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ABSTRACT

B-cell epitope information is critical to immune ther-
apy and vaccine design. Protein epitopes can be sig-
nificantly affected by glycosylation, while no meth-
ods have considered this till now. Based on previ-
ous versions of Spatial Epitope Prediction of Protein
Antigens (SEPPA), we here present an enhanced tool
SEPPA 3.0, enabling glycoprotein antigens. Parame-
ters were updated based on the latest and largest
dataset. Then, additional micro-environmental fea-
tures of glycosylation triangles and glycosylation-
related amino acid indexes were added as important
classifiers, coupled with final calibration based on
neighboring antigenicity. Logistic regression model
was retained as SEPPA 2.0. The AUC value of 0.794
was obtained through 10-fold cross-validation on
internal validation. Independent testing on general
protein antigens resulted in AUC of 0.740 with BA
(balanced accuracy) of 0.657 as baseline of SEPPA
3.0. Most importantly, when tested on indepen-
dent glycoprotein antigens only, SEPPA 3.0 gave
an AUC of 0.749 and BA of 0.665, leading the top
performance among peers. As the first server en-
abling accurate epitope prediction for glycoproteins,
SEPPA 3.0 shows significant advantages over pop-
ular peers on both general protein and glycoprotein
antigens. It can be accessed at http://bidd2.nus.edu.
sg/SEPPA3/ or at http://www.badd-cao.net/seppa3/
index.html. Batch query is supported.

INTRODUCTION

Antigens can be specifically bound by corresponding anti-
bodies through interacting with epitope residues. The iden-
tification of B-cell epitopes is of primary importance to
vaccine design, immune-diagnostics and antibody produc-

tion (1). Pioneering work was started by CEP in 2005 (2),
then continuous efforts have been paid to epitope predic-
tion in recent years. Currently, several popular tools are
available online, such as PEPITO (3), DiscoTope 2.0 (4),
Epitopia (5) and SEPPA (6), which were reviewed previ-
ously (7). In 2014, SEPPA 2.0 (7) introduced new features
of ‘relative ASA preference of unit patch’ and ‘consolidated
amino acid index’ to establish a logistic regression model
by considering immune host and subcellular localization,
demonstrating both increasing accuracy and low false pos-
itive rate. Recently, BepiPred 2.0 (8) employed random for-
est algorithm to predict sequence-based epitopes, achieving
an AUC value of 0.596 on external validation set. Besides
antigen structures, several methods considered additional
information for epitope prediction, such as antibody infor-
mation (9) or experimental data (10), which is only benefi-
cial to those antigens with prior knowledge. Thus, despite
substantial efforts, conformational epitope prediction for
protein antigens is still challenging and worthy of further
devotion.

In subsequent analysis of 897 immune complexes from
PDB database, we found that almost 70% of protein anti-
gens contain N-linked glycosylation sites, indicating the po-
tential to be post-translational modification (PTM) of N-
linked glycosylation. It is known that antigenicity of protein
antigens, particularly among virus antigens, can be dramat-
ically affected by N-linked glycosylation (11–14). For exam-
ple, it was reported that key glycan in HIV-1 gp120 surface
could block antibody binding and inhibit antibody recogni-
tion (15). Also, a group of broadly neutralizing antibodies
could directly target the glycan-dependent epitopes located
in the V1/V2 region on HIV-1 gp120 (16). In addition, effec-
tive tumor vaccines are under development targeting tumor-
associated carbohydrate antigens (TACA), which resulted
from aberrant glycosylation (17).

It is noted that N-linked glycosylation is the most com-
mon forms of protein glycosylation (18), which may influ-
ence the local environment physio-chemically, particularly
to those neighboring amino acids on protein surface. Yet

*To whom correspondence should be addressed. Tel: +86 21 6598 0296; Fax: +86 21 6598 0296; Email: zwcao@tongji.edu.cn
Correspondence may also be addressed to Tianyi Qiu. Tel: +86 21 6598 0296; Fax: +86 21 6598 0296; Email: ty qiu@126.com
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

C© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://bidd2.nus.edu.sg/SEPPA3/
http://www.badd-cao.net/seppa3/index.html


Nucleic Acids Research, 2019, Vol. 47, Web Server issue W389

how to describe the micro-environment featured by glyco-
sylation sites is highly challenging, which has largely hin-
dered the study of epitope prediction involving glycopro-
tein antigens. So far, no algorithm has considered the ef-
fect of glycosylation sites for epitope prediction. Here, we
present a latest and enhanced version of SEPPA 3.0, fill-
ing the blanks for N-linked glycoproteins. In this version,
parameters were refreshed based on the largest dataset till
now. Then, the ratio of glycosylation triangles and glycosy-
lation related amino acid indexes were developed and fur-
ther integrated as new classifiers for glycoprotein antigens.
Finally, a calibration parameter was introduced to reduce
false positive rate. The performance of SEPPA 3.0 was rig-
orously evaluated on both glycoprotein and general protein
antigens and compared with popular peers.

DATASET

All datasets were extracted from antigen-antibody com-
plexes in Protein Data Bank (PDB) (19). For quality con-
trol, those protein antigens with over 50 residues were re-
mained. Solvent accessible surface areas (SASA) were cal-
culated and epitope residues were defined as the same as
SEPPA 2.0 (7). Finally, 832 PDB ID with 897 unique epi-
tope patches were remained. For model construction, 767
protein antigens (520 with N-glycosylation sites) deposited
before year 2016 were selected as internal training dataset.
Totally, 767 unique epitope structures including 16 544 epi-
tope residues as positive training dataset and 172 975 non-
epitope residues as negative training dataset. Two sets were
adopted as independent external testing datasets. One refers
to general protein antigens without discrimination of N-
linked glycosylation or not. This set contains 130 confor-
mational epitopes structures after year 2016, including 2598
positive residues and 31 144 negative ones. Those with N-
glycosylation sites were referred as second testing dataset of
glycoprotein antigens covering 106 antigens. (Supplemen-
tary Table S1).

MATERIALS AND METHODS

Parameters in SEPPA 2.0 (7) were firstly updated based on
the latest training dataset. Two critical parameters, the ratio
of glycosylation triangles and glycosylation related amino
acid indexes, were added as new classifiers to improve the
prediction performance. Then, different machine learning
approaches were screened, and logistic regression algorithm
was selected to establish our model. Finally, calibration was
introduced to reduce false positive rate. The algorithm of
SEPPA 3.0 and definition of each parameter are given as
below:

Algorithm of SEPPA 3.0

The functions of sub-model recommendation were re-
mained the same as in SEPPA 2.0 (7). In addition, the pre-
diction algorithm of SEPPA 3.0 was updated as below:

Step 1: determine all the surface residues in the protein anti-
gen;

For each surface residue r :

Step 2: search all possible unit triangles within 15 Å atom
distance and calculate three triangle-related parameters:
propensity index avgr (see SEPPA 1.0), relative ASA
Apre fr (see SEPPA 2.0) and ratio of glycosylation trian-
gles Glytrir using Equation (2);

Step 3: calculate clustering coefficient CCr (see SEPPA 1.0),
consolidated AAindex value Indexr (see SEPPA 2.0) and
glycosylation related AAindex (Glyindexr ) using Equa-
tion (3);

Step 4: integrate above six parameters via logistic regression
model to present raw antigenicity score for each residue;

Step 5: calibrate raw prediction score using Equation (4) to
give the final antigenic score for residue r ;

Step 6: output the final antigenicity score, and highlight
those residues with scores higher than defined threshold.
Visualize the subset of predicted epitopes graphically.

Ratio of glycosylation triangles

The N-glycosylation sites of Asn were defined by se-
quons of Asn-X-Ser/Thr, where X can be any amino acid
apart from proline (20). Surface residue triangle involv-
ing Asn of glycosylation sequons was defined as glycosy-
lation triangle (glytri ). Further, epitope glycosylation tri-
angle (epi glytr i ) was defined when it contains at least two
epitope residues.

By consolidating 20 amino acids into 13 functional sub-
groups (21), 71 different glycosylation triangles patterns of
subgroups were observed based on training dataset. Ratio
of glycosylation triangles (ratioi ) was intended as its gen-
eral enrichment in epitope areas as Equation (1) described:

ratioi = Nepi glytrii

Nglytrii

(i = 1, 2, . . . , 71) (1)

where Nepi glytrii represents the number of epitope glycosy-
lation triangles pattern i in training dataset, while Nglytrii

is the number of glycosylation triangles pattern i in training
dataset.

For each surface residue r , search all possible glytri
within 15 Å atom distance and define the occurrences times
of specific glycosylation triangle pattern i as Noccur (i ). The
weighted score for glycosylation triangle pattern i (glytrii )
was defined as Wri = ratioi ∗ Noccur (i ) and scores of 71
existing glytri pattern were integrated by artificial neural
networks (ANNs) into a consolidated ratio of glycosylation
triangles as Equation (2) described:

Glytrir = NN{Wr1, Wr2, . . . , Wri , . . . , Wr71}
(i = 1, 2, . . . , 71) (2)

where Wri means the weighted score of glytri pattern i ,
while Glytrir indicates the consolidated ratio of glycosyla-
tion triangles via two-layer and ten-node ANN.

Glycosylation related amino acid indexes

Statistical analysis was done to derive four glycosylation-
related amino acid indexes from AAindex database
(22) as initial features classifying epitope residues from
non-epitope surface ones, including KIMC930101,
LAWE840101, RICJ880102 and ROBB760113 (Supple-
mentary Figure S1). Then, shell structure model was
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Figure 1. Performance comparison between SEPPA 3.0 and available peers. (A) ROC curves on independent testing of 106 glycoprotein antigens. (B)
Balanced accuracy on independent testing of 106 glycoprotein antigens.

generated to summarize different amino acid indexes into
each layer (23). Based on the radius of 10 Å and step size of
2 Å, five layers were generated for each residue r . For each
index i of residue r , the amino acid index of all residues
within layer j were averaged to generate a glycosylation-
related index as glyindexi j . Finally, 20 indexes (4 indexes
* 5 layers) were optimized through iterative filtering, and
the optimized combination of glycosylation-related amino
acid indexes were consolidated by ANNs as Equation (3)
illustrated:

Glyindexr = NN{optimize

(glyindex11, . . . , glyindexi j , . . . , glyindex45)} (3)

where i represents four types of AAindexes and j repre-
sents five layers of shell model, glyindexi j means the aver-
aged index i within layer j of shell model, and Glyindexr
indicates glycosylation-related AAindexes of residue r .

Calibration parameter

The idea of calibration is to adjust the raw score of in-
dividual residues by the overall tendency of neighboring
residues, such as a low-score/high-score residue sitting in
high-epitope/low-epitope environment. The adjusted score
of residue r was defined by the average score of all neigh-
boring surface residues as Equation (4) illustrated:

ad just scorer =
∑

raw scorei

N
(4)

where
∑

raw scorei represents the sum of raw predicted
scores for each neighboring surface residue within 5 Å atom
distance of target residue r , while N means the total num-
ber of above residues.

RESULTS

Internal validation of SEPPA 3.0

The performance of SEPPA 3.0 was rigorously validated
through both internal and external validation. As being il-
lustrated in SEPPA 2.0 (7), area under curve (AUC) value
and balanced accuracy (BA) were adopted as evaluation
parameters. For internal validation, five commonly used
machine learning approaches were screened, including lo-
gistic regression, naı̈ve Bayes, random forest, support vec-
tor machine and decision tree. The results of 10-fold cross-
validation showed that logistic regression gave the best pre-
diction results with AUC value over 0.79 for general pro-
tein antigens (Supplementary Figure S2), and was chosen
for model construction of SEPPA 3.0.

Comparing with peer methods

Further, SEPPA 3.0 was evaluated through independent
testing dataset and further compared with six available
peers on-line with two sets of independent testing data.
Peers include Epitopia (5), Discotope-2.0 (4), Pepito (3),
CBTOPE (24), SEPPA 2.0 (7) and BepiPred-2.0 (8). Two
independent testing sets include: (i) group 1 contains 130
general protein antigens (G1) and (ii) group 2 contains 106
glycoprotein antigens (G2). Note that there is no recom-
mended threshold from Epitopia (5), the optimized thresh-
old with maximum BA on different testing set was pur-
posely selected for Epitopia (5). The results of evaluation on
G1 general protein antigens were illustrated in Supplemen-
tary Figure S3. Pepito (3) achieved the best performance
among six previous peers with AUC value of 0.660, while
SEPPA 3.0 gave final AUC of 0.740 on general protein anti-
gens. By setting the default threshold, SEPPA 3.0 achieved
the highest BA of 0.657 among all others.
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Figure 2. Case study of HIV-1 gp120. (A) Reference epitopes of gp120 (PDB ID: 5IF0, Chain: G). (B) Predicted epitope residues for HIV-1 gp120 by
SEPPA 3.0 with gradient illustration under default cutoff. Red, salmon, pink, white and grey color illustrate those candidates from high score to low score.
(C) Predicted epitope residues for HIV-1 gp120 by SEPPA 3.0 with unified color under default cutoff. (D) Predicted epitope residues for HIV-1 gp120 by
SEPPA 2.0. (E) Predicted epitope residues for HIV-1 gp120 by Bepipred-2.0. (F) Predicted epitope residues for HIV-1 gp120 by CBTOPE. (G) Predicted
epitope residues for HIV-1 gp120 by Discotope-2.0. (H) Predicted epitope residues for HIV-1 gp120 by Epitopia. (I) Predicted epitope residues for HIV-1
gp120 by Pepito.

Further performance was evaluated on G2 glycoprotein
antigens (Figure 1). The AUC was pushed up to 0.749 by
SEPPA 3.0, leading the most accurate prediction for glyco-
protein antigens, while the second winner is Pepito (3) with
AUC of 0.676. Thus, SEPPA 3.0 shows significant advan-
tages over popular peers on both general protein and glyco-
protein antigens. Detailed performance of SEPPA 3.0 and
available peers can be found in Supplementary Table S2.

Case study

Here, the well-known gp120 glycoprotein antigen (PDB ID:
5IF0, Chain: G) was selected as input and the results were
illustrated in Figure 2. Gp120 contains 30 epitope residues
according to the complex structures from PDB (Figure
2a), out of which, 29 were predicted as true positive by
SEPPA 3.0. Under the default threshold of 0.089, though



W392 Nucleic Acids Research, 2019, Vol. 47, Web Server issue

Figure 3. Illustration of SEPPA 3.0 output results. (A) Result summary for epitope prediction of query antigen. (B) Antigenicity scores predicted for each
residue in query antigen. (C) 3D visualization of query antigen.

60 residues were calculated as potential epitope residues,
most of true epitope residues were ranked in the top list
(Figure 2B). For example, by raising the threshold from
0.089 to 0.29, top 16 ranking marked in red contains 15 true
epitope residues, indicating the excellent performance of
SEPPA 3.0. The prediction results of 5IF0 G could reach to
an AUC of 0.936 with BA of 0.872. Also, the predicted epi-
topes of SEPPA 2.0 and other peers including Bepipred-2.0,
CBTOPE, Discotope-2.0, Epitopia and Pepito were illus-
trated in Figure 2D to I, under default cut-offs respectively.
Results illustrated that, compared with other peers includ-

ing SEPPA 2.0, SEPPA 3.0 gave the best results which are
most similar to reference epitopes. Meanwhile, those false
positive of discrete candidates predicted by SEPPA 2.0 can
be successfully adjusted through the algorithm of SEPPA
3.0. Besides the case of HIV-1 gp120, another example was
also illustrated (Supplementary Figure S4) based on human
glycoprotein antigens of CD27 (PDB ID: 5TLK Chain: X),
which is an important antibody drug targets for autoim-
mune diseases and cancers (25). Model performance of 130
individual structures from testing dataset can be found in
Supplementary Tables S3 and S4.
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USAGE

Input

SEPPA 3.0 (http://bidd2.nus.edu.sg/SEPPA3/ or http://
www.badd-cao.net/seppa3/index.html) accepts two types of
input files: (i) Existing PDB IDs with chain name, and (ii)
Local files in PDB format. Like SEPPA 2.0 (7), users are
recommended to select subcellular localization of protein
antigen and species of immune host if available. Also, batch
query submission is encouraged. Users can submit multiple
PDB IDs in batch query with specified PDB IDs, subcel-
lular localization, species of immune host and chain name
as input. After successful submission, SEPPA 3.0 will auto-
matically recommend the best model based on user’s speci-
fications.

Output

The output results of SEPPA 3.0 will be either presented
in .html format or be sent back to users via email (Figure
3). The .html format will provide result summary of input
files in sequence level, in which capital letter and lowercase
represent the surface and core residues respectively. Possible
epitope residues predicted were marked in red capital letters
(Figure 3A) and detailed antigenicity scores calculated were
recorded in score file for each residue in query antigen (Fig-
ure 3B). Users can visualize the prediction results through
online plug-in Jsmol components or local PDB files down-
loadable. Here, HIV-1 gp120 (PDB ID: 5IF0, Chain: G) is
shown as an example to illustrate the predicted results of
SEPPA 3.0. Residues were colored according to predicted
scores (Figure 3C). More information can be found in the
HELP page of SEPPA 3.0.

DISCUSSION

In recent decade, the progress in conformational epitope
prediction goes smoothly but slowly. The space to improve
may lie in several aspects, including accumulation of more
epitope structures, appropriate classifying features, more
refined models for specific datasets, and so on. In order
to maintain the top performance, SEPPA 3.0 updated the
largest datasets, the latest features, and designed two new
classifiers for N-linked glycoprotein antigens. Our statistical
analysis showed that N-glycosylation sites were significantly
enriched in epitope areas rather than in non-epitope sur-
face regions (paired t test, P = 3.577e–14, 95% CI = [0.032,
0.051]), suggesting that antibodies seem to prefer certain
surface region containing N-glycosylation sites. In other
words, comparing to those in non-epitope surface areas,
N-glycosylation sites in epitope regions might have differ-
ent local context residues layout, as well as physio-chemical
fields resulted from neighboring residues. Thus two types of
parameters were designed to test the potential difference of
the micro-environment nearing glycosylation sites between
epitope areas and non-epitope surface regions. After statis-
tical analysis, the unit patch of residue triangles (6) involv-
ing N-glycosylation sites and four amino acid indexes were
selected out to indicate residues layout and physio-chemical
fields respectively. Meanwhile, by introducing shell struc-
ture to construct the glycosylation-related AAindexes, the

layers of micro-environmental variations were fully consid-
ered and summarized for each residue. Despite of the di-
verse features invented till now, predicting results can only
be lifted by combining multiple of them, suggesting the in-
herent complexity of epitope nature.

Another task for epitope prediction is to reduce the high
False Positive Rate (FPR). Most available algorithms cal-
culated epitope scores based on each individual residue. As
structural epitope areas are surface patches being recog-
nized and bound by CDR regions of antibodies, collective
effects might play much more important roles than we had
expected. Differed from other popular peers, SEPPA 3.0
designed the parameters of the local structural layout and
micro-environment around each target residue to describe
the collective effects in epitope regions. More importantly, a
calibration procedure was elaborated to further reduce FPR
based on neighboring influence. In fact, after calibration,
the FPR of SEPPA 3.0 was significantly decreased from 0.35
to 0.26 for general protein antigens and from 0.34 to 0.25 for
glycoprotein antigens.

For binary classification problems, AUC value was often
adopted to evaluate the model performance under different
thresholds. Another evaluation parameter we took is bal-
anced accuracy, which fully considered the balance between
sensitivity and specificity. Using the above two parameters,
the performance of different tools can be fairly compared
on independent datasets. It is noted that the structure infor-
mation of conformational epitope is rapidly accumulating.
Coupled with new classifiers and FPR reducing methods,
it is expected that epitope prediction models could better
serve the biological needs and assist the process of poten-
tial vaccine and immune therapeutic development.
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