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Summary

The caveolin gene family has three members in vertebrates: caveolin-1, caveolin-2, and caveolin-3.
So far, most caveolin-related research has been conducted in mammals, but the proteins have
also been found in other animals, including Xenopus laevis, Fugu rubripes, and Caenorhabditis elegans.
Caveolins can serve as protein markers of caveolae (‘little caves’), invaginations in the plasma
membrane 50-100 nanometers in diameter. Caveolins are found predominantly at the plasma
membrane but also in the Golgi, the endoplasmic reticulum, in vesicles, and at cytosolic locations.
They are expressed ubiquitously in mammals, but their expression levels vary considerably
between tissues. The highest levels of caveolin-1 (also called caveolin, Cav-1 and VIP21) are found
in terminally-differentiated cell types, such as adipocytes, endothelia, smooth muscle cells, and
type I pneumocytes. Caveolin-2 (Cav-2) is colocalized and coexpressed with Cav-1 and requires
Cav-1 for proper membrane targeting; the Cav-2 gene also maps to the same chromosomal
region as Cav-1 (7q31.1 in humans). Caveolin-3 (Cav-3) has greater protein-sequence similarity to
Cav-1 than to Cav-2, but it is expressed mainly in muscle cells, including smooth, skeletal, and
cardiac myocytes. Caveolins participate in many important cellular processes, including vesicular
transport, cholesterol homeostasis, signal transduction, and tumor suppression. 
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Gene organization and evolutionary history 
Research into caveolae began with their morphological identi-

fication in 1953. By transmission electron microscopy, they

appear as structures resembling ‘little caves’, which are vesicu-

lar invaginations of the plasma membrane of 50-100 nano-

meters (nm) in size [1]. Caveolin-1 (also known as caveolin,

Cav-1 or VIP21) was the first member of the caveolin family to

be identified, and it was shown to be a structural component

of caveolae and of transport vesicles derived from the trans-

Golgi network [2,3]. It was isolated as one of several proteins

that became phosphorylated on tyrosine residues in chicken

embryo fibroblasts transformed with the v-Src oncogene [4].

Monoclonal antibodies directed against Cav-1 decorated the

cytoplasmic protein coat of caveolae, making Cav-1 the first

true protein marker of caveolae [2]. Subsequent cloning of the

Cav-1 cDNA revealed that it was identical to another protein,

VIP21, which had been cloned almost simultaneously [3,5].

Interestingly, VIP21 was isolated as an integral membrane

protein component of transport vesicles derived from the

trans-Golgi network in Madin-Darby canine kidney (MDCK)

cells, suggesting that Cav-1/VIP21 may have a role in molecu-

lar trafficking as well as oncogenesis.

Caveolin-2 (Cav-2) and caveolin-3 (Cav-3) were identified in

1996 using different experimental methods. Cav-2 was dis-

covered by the microsequencing of a 20 kDa protein that co-

purified with adipocyte-derived caveolar membranes [6].

Further characterization revealed that Cav-2 colocalizes with

Cav-1 in caveolae, forms hetero-oligomers with Cav-1, is

co-expressed in many of the same cells and tissues, and

requires Cav-1 for proper membrane localization [7,8].

Cav-3 (also known as M-caveolin) was identified through



database searches and traditional cDNA library screening in

an attempt to find Cav-1 homologs [9,10]. 

Caveolin sequences have been obtained from a range of ver-

tebrates, including human, cow, mouse, Xenopus, and Fugu

rubripes. A caveolin gene family has also been found in

Caenorhabditis elegans [11,12]. The three mammalian genes

encoding members of the caveolin family are similar in

sequence (Table 1). A phylogenetic tree of all known cave-

olins shows that the C. elegans Cav-1 sequence is only dis-

tantly related to all the others (Figure 1). Interestingly, Cav-1

and Cav-2 are in very close proximity (about 19 kilobases

(kb) apart) on human chromosome 7q31.1, while Cav-3 is

located on a different chromosome (3p25) [13,14]. Although

the evolutionary history of the caveolin genes has not been

clearly defined, there are clues within their sequences and

genomic organization to suggest possible mechanisms for

their origin. For instance, although C. elegans Cav-1 has two

exons, the region that is homologous to mammalian cave-

olins is encoded by only a single exon, suggesting that mam-

malian caveolins are derived from this particular exon [11].

Also, two observations derived from the human genomic

sequence suggest that some family members may have

arisen through gene duplication events: firstly, the exon-

intron boundaries in the last exons of Cav-1, Cav-2, and

Cav-3 are in analogous positions; and secondly, exon 2 of

Cav-2 is divided into two parts (2a and 2b) by an intron,

whereas the two homologous portions in the Cav-1 and

Cav-3 sequences are fused together to form the final exon

[13,14]. This second point may suggest that Cav-2 served as

the genomic precursor of Cav-1 and Cav-3.

Characteristic structural features
Currently, the structural features of this family of proteins

are poorly defined, but information gleaned from the protein

sequence has enabled some predictions of structure and

motifs within the proteins. For instance, all three caveolins

have an invariant ‘FEDVIAEP’ stretch (in the single-letter

amino-acid code) within their hydrophilic amino-terminal

domains that has come to be termed the ‘caveolin signature

motif’ [6,9]. The functional importance of this sequence or

motif has yet to be determined, however. 

Two Cav-1 isoforms (� and �) have been identified; the �

isoform arises from an internal translational start site that

gives a shorter amino terminus than that of the � form and is

truncated by 31 residues [15]. The predicted domains span

almost the same number of residues in all three proteins: the

amino-terminal domain comprises the first 101 residues in

Cav-1� and the first 70-86 residues in Cav-1�, Cav-2, and

Cav-3, with the putative transmembrane domain occupying

33 amino acids and the carboxy-terminal domain containing

43-44 amino acids (Figure 2). 

Using a variety of experimental methods, it has been deter-

mined that the major sub-cellular location of Cav-1 is at the

plasma membrane. From the primary sequence (hydrophilic-

ity plots) and mutational analysis, Cav-1 is predicted to have a

membrane-spanning hairpin-like structure, with both amino

and carboxyl termini directed towards the cytoplasm

(Figure 2). This atypical membrane-spanning model is sup-

ported by findings that antibodies directed against the Cav-1

amino or carboxyl terminus require cells to be permeabilized

in order to bind Cav-1, that cell-surface biotinylation does not

label Cav-1, and that there are known palmitoylation and

tyrosine phosphorylation sites within both the amino- and

the carboxy-terminal domains of the protein [16-19]; palmi-

toylation and tyrosine phosphorylation are both cytoplasmi-

cally generated post-translational modifications. 

Generally speaking, caveolins are small proteins (18-24 kDa).

Structurally, however, perhaps one of the most interesting

and significant findings about Cav-1 is that it forms an

214.2 Genome Biology 2004, Volume 5, Issue 3, Article 214 Williams and Lisanti http://genomebiology.com/2004/5/3/214

Genome Biology 2004, 5:214

Table 1

Genomic organization of the human caveolin genes and properties of their protein products

Human Chromosomal Exon Exon Intron Intron Residues Length of Percentage Percentage Expression 
gene location size size encoded protein similarity similarity patterns

(bp) (kb) by exon (amino (identity) to (identity) to 
acids) human Cav-1 human Cav-2

Cav-1 7q31.1 1 30 1 1.47 1-10 178 59 (40) Ubiquitous; highest levels in 
2 165 2 31.8 11-65 - adipocytes, endothelia, 
3 342 66-178 smooth muscle cells, and 

Type I pneumocytes

Cav-2 7q31.1 1 150 1 0.33 1-50 162 58 (38) - Co-expressed with Cav-1
2a 188 2 5.76 51-112
2b 151 113-162

Cav-3 3p25 1 114 1 ? 1-38 151 85 (65) 60 (39) Muscle-specific; primarily in 
2 342 39-151 skeletal and cardiac myocytes

Abbreviations: bp, base pairs; kb, kilobases; ?, unknown. Modified from Razani et al. [42].



oligomeric complex comprised of approximately 14-16

monomers, as discovered through velocity gradient ultracen-

trifugation. In this assay system, Cav-1 was found to migrate

as 200-400 kDa complexes [16,20]. Experiments with Cav-1

deletion mutants mapped the oligomerization domain to

residues 61-101 [16] (Figure 2). Interestingly, Cav-3 also

forms large oligomeric complexes of approximately 350-400

kDa in vivo, whereas Cav-2 requires Cav-1 to participate in

the formation of these high-molecular-mass complexes [7-9]. 

Localization and function
Caveolae are considered by many to be a subset of lipid

rafts, which are highly-ordered microdomains residing

within the plasma membrane that are enriched in certain

lipids [21-23]; this may not be completely accurate,

however, as some proteins are known to localize selectively

to either lipid rafts or caveolae but not both [24]. Caveolae-

enriched membrane fractions can be purified efficiently on

the basis of their buoyancy and resistance to solubilization

by mild non-ionic detergents at 4°C [25-30], but other types

of membrane microdomains may also be enriched by this

kind of purification.

Cav-1 localizes to plasma-membrane caveolae and also to the

Golgi apparatus and trans-Golgi-derived transport vesicles

[3,5,31]. Cav-1 may have a soluble cytoplasmic form, as well

as a secreted form, depending on the cell type [32], and the

first 31 amino acids may be important in selectively targeting

isoforms of Cav-1 to different cellular compartments [33].
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Figure 1 
A phylogenetic tree depicting the evolutionary relationships of all known caveolin protein sequences. Note that C. elegans Cav-2 was not included in this
analysis because of its low similarity to the mammalian caveolins. GenBank-derived protein sequences were entered into the ClustalW program to
generate a phylogenetic tree using the neighbor-joining method. Numbers indicate horizontal branch lengths, which correspond to the estimated
evolutionary distances between the protein sequences. 
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Cav-1 is expressed ubiquitously, although at different levels

in different tissues, with the highest levels in adipocytes,

endothelial cells, fibroblasts, smooth-muscle cells, and a

variety of epithelial cells. Cav-2 is tightly co-expressed with

Cav-1, whereas Cav-3 is expressed predominantly in striated

muscle cells [34]. Interestingly, Cav-1 is required for the

proper membrane localization of Cav-2.

Mice deficient in Cav-1, Cav-2, or Cav-3 are viable and

fertile, but each has abnormal cellular and tissue-specific

phenotypes peculiar to the specific ablated gene [35-43]. A

mutant form found in up to 16% of human breast cancers,

Cav-1 (P132L), does not localize properly to the plasma mem-

brane and behaves in a dominant-negative manner, causing

the mislocalization and intracellular retention of wild-type Cav-

1 [44,45]. An analogous P-to-L mutation in Cav-3 (P104L) has

been detected in patients with autosomal dominant limb-girdle

muscular dystrophy type-1C, and this mutation also behaves

in a dominant-negative fashion [46-49]. Wild-type Cav-3

localizes to caveolae and the plasma membrane and also

associates with the T tubules that form from invaginations of

the muscle membrane [50,51]. 

Caveolin-related research has shown that caveolae function

in vesicle trafficking [52], cholesterol homeostasis, signal

transduction and tumor suppression. Endothelial caveolae

may be involved in transcytosis; they have the molecular

components used by other transport vesicles during vesicle

formation, docking, and fusion [53], and the motor protein

dynamin, which is important for vesicle fission, also localizes

to caveolae [54,55]. Regarding endocytosis, it appears that

certain ligands and extracellular molecules, such as cholera

and tetanus toxins, are transported across the plasma mem-

brane through caveolae, rather than via clathrin-dependent

mechanisms [56,57]. Pathogens appear to have evolved

mechanisms to gain entry into eukaryotic cells through
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Figure 2 
Primary structure and topology of Cav-1. (a) The predicted membrane topology of Cav-1. Two caveolin-1 monomers are shown forming a dimer for
simplicity, but about 14-16 monomers normally self-associate to form a single caveolin homo-oligomer (the caveolar assembly unit, akin to the clathrin
triskelion). Note that both the amino- and carboxy-terminal domains are oriented towards the cytosolic face of the plasma membrane, with a hairpin
loop structure inserted within the membrane bilayer. Modified from Razani et al. [42]. (b) The domains present in Cav-1. Note that the amino-terminal
membrane-attachment domain is also called the caveolin scaffolding domain (CSD).

HO HOHO HO HO HOHOHO

HO HO HO HOHO HOHO

HO

HO

Oligomerization 
domain

Amino-terminal 
membrane 
attachment 
domain

Transmembrane 
domain

Plasma membrane

Carboxy-terminal 
membrane 
attachment 
domain

Palmitoyl 
group

Terminal 
domain

Phospholipid

Cholesterol

Sphingolipid

Carboxyl
terminus

Amino
terminus

(a)

(b)



caveolae, including simian virus 40 and certain strains of

Escherichia coli [58]. 

Caveolae are enriched with cholesterol and Cav-1 is one of

the few proteins that binds cholesterol tightly and specifi-

cally [59,60]; free cholesterol is required for the proper for-

mation of caveolae [61-63] and regulates the Cav-1 promoter

[64]. Intracellular cholesterol balance may be affected by

caveolins [65], as a dominant-negative Cav-1 mutant causes

intracellular retention of free cholesterol as well as a

decrease in cholesterol synthesis and its efflux from the cell

[66]. Also, caveolae have been linked to the process of

reverse cholesterol transport, during which excess free cho-

lesterol is released into the blood plasma via uptake by high-

density lipoprotein (HDL) particles [67-71], and caveolae

appear to be involved in the uptake of cholesterol esters

from the plasma.

Caveolae appear to serve as signaling platforms by compart-

mentalizing and concentrating signaling molecules (this is

referred to as the ‘caveolae signaling hypothesis’) [27].

Various classes of signaling molecules, including G-protein

subunits, receptor and non-receptor tyrosine kinases,

endothelial nitric oxide synthase (eNOS), and small GTPases

[27,42], bind Cav-1 through its ‘caveolin-scaffolding domain’

(CSD) (Figure 2). Cav-1 also appears to inhibit the down-

stream activation and signaling of many proteins, including

c-Src, H-Ras, mitogen-activated protein (MAP) kinases, and

eNOS [72-78]. The evidence that Cav-2 is a signaling modu-

lator is less clear, partly perhaps because its CSD sequence is

divergent from that of Cav-1. The Cav-3 CSD is very similar

to the Cav-1 CSD, however, and Cav-3-generated caveolae

have been shown to compartmentalize and modulate a

number of signaling proteins, including eNOS, �-adrenergic

receptors, protein kinase C isoforms, G proteins, Src-family

kinases, and multiple components of the dystrophin-glyco-

protein complex [34,76-79].

Several lines of evidence have implicated Cav-1 in tumor

suppression [18,19,80-84], and there is also accumulating

evidence that Cav-1 has an anti-proliferative function. Fur-

thermore, the Cav-1 and Cav-2 genes are close to the

microsatellite marker D7S522 on human chromosome

7q31.1 [13,14], a region that is commonly deleted and impli-

cated in the pathogenesis of many human epithelial-based

cancers, including breast, colorectal, prostate, ovarian, and

renal-cell carcinomas. Recent results [85-90] strongly argue

that Cav-1 functions either as a negative regulator of cell pro-

liferation or as a tumor suppressor, in both cultured cells

and whole animals. 

Frontiers
The ubiquitous nature and diverse tissue expression of cave-

olin family members in mammals suggest that caveolins are

indeed important for normal cellular and tissue physiology

in highly evolved organisms. The discovery of a caveolin

gene family in the invertebrate C. elegans [11] raises the

questions of when caveolins joined the cellular repertoire

and whether they are present in more primitive animals,

plants or fungi. Another equally important area of research

is deciphering the structure of caveolins, as such knowledge

would greatly contribute to our understanding of how cave-

olins function. Recently, gene knockout and transgenic tech-

nology has facilitated the study of caveolins in mice, from a

whole-organism point of view, allowing the generation of

caveolin-deficient or caveolin-overexpressing transgenic

mice. The molecular-genetic analysis of these caveolin-defi-

cient mouse models, and cell lines derived from these

animals, will greatly facilitate the progress of caveolae-

related research into the next decade. 
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