the MoS2 photo-
transistor sensitized with Hg-Te nanoparticles reported by [35]. The detector showed an
extremely high responsivity (105–106 A/W) over a very broad light spectrum, ranging from
visible to mid infrared (2000 nm), with a fast response time in the order of milliseconds.
Such high responsivity was achieved through a high photogain mechanism, originated
from a large hole lifetime (τ = 4 ms) induced by the presence of QDs, which was six orders
of magnitude larger than the transit time of the electrons (t = 9 ns). The detectivity measure-
ments showed values of about 1012–1013 Jones over the same spectral range (Figure 14), also
due to the low measured value of the dark current (≈10 pA). In this device, a toxic element
(Hg) is still present, but the detector was operated at a gate bias of −15 V in depletion
regime, which is much lower than in previous devices. The gain in gate modulation can be
attributed to the presence of a TiO2 buffer layer that reduces the interaction between MoS2
and HgTe.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 24 
 

 

visible to mid infrared (2000 nm), with a fast response time in the order of milliseconds. 
Such high responsivity was achieved through a high photogain mechanism, originated 
from a large hole lifetime (τ = 4 ms) induced by the presence of QDs, which was six orders 
of magnitude larger than the transit time of the electrons (t = 9 ns). The detectivity meas-
urements showed values of about 1012–1013 Jones over the same spectral range (Figure 14), 
also due to the low measured value of the dark current (≈10 pA). In this device, a toxic 
element (Hg) is still present, but the detector was operated at a gate bias of −15 V in de-
pletion regime, which is much lower than in previous devices. The gain in gate modula-
tion can be attributed to the presence of a TiO2 buffer layer that reduces the interaction 
between MoS2 and HgTe. 

 
  

 

 

(a) (b) (c)  

Figure 14. (a) Photodetector based on MoS2 + HgTe; (b,c): responsivity and detectivity values over the vis-IR spectral range, 
respectively, for the same phototransistor. Reprinted with permission from ref. [35]. © 2017, John Wiley and Sons. 

A more recent work [54] has explored the deep UV spectral region reporting a pho-
totransistor based on a thin MoS2 film deposited on a flexible PET substrate, sensitized 
with ZnO nanoparticles (Figure 15a). The device showed a remarkable responsivity of 2.7 
A/W to a 254 nm UV light source. Moreover, the performance was stable under multiple 
bending cycles. However, the response was slow, reaching tens of seconds, and the bias 
voltage required to obtain such a high response was set to 40 V (Figure 15b). These results 
make clear that more efforts have to be undertaken to produce more efficient photodetec-
tors, especially in the deep UV light region, to broaden the possible applications of MoS2 
at low photon wavelengths. 

 

  
(a) (b) 

Figure 14. (a) Photodetector based on MoS2 + HgTe; (b,c): responsivity and detectivity values over the vis-IR spectral range,
respectively, for the same phototransistor. Reprinted with permission from ref. [35]. © 2017, John Wiley and Sons.

A more recent work [54] has explored the deep UV spectral region reporting a photo-
transistor based on a thin MoS2 film deposited on a flexible PET substrate, sensitized with
ZnO nanoparticles (Figure 15a). The device showed a remarkable responsivity of 2.7 A/W
to a 254 nm UV light source. Moreover, the performance was stable under multiple bending
cycles. However, the response was slow, reaching tens of seconds, and the bias voltage
required to obtain such a high response was set to 40 V (Figure 15b). These results make
clear that more efforts have to be undertaken to produce more efficient photodetectors,
especially in the deep UV light region, to broaden the possible applications of MoS2 at low
photon wavelengths.

2.3. MoS2 + Graphene Based Photodetectors

The possibility to fabricate 2D structures of graphene and the astonishing mobility
that it can reach (about 200,000 cm2/(V s) [55]) are some of the primary reasons for the
interest in this material. However, its semimetallic behaviour, leading to a zero band gap
energy, is a limiting factor in optoelectronic applications [56]. In fact, due to the absence of
a forbidden band gap, large currents can be injected into the material. This leads to large
dark current values, which limit the sensitivity of a photodetector. Thus, for NUV-vis-NIR
application, graphene is often used as contact material [6], together with other finite band
gap semiconductors. In this way it is possible to exploit the 2D versatility and high mobility
of graphene by combining them with other semiconductor properties.
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Figure 15. (a) Scheme of a phototransistor based on a MoS2-ZnO structure and developed on a flexible PET substrate;
(b) response of the phototransistor to an incident UV (254 nm) light over time. Reprinted with permission from ref. [54].
Copyright 2019, Creative Commons Attribution 3.0 Unported Licence.

An example of a phototransistor based on MoS2 with graphene is reported by [31]. The
device is a lateral photodetector, where few layers of MoS2 were mechanically exfoliated
on a sheet of graphene. Two different metal contacts (Pd and Ti) were used to collect the
charges (Figure 16).
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Figure 16. (a) Scheme of a phototransistor based on a graphene-MoS2 heterostructure. (b) Time-resolved response of the
phototransistor (Vds = 0 V). Reprinted with permission from ref. [31]. © 2015, Elsevier.

The detector exhibited a notable responsivity (R = 3 A/W) with a fast response for a
lateral phototransistor (t < 0.13 ms). These results were obtained with zero voltage bias
application, due to the asymmetric built-in electric field created at the graphene–electrode
interface. In addition, the role of the graphene sheet is also to increase the velocity of the
carrier transport to the metal contact, due to its very high mobility. Moreover, the ON/OFF
ratio reached a value of 103, while the dark current remained lower than 1 nA.

2.4. MoS2 + TMDs Based Photodetectors

Several studies have reported photodetectors based on heterostructures composed by
different TMDs. In these devices, the different electronic band structure forms a built-in
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electric field at the interface between the materials that speeds up the photogenerated carrier
separation. Moreover, the spectral range response of these photodetectors is widened since
it involves different semiconductor materials.

Chen et al. [36] proposed a photodiode based on a vertical van der Waals hetero-
junction between MoS2 and MoTe2, obtained through mechanical exfoliation (Figure 17a).
With respect to MoS2, MoTe2 presents a smaller bandgap, which varies from 0.9 to 1.1 eV
moving from bulk structure to monolayer. The structure exploits a type II band alignment,
which favours the injection of electrons into MoS2 and the injection of holes into MoTe2
(Figure 17b).
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The device dispalyed a responsivity of 0.046 A/W to a 637 nm light, with no voltage
bias applied. Moreover, the authors measured a response time of about 60 µs, due to the
fast separation of carriers that occurs at the junction. In fact, the space charge region near
the junction is characterized by a very strong built-in electric field, which becomes stronger
as the length of the junction is scaled down, as it happens for vertical herojunctions. The
strong interlayer built-in potential provided also a barrier for the dark current, which was
measured to be about 3 pA.

Another vertical heterostructure was reported by Tan et al. [57], who exploited a
type II alignment between two monolayers of MoS2 and WS2, both obtained by CVD,
with two graphene contacts (Figure 18). The detector exhibited remarkable maximum
photoresponsivity (R = 2340 A/W) to 532 nm light. In particular, the photoresponsivity
of the heterojunction-based device is at least one order of magnitude higher than the
responsivity obtained with the single TMDs (Figure 18c). However, the decay of the
response when the light was switched off lasted more than a few seconds. This performance
is attributable to an efficient charge transfer at the junction and to trap states for the
photogenerated carriers that lead to a photogain of about 3 × 104. In fact, the measured
dark current was 10−6 A, several orders of magnitude larger than the previously reported
detector [36], due to a much less resistive channel in this case.

Long et al. [33] reported on a phototransistor based on stacked MoS2–Graphene–WSe2
layers, obtained by mechanical exfoliation (Figure 19a). This device was tested over a broad
light spectrum (400–2400 nm). The detector exhibited a responsivity up to 104 A/W in
the visible region, which decayed to 300 mA/W approaching the IR region (940 nm), with
no gate bias applied (Figure 19c). The calculated specific detectivity was 1015 Jones in the
visible region, while decayed to 1011 Jones in the IR region. Finally, the detector showed a
time response to visible light of 54 µs, which indicates a fast response of the system, typical
in a detector based on a vertical heterojunction.



Sensors 2021, 21, 2758 15 of 22

Sensors 2021, 21, x FOR PEER REVIEW 15 of 24 
 

 

0.9 to 1.1 eV moving from bulk structure to monolayer. The structure exploits a type II 
band alignment, which favours the injection of electrons into MoS2 and the injection of 
holes into MoTe2 (Figure 17b). 

 

 
 

 

(a) (b) (c)  

Figure 17. (a) Scheme of a photodetector based on an heterojunction between MoS2 and MoTe2. (b) Type II band alignment 
between MoTe2 and MoS2; (c) Photoswitching behaviour of the photodetector at V = 0 V. Reprinted with permission from 
ref. [36]. © 2018, John Wiley and Sons. 

The device dispalyed a responsivity of 0.046 A/W to a 637 nm light, with no voltage 
bias applied. Moreover, the authors measured a response time of about 60 μs, due to the 
fast separation of carriers that occurs at the junction. In fact, the space charge region near 
the junction is characterized by a very strong built-in electric field, which becomes 
stronger as the length of the junction is scaled down, as it happens for vertical herojunc-
tions. The strong interlayer built-in potential provided also a barrier for the dark current, 
which was measured to be about 3 pA.  

Another vertical heterostructure was reported by Tan et al. [57], who exploited a type 
II alignment between two monolayers of MoS2 and WS2, both obtained by CVD, with two 
graphene contacts (Figure 18). The detector exhibited remarkable maximum photorespon-
sivity (R = 2340 A/W) to 532 nm light. In particular, the photoresponsivity of the hetero-
junction-based device is at least one order of magnitude higher than the responsivity ob-
tained with the single TMDs (Figure 18c). However, the decay of the response when the 
light was switched off lasted more than a few seconds. This performance is attributable to 
an efficient charge transfer at the junction and to trap states for the photogenerated carri-
ers that lead to a photogain of about 3 × 104. In fact, the measured dark current was 10−6 A, 
several orders of magnitude larger than the previously reported detector [36], due to a 
much less resistive channel in this case.  

 

 

 

(a) (b) (c)  
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phene and gold were then used as contacts. The authors obtained EQE of 80.7% in the UV 
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Figure 19. (a) Scheme of a phototransistor based on the vertical heterostructure between MoS2, graphene and MoSe2.
(b) Band alignment at the heterojunction between TMDs and graphene; (c) responsivity and detectivity values plotted
against the incident wavelength for the phototransistor over the vis-IR spectrum. Reprinted with permission from ref. [33].
© 2016, American Chemical Society.

Wi et al. [30] presented a vertical photodiode optimized for UV radiations. The structure
is composed of a homojunction between a n-MoS2 layer and a p-MoS2 layer obtained sarting
from exfoliation (Figure 20). p-doped MoS2 was obtained by CHF3 plasma treatment, while
n-type MoS2 was naturally achieved through the production process. Graphene and gold
were then used as contacts. The authors obtained EQE of 80.7% in the UV range (300 nm)
and of 51.4 % in the visible range (532 nm).

Both the responsivity and the response time have been plotted in Figure 21 for several
MoS2-based photodetectors, in order to compare their performance. Since, through the
photoconductive gain, the responsivity is directly proportional to the lifetime τr [1,58], a
reference line representing the points for which R/τr = 1 A/(W us) has also been included in
the graph. As can be observed, only three devices are represented by a point above this line.
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Figure 20. (a): Scheme of a photodiode based on a p–n junction of MoS2; (b) energetic band alignment between Graphene/n-
MoS2/p-MoS2/Au composing the device; (c): external quantum efficiency (EQE) with respect to the incident wavelength
for the device depicted on the left (red curve), compared with the EQE obtained with different plasma doping and different
combinations of the electrode materials. Reprinted with permission from ref. [30]. © 2014, AIP Publishing.
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In [33] the separation of the carriers is performed by the built in electric field at the
vertical junction between the TMDs, while the transport is performed laterally by graphene,
resulting in the best combination for fast carrier transport. Otherwise, devices where TMDs
are responsible both for the separation of carriers and for the carrier transport may suffer
from a slower response. On the other hand, MoS2-based photodetectors sensitized with
QDs or NPs described in [34,35], despite their slower response compared to heterojunction
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beased structures, reached high performance due to an efficient carrier transfer and a
remarkable photogain.

2.5. MoS2 + Perovskites Based Photodetectors

MoS2-based photodetectors often suffer from remarkable noise power density (NPD)
and slow responses due to the defects induced on the surface of the MoS2 during the
synthesis or from ambient gas absorption (e.g., H2O, O2) [24,59,60]. Passivation is one of
the procedures exploited to reduce gas absorption at the MoS2 surface and the introduction
of halogens have been reported to be effective on metal calchogenides [61].

He et al. [25] adopted a layer of methylamine (MA) halide (MA3Bi2Br9) to passi-
vate a MoS2-based photoconductor. Their detector exhibited a high photoresponsivity
(R = 112 A/W) and a very fast response (t = 0.3 ms). Moreover, the response of the device
achieved a stability over the time, compared to other passivation techniques, as depicted in
Figure 22.
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Recently, Wang et al. [28] have introduced a 2D halide perovskite, (C6H5C2H4NH3)2PbI4
((PEA)2PbI4), over a multilayer MoS2 structure. They achieved a dark current suppres-
sion of six orders of magnitude with respect to the neat MoS2 device, reaching 10−11 A
(Figure 23a). The reason for this behaviour is found in the electron diffusion from MoS2 to
the perovskite: when they are put in contact, it decreases the charge carrier density. The
detectivity of the device was improved as well and estimated to be about 1013 Jones. More-
over, the perovskite layer acts as a defect passivator, which resulted in a faster response
of the device, that decreased by more than 100-fold with respect to the neat MoS2 case,
and showed a response speed of few milliseconds. In this work, the responsivity of the
detector was calculated over a broad spectral range that also included the UV spectrum
(200–1100 nm) and reached maximum values in the visible range (Figure 23b).

Furthermore the device was found to operate with a zero applied external bias, due to
a built-in electric field at the interface between the p-type region of the (PEA)2PbI4 and the
n-type region of MoS2, and thus to perform as a photodiode. The response speed measured
with zero voltage bias was less than one order of magnitude larger than in the case of the
positive bias voltage applied, and reached few tens of milliseconds.

Many other MoS2-based devices have been reported in the literature; the performance
of a few other devices ([62–75]), together with the photodetectors we have described so far,
are reported in the graphs of Figures 10 and 21.
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MoS2 
Layers 

Wavelengt
h (nm) 

Responsivi
ty (A/W) 

Response 
Time (s) 

Detectivity 
(Jones) 

Dark 
Current 

(A) 
Ref 

M
oS

2 

MoS2 phototransi
stor 

1L 647 1000 13     [27] 

MoS2  
MSM 

photodiode FL 532 0.57 tr 7 × 10−5  
td 11 × 10−5 

1010   [50] 
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Figure 23. (a) Dark current comparison between pristine MoS2 and MoS2 passivated with (PEA)2PbI4; (b) Responsivity of
the device with respect to the incident wavelength for a UV-vis-NIR spectrum. Reprinted with permission from ref. [28]. ©
2020, John Wiley and Sons.

3. Conclusions

Many photodetectors based on MoS2 have been developed in the last decade, and
the most representative have been analyzed in this review. The main characteristics of the
devices discussed so far are summarized in Table 1.

Table 1. MoS2-based photodetector performance. FL = few layers, ML = multilayer, TF = thin film, tr = rise time, td = decay time.

Photoactive
Material Technology MoS2

Layers
Wavelength

(nm)
Responsivity

(A/W)
Response
Time (s)

Detectivity
(Jones)

Dark
Current (A) Ref.

M
oS

2

MoS2 phototransistor 1L 647 1000 13 [27]

MoS2
MSM

photodiode FL 532 0.57 tr 7 × 10−5

td 11 × 10−5 1010 [50]

MoS2
MSM

photodiode 1L ≈400 10−3 0.5 × 10−3 <10−14 [51]

MoS2 phototransistor 1L 561 880 9 2 × 10−12 [24]

MoS2 phototransistor 1L 640 50 10−3 [29]

MoS2 phototransistor ML 633 0.12 1010–1011 10−11 [23]

MoS2 photodiode FL 365 9.3 tr 3.7 × 10−2

td 3.9 × 10−2 [62]

MoS2
MSM

photodiode 3L 532 1.04 tr 4 × 10−5

td 5 × 10−5 [68]

M
oS

2
+

Q
D

s/
N

Ps

MoS2 + CQD photoconductor FL 365 8.4 × 10−3 0.57 ≈10−6 [52]

MoS2 + ZnS photoconductor 3L

554 1.79 × 10−5 11 [53]

365 9.50 × 10−6 22 [53]

780 4.52 × 10−6 31 [53]

MoS2 + CdSe phototransistor 2L 405 2.50 × 105 0.06 1.24 × 1014 [34]

MoS2 + PbS phototransistor FL 980 105 0.35 7 × 1014 2.6 × 10−7 [32]

MoS2 + HgTe phototransistor FL
635 106 10−11 [35]

2000 105 1012 [35]

MoS2 + ZnO phototransistor TF 254 2.7 55 [54]



Sensors 2021, 21, 2758 19 of 22

Table 1. Cont.

Photoactive
Material Technology MoS2

Layers
Wavelength

(nm)
Responsivity

(A/W)
Response
Time (s)

Detectivity
(Jones)

Dark
Current (A) Ref.

M
oS

2
H

et
er

os
tr

uc
tu

re
s

MoS2 + Gr phototransistor FL 632.8 3 <1.3 × 10−4 9 × 10−10 [31]

MoS2 + MoTe2 photodiode FL 637 4.60 × 10−2 6 × 10−5 1.06 × 108 3 × 10−12 [36]

MoS2 + WS2 phototransistor 1L 532 2340 4.1 × 1011 10−6 [57]

MoS2 + Gr +
WSe2

phototransistor 1L/FL
532 4250 5.4 × 10−5 1015 [33]

940 0.3 1011 [33]

MoS2 + MA photoconductor 15L 530 112 3 × 10−4 3.8 × 1012 4 × 10−9 [25]

MoS2 +
(PEA)2PbI4

photoconductor ML 637 1.68 tr 6 × 10−3

tr 4 × 10−3 1.06 × 1013 10−11 [28]

Photoconductors based on MoS2 are the simplest structure of photodetectors and they
are able to reach very high responsivity values. On the contrary they generally suffer from
a slow response, due to absence of a built-in electric field, and from high dark currents that
limit the sensitivity of the device. Phototransistors based on MoS2 represent a more mature
architecture for detecting light, due to the possibility to suppress dark current signals with
an appropriate voltage bias applied at the gate terminal. Although so far very few works
report the response of the MoS2 device to the UV and IR spectral regions, they clearly show
that there is room for improvement if this material is coupled with other TMDs, graphene
or quantum dots. These properties, combined with the thin structures of MoS2 that can be
fabricated, allow us to build wide-spectrum bendable detectors.

In this direction, devices based on MoS2 sensitized with NPs or QDs are able to boost
the response of the detectors both in the NIR-MIR and in the NUV spectrum, and are often
characterized by very high responsivity values. However, the defects induced on MoS2 in con-
sequence of the introduction of sensitizing centres, cause large dark current and slow response.

Heterostructures between MoS2 ond other materials (e.g., TMDs and graphene) are
able to extend the response to a wider spectral range as well, and have been demonstrated
to be suitable for the fabrication of fast photodiodes, exploiting the built-in electric field
that forms at the heterointerface. Moreover, these devices are able to work also at zero-bias
mode, without requiring an external power supply. The main drawback for photodiodes
is instead represented by the lower responsivity that they can reach, due to the absence
of the photogain mechanism. In heterostructures based on MoS2, the second material can
act as a passivation layer, preventing the adsorption of oxygen and water molecules on
the MoS2 surface. In this way halide perovskites have been demonstrated to be a good
solution, leading to a stable and faster response of the devices.
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