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Mild cognitive impairment (MCI) is a preclinical stage of Alzheimer’s disease (AD),
and early diagnosis and intervention may delay its deterioration. However, the
electroencephalogram (EEG) differences between patients with amnestic mild cognitive
impairment (aMCI) and healthy controls (HC) subjects are not as significant compared
to those with AD. This study addresses this situation by proposing a computer-aided
diagnostic method that also aims to improve model performance and assess the
sensitive areas of the subject’s brain. The EEG data of 46 subjects (20HC/26aMCI) were
enhanced with windowed moving segmentation and transformed from 1D temporal data
to 2D spectral entropy images to measure the efficient information in the time-frequency
domain from the point of view of information entropy; A novel convolution module is
devised, which considerably reduces the number of model learning parameters and
saves computing resources on the premise of ensuring diagnostic performance; One
more thing, the cognitive diagnostic contribution of the corresponding channels in each
brain region was measured by the weight coefficient of the input and convolution unit.
Our results showed that when the segmental window overlap rate was increased from 0
to 75%, the corresponding generalization accuracy increased from 91.673 ± 0.9578%
to 94.642 ± 0.4035%; Approximately 35% reduction in model learnable parameters by
optimizing the network structure while maintaining accuracy; The top four channels were
FP1, F7, T5, and F4, corresponding to the frontal and temporal lobes, in descending
order of the mean value of the weight coefficients. This paper proposes a novel
method based on spectral entropy image and convolutional neural network (CNN),
which provides a new perspective for the identifying of aMCI based on EEG.

Keywords: amnestic mild cognitive impairment, spectral entropy, convolutional neural network, early diagnosis,
data augmentation
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INTRODUCTION

The preclinical stage of Alzheimer’s disease (AD) (the transition
between normal aging and dementia) is termed mild cognitive
impairment (MCI) (Arnáiz and Almkvist, 2003). MCI can
present with a variety of symptoms, and when memory loss is
the predominant symptom, it is termed amnestic mild cognitive
impairment (aMCI) and is frequently seen as a prodromal stage
of AD (Petersen et al., 2018). Therefore, the accurate diagnosis of
patients with MCI and the corresponding intervention will help
to delay the deterioration and even rehabilitation of patients with
MCI. As a non-invasive detection method, electroencephalogram
(EEG) detection is relatively mature [it has been widely used
in clinical diagnosis, condition monitoring, brain-computer
interface and other scenarios (Haas, 2003; Li et al., 2021; Soriano-
Segura et al., 2021)]. It is more economical and practical than
magnetic resonance imaging equipment in the purchase and
maintenance of equipment, which makes it possible for low-cost
large-scale screening of patients with cognitive impairment based
on EEG analysis, especially in remote or underdeveloped areas.
Moreover, a large number of studies have shown that EEG can
be used as a carrier to represent cognitive level, patient status
and other information or characteristics. Mizuno et al. (2010)
pointed out that the characteristic of patients with AD lies not
only in the decrease of the irregularity of EEG signals but also
in the increase of entropy on a higher time scale. With the
in-depth study of AD, several studies on spectral entropy have
shown that spectral entropy can represent cognitive impairment
information. Maturana-Candelas et al. (2019b) calculated the
spectral entropy of EEG in 32 AD patients, 10 MCI subjects
and 18 cognitively healthy controls (HC) on multiple scales.
It was found that spectral entropy can be used as an effective
pathological marker to characterize patients with cognitive
impairment. Arakaki et al. (2019) found that the discrimination
based on EEG spectral entropy was consistent with the detection
of AD cerebrospinal fluid biomarkers, indicating that non-
invasive EEG can be used as an important tool to distinguish
between early dementia and normal aging. Compared with
normal people, spectral entropy can describe the abnormalities
of EEG signals in patients with cognitive impairment caused by
functional loss caused by neuron death.

Spectral entropy measures the time-frequency domain metrics
of the EEG signal in terms of information entropy, which
provides more comprehensive information for the diagnosis
of cognitive impairment and is therefore used to differentiate
between MCI patients and normal subjects. Staudinger and
Polikar (2011) found that the EEG signals of 161 subjects
(79AD, 82HC) were less complex than those of the HC subjects
through a non-linear metric and that reduced complexity could
be attributed to the presence of neurofibril plaques and tangles.
Specifically, the spectral entropy of the frontal lobe and temporal
lobe in the AD group was also lower, and the electrodes F3, T7,
and T8 had significant differences between the AD group and
the HC group. Then, according to the combined feature vector,
the multilayer perceptron (MLP) is used for pattern recognition,
achieving an accuracy rate of 78%. Fan et al. (2018) made use
of the spectral entropy characteristics of EEG signals of 123

participants (15HC, 108AD) on 20-time scales, and obtained
about 80% test accuracy by regularization learning methods
(Least absolute shrinkage and selection operator; Quadratic
discriminant analysis). Ruiz-Gomez et al. (2018) used a non-
linear feature measure including spectral entropy to classify
111 subjects (37AD, 37MCI, 37HC), with the MLP showing
the highest diagnostic performance in determining whether the
subjects were healthy or not (HC had a sensitivity of 82.35%
for the ALL classification task and a positive predictive value
of 84.85%). Sharma et al. (2019) analyzed 8 EEG biomarkers
of 44 subjects (13HC, 16MCI, 15AD): power spectral density
(PSD), skewness, kurtosis, spectral peak factor, spectral entropy,
fractal dimension. Then it is classified by support vector machine
(SVM), in which the classification accuracy of HC vs. MCI
signal is 79.5%. Prior work is encouraging. These studies have
demonstrated that non-linear metrics can adequately reflect the
temporal, spatial and frequency characteristics of EEG. However,
data redundancy in multi-channel EEG signals and the limited
capabilities of traditional machine learning algorithms leave
much to be desired in terms of the diagnostic performance of
the models. Is there a way to better utilize this representational
information to diagnose patients with cognitive impairment?

The answer is promising. Convolutional neural network
(CNN) are widely used in the field of pattern recognition for
their reliability, flexibility and ability to extract complex features
from images. In this study, we focused on employing CNN to
mine potential representational information in EEG signals from
a spectral entropy perspective. The main contributions of this
work are summarized below.

(1) The effectiveness of different window overlap rates in
windowed moving segments on the enhancement of time
series data was discussed.

(2) A novel convolutional model is constructed, which
significantly reduces the number of parameters
that can be learned by the model while ensuring
diagnostic performance.

(3) One more thing, the contribution of the corresponding
channels in each brain region can be measured by the
absolute value of network weight.

MATERIALS AND METHODS

Firstly, the raw EEG signal is pre-processed, and the time series
data is enhanced using a window shift segmentation method
(with a window length of 4 s). The power spectrum and its
spectral entropy were then calculated for each case to convert it
into image data suitable for use as network input.

Subjects and Electroencephalogram
Recording
The data set used in this study is some of the clinical data
reported by Su et al. (2021), including 26 subjects with aMCI
with an average age of 65 years (60–70 years) and 20 HC subjects
with an average age of 63.39 years (60–70 years). These aMCI
patients were diagnosed by an experienced neurosurgeon and
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TABLE 1 | Description information of four segmented data sets.

Information category D00 D25 D50 D75

Moving window size 4 s 4 s 4 s 4 s

Move window step (Overlap rate) 4 s (0%) 3 s (25%) 2 s (50%) 1 s (75%)

Number of cases in the HC group 3,433 4,579 6,874 13,758

Number of cases in the aMCI group 3,701 4,943 7,423 14,856

Total number of cases in the data set 7,134 9,522 14,297 28,614

inclusion criteria included the Mini-Mental State Examination,
Montreal Cognitive Assessment scores, and the Daily Living
Test. In addition, subjects underwent MRI or CT to rule
out focal lesions in the brain. All subjects had no history
of other neurological disorders (e.g., depression, epilepsy, and
brain injuries). Furthermore, MCI patients were not taking any
neurological drugs during the EEG acquisition experiment.

The experiment was conducted following the Declaration of
Helsinki and was reviewed and approved by the Medical Ethics
Committee of Handan Central Hospital, Hebei Province, and
all participants provided written informed consent. A digital
electroencephalograph (NT9200, Beijing Zhongke Xintuo
Instrument Co., Ltd., China) was used to record the resting-state
EEG signals of 16 leads (frontal lobe FP1, FP2, F3, F4; left

temporal lobe F7, T3, T5; parietal lobe C3, C4, P3, P4; right
temporal lobe F8, T4, T6; occipital lobe O1, O2). The recording
time of EEG of each subject was 15 min and the sampling
rate was 1,000 Hz.

EEG preprocessing includes bandpass (0.5∼40 Hz) filtering
and independent component analysis to remove the power
frequency interference of 50 Hz, as well as ocular artifacts,
electromyogram artifacts, abrupt slope and outliers. The
preprocessed data set is segmented by a sliding time window
with a window width of 4s and an overlap rate of 0, 25, 50, and
75% (the sliding steps are 4, 3, 2, and 1 s, respectively), and four
enhanced data sets D00, D25, D50, and D75 are obtained. The
specific description of the segmented data set is shown in Table 1,
where each case is an EEG of 16 ∗ 4,000 (channel ∗ sample points).

Electroencephalogram Data
Transformation
Spectral entropy refers to the degree of uncertainty of the signal
power spectrum distribution, which regards the normalized
power distribution of the signal in the frequency domain as
a probability distribution, and then calculates its Shannon
information entropy. Specifically, for the EEG signal x (n), its
discrete Fourier transform is X (ω), and the power spectrum is

FIGURE 1 | EEG and spectral entropy heat maps from subjects. (A) HC group; (B) aMCI group. The area on the left shows a 16-channel EEG, and the area on the
right shows a 2-D spectral entropy image of the corresponding channel. In the spectrum entropy heat map, the abscissa is time and the ordinate is frequency bin.
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represented by S (ω) = |X (ω)|2. The probability distribution of
the spectrum p (ω) is defined as:

p (ω) =
S (ω)∑

i S (i)

Then the spectral entropy H is defined as:

H = −
N∑
ω=1

(
p (ω) log2 p (ω)

)
Here N is the total frequency point. In this paper, normalized

spectral entropy is used, which is defined as:

Hn = −

∑N
ω=1

(
p (ω) log2 p (ω)

)
log2 N

Here the denominator log2 N represents the maximum
spectral entropy in which the white noise is uniformly distributed
in the frequency domain. The higher the spectral entropy of the
signal, the more disordered (complex) the signal; on the contrary,
the lower the spectral entropy, the more ordered (simple) the
signal. As shown in Figure 1, 16 spectral entropy images (17∗17)
corresponding to the channel can be obtained from an EEG of
16× 4,000 (channel ∗ data points). In the right area of the image
below, the Abscissa of the two-dimensional spectral entropy
image is time, the ordinate is frequency bin, and the spectral
entropy value is mapped to the color value in the thermal map.

In this study, the spectral entropy corresponding to each
channel of the four datasets D00, D25, D50, and D75 was
calculated in turn with a frequency resolution of 3 Hz.
Correspondingly, each case in the feature image sets S00, S25,
S50, and S75 consisted of 16 two-dimensional spectral entropy
images corresponding to the channel. In addition, the power
spectrum image set P75 of the dataset D75 with a window overlap
of 75% as a control dataset for the spectral entropy dimensional
conversion method.

Classification Model
To mine the representation information in the spectral entropy
image and identify the corresponding cognitive function patterns
of the subjects, a CNN was constructed according to the
characteristics of spectral entropy data sets S00, S25, S50, and
S75. After the convolution operation of each layer, the spatial size
of the output image data gradually decreases and the number
of channels gradually increases. This work also follows this
design principle when constructing the neural network model
through Matlab, so as to avoid the information bottleneck. The
main body of the base-model has a total of two convolution
layers (Conv1, Conv2), followed by a full connection layer. Use
the ReLU activation function to match the convolution layer,
followed by the maximum pooling layer (Pool1, Pool2) to under-
sample the image. After the convolution operation is completed,
the full connection layer is connected, and the Softmax function
is utilized as the final activation layer.

Inspired by the Inception Module (Szegedy et al., 2016), a
novel network model architecture (opt-model) is constructed

FIGURE 2 | Schematic diagram of the structure of the optimized
convolutional neural network (opt-model).

in the process of model debugging. Compared to the base
model, the opt-model replaces the convolution layer (ConvN)
with a convolution module (ConvNa, ConvNb, ConvNc). As
shown in Figure 2, the convolution module has a parallel
structure: one path is a series of two convolution layers to
achieve a large convolution kernel, and the other uses the
residual connection to achieve a smaller convolution kernel.
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Then the feature images are stacked by depth concatenation
layer along the channel direction, and the linear combination of
feature images between different channels is completed by the
convolution layer (ConvNc, kernel-size = 1 × 1). Certainly, the
convolution module is ingeniously designed. This structure can
not only capture more comprehensive information from different
scales through convolution kernels of different sizes but also
reduce the total amount of learnable parameters and optimize the
complexity of the model.

In addition, considering that the brain regions related to
cognitive function in the cerebral cortex are the frontal lobe
and temporal lobe (Al-Qazzaz et al., 2018; Zhang et al., 2021),
a convolution layer (Conv0, kernel-size = 1 × 1) is immediately
following the input layer to eliminate redundant data in EEG
that is not related to the evaluation of cognitive function. This
design can realize the linear combination of EEG data in different
channels without greatly increasing the amount of calculation,
instead of artificial selection, which can make the model more
universal and more stable in the face of different subjects. Finally,
the dropout layer (P = 0.95) is added in front of the full
connection layer to prevent overmatching. Details of the base
and opt model structure are given in Table 2, containing the
parameters of some of the layers and their corresponding output
sizes, and the number of learnable parameters.

For the multi-channel signal represented by EEG, the
contribution of each EEG channel can be measured by the
absolute value of the weight coefficient of the input unit and
the hidden layer unit. Specifically, when the absolute value of
the weight tends to be 0, the smaller the importance of the
channel, the smaller the contribution of the channel to the
representation of the patient’s cognitive state. In this study, the
weight parameters of the convolution kernel (kernel-size = 1× 1)
in the convolution layer Conv0 of Figure 2 were used to evaluate
the contribution of EEG 16 channels and their corresponding
brain regions. The algorithm of channel contribution evaluation
based on convolution kernel weights is given in Algorithm 1,
where Wk,m,n represents the weight of the m-th convolution
kernel in the channel n-th of the target convolution layer of the
corresponding model in the k-th fold cross-validation.

Algorithm 1: Evaluation of channel importance algorithm by convolution kernel
weight.

Input: The CNN model is obtained by K-fold cross-validation, in which the total
number of channels to be evaluated is N.

Output: Evaluation value (Pn ) of channel importance.

1: Obtain the weight parameter Wk,m,n of all convolution kernels (convolution kernel
size = 1 × 1) in the target convolution layer of the CNN model.

2: while n ≤ N do

3: Mn ← (
∑
m

∑
k
|Wk,m,n|)/(m+k)

4:
Sn ←

√
{
∑
m

∑
k
(|Wk,m,n−Mn|

2
)}/(m+k−1)

5: Pn ← Mn∗Sn

6: n++

7: end while

8: return Pn .

The objective function of the two convolution models is the
cross-entropy loss function. Initialize the weights with the Glorot
initializer (also known as Xavier initializer) (Glorot and Bengio,
2010), and initialize the bias with the zeros. Because of the
large amount of calculation, the model training uses the Adam
optimizer with high computational efficiency (Kingma and Ba,
2015), in which β1 is set to 0.9, β2 is set to 0.999, and the
learning rate is set to 10ˆ(–5)∼10ˆ(–4). The number of training
epoch is 100 and the batch size is 200. These super-parameters
are determined by grid optimization and artificial testing, and the
optimized model provides the best results in terms of accuracy,
loss and generalization performance.

Evaluation Metrics
In the field of pattern recognition, the performance evaluation
of the model is essential. K-fold cross-validation is a statistics-
based evaluation method to show the expected performance
on unknown cases. In this paper, a 10-fold cross-validation
method is adopted. Specifically, the spectral entropy dataset S00
was first randomly shuffled and folded to reduce the effect of
data order on the model. For each fold, 9/10 fold for training
(Among them, 8.1/10-fold is used to learn and update network
weights, and 0.9/10 fold discount is used to verify and prevent
model overfitting), and 1/10 fold for testing and evaluation of
models. Secondly, the performance of the model corresponding
to this dataset is evaluated by the average values of accuracy,
precision, specificity, sensitivity (also known as Recall), F1-Score,
Area Under ROC Curve (AUC) and average validation accuracy
curve, average verification loss curve and receiver operating
characteristic curve (ROC). The models were then trained by
datasets S25, S50, and S75 in turn, which resulted in model
performance being accessed for the corresponding four datasets.

Statistical Analysis
A two-sample Kolmogorov-Smirnov test was used to check the
spectral entropy data between aMCI and HC and whether there
were significant differences in model performance corresponding
to different segmental overlap rates.

RESULTS

This paper focuses on the effectiveness of the spectral entropy
image conversion method, the influence of different overlap
rates in time series signal segmentation on the performance of
the CNN model, and the contribution of verifying each brain
region in the assessment of cognitive impairment. Specifically, on
the basis of preprocessing and dimensionality conversion of all
subjects’ EEG signals, spectral entropy image data sets S00, S25,
S50, S75 were obtained, in which the aMCI group was marked as
1, the HC group was marked as 0. After analyzing the influence
of data segment overlap rate on the performance of the model
by base-model, the accuracy and complexity of the model before
and after optimization and the richness of the spectral entropy
image conversion method investigated to the conventional time-
frequency representation are compared and analyzed. According
to the structural advantages of the opt-model, the contribution of
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TABLE 2 | Network model parameters corresponding to Figure 2.

Layerbase Num, size Output size 6Nlearnableparameter Layeropt Num, size Output size 6Nlearnableparameter

I – [17, 17, 16] – I – [17, 17, 16] –

– – – – Conv0 8, [1, 1] [17, 17, 8] 136

Conv1 10, [5, 5] [13, 13, 10] 4,010 Conv1a 8, [3, 3] [15, 15, 8] 584

– – – – Conv1b 8, [3, 3] [15, 15, 8] 584

– – – – Conv1c 10, [1, 1] [15, 15, 16] 170

Conv2 20, [3, 3] [4, 4, 20] 1,820 Conv2a 10, [3, 3] [5, 5, 10] 910

– – – – Conv2b 10, [3, 3] [5, 5, 10] 910

– – – – Conv2c 20, [1, 1] [5, 5, 20] 420

F 2 [1, 1, 2] 162 F 2 [1, 1, 2] 162

corresponding channels in each brain region for the evaluation of
cognitive impairment is discussed.

The Influence of Different Segmentation
Overlap Rate on Model Training
This section shows the performance evaluation of CNN
classification corresponding to four different segment overlap
rates, compares and analyzes the corresponding results, and
discusses the effectiveness of the segmentation strategy as a time
series data enhancement method.

Figures 3, 4 show the average accuracy and loss curves
of the first 100 epochs of base-model on the corresponding
validation data set, respectively. During the training period,
the average 10-fold verification accuracy of the model increases
steadily with the increase of epoch, and the verification loss
decreases steadily with the increase of the number of iterations.
When the epoch reaches 90–100 times, the model is saturated,
that is, the training error and verification error are the same.
At this time, the average verification accuracy corresponding

FIGURE 3 | The average verification accuracy curves of the base-model under
different segmentation overlap rates. The abscissa is the number of epochs,
whose range of values is from 1 to 100; and the ordinate is the average
verification accuracy rate, whose range of values is from 19.631 to 94.888%.

to dataset S00 is maintained at 92.371 ± 1.226%, and the
average verification loss is maintained at 0.146 ± 0.019; the
average verification accuracy corresponding to dataset S25 is
maintained at 92.643 ± 1.236%, and the average verification loss
is maintained at 0.135 ± 0.017; the average verification accuracy
corresponding to dataset S50 is maintained at 93.042 ± 0.641%,
and the average verification loss is maintained at 0.135 ± 0.013;
the average verification accuracy corresponding to dataset S75
is maintained at 94.888 ± 0.483%, and the average verification
loss is maintained at 0.114 ± 0.016. If we continue the
training, the verification error shows an upward trend and
exceeds the training error, there is no doubt that the model
is overfitted at this time. In order to avoid this phenomenon,
the network training, namely early stopping, is stopped
when the accuracy of the verification data is not improved
10 times in a row.

Figure 5 shows the average ROC curve on the test set for the
four segmentation strategies. The ROC curve obtained from the
data set S75 is closer to the upper left corner than the other three

FIGURE 4 | The average verification loss curve under different segmentation
overlap rates. The abscissa is the number of iterations, whose range of values
is from 1 to 100; and the ordinate is the average verification loss rate, whose
range of values is from 0.771 to 0.114.
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FIGURE 5 | The average ROC curve under different segmentation overlap rates. The abscissa is False Positive Rate (1-Specificity) and the ordinate is True Positive
Rate (Sensitivity).

ROC curves, and the area under the ROC curve, namely AUC,
increases with the increase of overlap.

Figure 6 shows the generalization performance metrics of
the base-model on test datasets corresponding to four-segment
overlap rates. In the testing period, with the increase of segment
overlap rate, the 10-fold cross-validation mean of each evaluation
index value of the base-model has been improved in varying
degrees, and the corresponding low standard deviation also
shows the robustness and consistency of the model.

According to the performance of the same model in the
data set corresponding to the overlapping rate of different
segments, it can be found that windowed segmentation is
an effective data enhancement method for small sequential
data sets. When constructing the pattern recognition model
represented by EEG, sample size and calculation amount should
be considered in equilibrium, and the overlap rate can be selected
from 50 to 75%.

Performance Comparison Pre and Post
Model Optimization
In view of the fact that the windowed moving segmentation
method with an overlap ratio of 75% is more likely to get
a model with good performance, it is used to train the opt-
model. Based on datasets S75 and P75, this section compares and

analyses the performance differences of the models before and
after optimization, and the richness of the spectral entropy image
conversion method compared to the power spectrum.

Figures 7, 8 show the average verification accuracy and loss
curves of base-model and opt-model network models in P75
and S75. For S75: at the beginning of training, the average
verification accuracy of the opt-model is much lower than that
of the base-model, and the average verification loss is higher than
the base-model. However, with many iterations of the model, the
accuracy of the opt-model improves rapidly, and the verification
loss of the 10th epoch is lower than that of the base-model.
When training proceeds to the 60th stage, the average validation
accuracy and loss curves of the two models smooth out and no
gross fluctuations occur during the subsequent iterations. When
the 100th epoch is trained, the average verification accuracy
of the base-model is maintained at 94.888 ± 0.483%, and the
average verification loss is maintained at 0.114 ± 0.013; the
average verification accuracy of the opt-model is maintained at
95.414 ± 0.791%, and the average verification loss is maintained
at 0.110± 0.016.

For P25: the performance of the opt-model varied less than
that of the base-model at the beginning of the training, but the
difference between the two models was not significant as the
model was iterated. By the 100th epoch, the average validation
accuracy of the base-model remained between 89.093 ± 2.536%
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FIGURE 6 | Base-model test performance corresponds to different segmentation overlap rates. (10-fold cross-validation corresponds to model performance metrics
in the test set, Kolmogorov-Smirnov test, ∗p < 0.05, ∗∗p < 0.01).

and the average validation loss remained at 0.216 ± 0.054;
the average validation accuracy of the opt-model remained at
88.859 ± 3.433% and the average validation loss remained at
0.223± 0.061. Overall, the model obtained from spectral entropy
outperformed the power spectrum, and the difference became
apparent as the training progressed to 40 epochs.

FIGURE 7 | The average verification accuracy curve of two network
structures. The abscissa is the number of iterations, whose range of values is
from 1 to 100; and the ordinate is the average verification accuracy rate,
whose range of values is from 14.789 to 95.517%.

Figure 9 shows the average ROC curve of the base-model
and the opt-model on the P75 and S75 test sets. Through the
ROC curve, we can see that the two model structures have better
comprehensive performance in the data set.

Figure 10 shows the performance evaluation metrics of the
two models on the test set of the P75 and S75. It can be seen
that during the testing period, the generalization performance of
the two models is almost the same. The total number of learnable
parameters of the base-model is 5992, which has the eye-catching
characteristics of simple architecture, but it is at the cost of high
computational cost: network training and evaluation require a
lot of computation. In contrast, the total number of learnable
parameters of the opt-model is 3876, which can be performed well
even under strict memory and computing budget constraints.

Thus, spectral entropy may contain additional information
to indicate the state of cognitive impairment compared to the
traditional time-frequency representation of the power spectrum.
In addition, there is a great difference in the number of learnable
parameters caused by the structure (the total number of opt-
model learnable parameters is reduced by about 35.31%), which
shows that the convolution module designed in this paper can
effectively reduce the number of learnable parameters while
maintaining high performance.

Contribution Evaluation of
Electroencephalogram Channel Based
on Convolution Kernel Weight
This section shows the contribution of each EEG channel and its
corresponding brain regions measured by the absolute weight of
the convolution kernel. Firstly, the 16-channel spectral entropy
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FIGURE 8 | The average verification loss curve of two network structures. The
abscissa is the number of iterations, whose range of values is from 1 to 100;
and the ordinate is the average verification loss rate, whose range of values is
from 0.752 to 0.108.

of all subjects in aMCI group and HC group were tested by
double-sample Kolmogorov-Smirnov test, and it was found that
there were significant differences in spectral entropy data of

all channels (P = 0.01). The fluctuations in spectral entropy
data corresponding to the 16 EEG channels are conveyed by
Figure 11, which shows similar patterns of variation in spectral
entropy data for each channel within the group, with significant
differences between groups.

The diagnostic contribution of the corresponding channels
in each brain region is illuminated in Figure 12. The
contribution assessment topography is quantified by the
convolutional layer (Conv0) weights used to reduce the
number of channels in the opt-model, and the drawing
data derived from the channel contribution assessment values
returned from Algorithm 1. The contribution evaluation values
(Pn) of the 16 channels are sorted in the following order:
FP1> F7> T5> F4> C4> F3> T3> FP2> O1> T6>
C3 > P3 > F8 > O2 > T4 > P4. Two of these brain
regions, the frontal lobe (FP1, FP2, F3, F4) and the left temporal
lobe (F7, T3, T5), have relatively higher weighting coefficients.
The frontal, temporal lobes and the hippocampus medial to
the temporal lobe, are associated with auditory and language
expression, processing, and memory functions. Correspondingly,
The language impairment, executive impairment, cognitive
impairment and memory impairment experienced by the
aMCI subjects in this paper may be related to damage to
these brain regions.

At the same time, the average absolute weight of all channels
is not close to zero, that is, all channels have an indelible

FIGURE 9 | The average ROC curve of two network structures. The abscissa is False Positive Rate (1-Specificity) and the ordinate is True Positive Rate (Sensitivity).
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FIGURE 10 | Test performance of two network structures on data sets P75, S75.

contribution to the assessment of cognitive impairment. This can
be explained that the normal expression of cognitive function
is a manifestation of the brain’s comprehensive ability, and
no brain region can be left alone; and each brain region may
dominate a certain cognitive function. Different patients may be
involved in different brain regions when their cognitive function
is impaired. Therefore, in the actual clinical diagnosis, we need
to comprehensively consider each brain region, which can avoid
misdiagnosis and missed diagnosis to a certain extent.

FIGURE 11 | Spectral entropy values corresponding to 16 channels.

DISCUSSION

Feasible and Effective of Spectral
Entropy Methods
Since the recorded EEG is a combination of external electrical
pulse activity and synaptic signals of cortical neurons, some
scholars (Nunes et al., 2004) have indicated that spectral entropy
is not only a statistical measurement of the range/degree of
variability or regularity and disorder of EEG signal patterns

FIGURE 12 | Topographic map of the average value of 8 convolution kernel
(kernel-size = 1 × 1) weights corresponding to EEG signal channels.

Frontiers in Human Neuroscience | www.frontiersin.org 10 July 2022 | Volume 16 | Article 924222

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-924222 June 30, 2022 Time: 16:42 # 11

Li et al. Brain-Computer Interface for MCI Diagnosis

but also accurately reflects cortical function and “intracortical
information flow.” From a nervous system point of view, EEG
complexity or irregularity is related to the dynamic complexity
of part of the brain, as well as the lack of neurotransmitters,
neuron death, and even changes in network structure. Spectral
entropy may be more likely to associate entropy with the number
of current cortical microstates of the brain than to measure the
degree of disorder of the brain process. Therefore, the signal
spectral entropy that describes the energy of the brain is more
likely to represent the number of frequency components, for
example, the higher the spectral entropy may represent the more
the number of mental microstates that the brain exists in that
particular period.

Abasolo et al. (2006) found that the approximate entropy
in the parietal region and the sample entropy in the parietal
and occipital regions of AD patients decreased significantly.
Al-Qazzaz et al. (2016) by analyzing the spectral entropy and
relative power of five scalp regions in patients with MCI and
age-matched control subjects, it was found that the spectral
entropy in the parietal, occipital and central regions in the MCI
group was significantly lower than that in the control group,
and the difference was statistically significant (p < 0.05). Zhang
et al. (2021) statistically analyzed the scores of two neurological
tests (MMSE and MoCA) and resting-state EEG in 30 normal
elderly subjects and 30 patients with AD. It was found that in
the α band, the spectral entropy of the frontal, temporal and
central regions in the AD group was significantly lower than
that in the HC group, but there was no significant difference
in the spectral entropy of the occipital lobe electrode between
the two groups; For β band, the spectral entropy of temporal
region, central region and occipital region in the AD group
was significantly higher than that in HC group, but there was
no significant difference in the frontal region between groups;
The spectral entropy of θ band in the occipital region of AD
group was higher than that of HC group. In this study, a two-
sample Kolmogorov-Smirnov test analysis of the subjects’ EEG
spectral entropy eigenvalues revealed that the aMCI group was
significantly lower than the HC group and that the frontal and left
temporal lobes may have critical brain regions in characterizing
cognitive state information, which is consistent with the findings
of the above study.

Taken together, these studies have shown that EEG can be
used as an effective detection tool for the preclinical stage of
AD. At the same time, the results of this study further prove
that the spectral entropy is worth considering, and the non-
linear measure can mine the potential representation information
in the EEG spectrum, so it is reasonable and effective to apply
the spectral entropy image to distinguish the aMCI patients
and the control group. In addition, according to the value of
the opt-model’s convolution layer (Conv0) weight parameter, it
is found that the contribution of 16 channels to classification
performance is in the same order of magnitude. It may be that
the sound expression of cognitive function needs the cooperation
of five brain regions, so when designing the medical assistant
diagnosis system, in order to accurately and stably complete
the early evaluation of patients with cognitive impairment,
diagnostic modeling should be combined with the EEG signals
of all brain regions.

The Clinical Performance of the
Opt-Model
So far, many scholars have carried out other related studies
to address the issue of pattern classification of cognitive
impairment. Compared with previous spectral entropy
correlation studies (Staudinger and Polikar, 2011; Wang
et al., 2015; Al-Qazzaz et al., 2017, 2018; Ruiz-Gomez et al., 2018;
Maturana-Candelas et al., 2019a; Sharma et al., 2019), this paper
creatively combines spectral entropy theory with Deep learning
(DL) and achieves better classification performance. Figures 3, 7
show that with the increase of the number of iterations, the model
gradually fits the data samples and achieves better accuracy.
Figures 4, 8, respectively, illuminate the verification loss, which
not only reflects the excellent classification performance of the
scheme but also shows that its convergence is relatively stable.
And when the segmentation window overlap rate increases from
0 to 75%, the corresponding generalization accuracy increases
from 91.673± 0.9578% to 94.642± 0.4035%. Then the structure
of the model is optimized, and the generalization accuracy of
the opt-model is 94.586 ± 0.4224% when the total number of
learnable parameters is reduced by about 35.31%. Compared with
the research (Morabito et al., 2016; Ieracitano et al., 2019, 2020;
Wen et al., 2020; Huggins et al., 2021) related to CNN, the model
performance of this paper is second only to the study by Huggins
et al. (2021). But the diagnosis accuracy is on the same order
of magnitude, it benefits from the irregularity and complexity
representation information in the spectral entropy image. In
contrast to transfer learning, this paper aims to artfully conceive
of a model structure that allows for a significant reduction in
parameters and savings in computational resources. It is thus
reasonable to trade off model performance in a comprehensive
manner in practical applications.

In the future, more aMCI/HC subjects will be recruited
to prevent their data samples from being included in the
testing phase and affect the objectivity of the diagnostic
model assessment. In addition, low-density EEG signals from
16 electrodes were used in this study. A larger number of
EEG channels can provide a more comprehensive and stable
picture of the subjects’ cognitive function, thus improving
classification performance. For this reason, subsequent attempts
will be made to record high-density EEG recordings and to
introduce individual information (age, weight, height, etc.) into
the diagnostic protocol to enhance the robust performance of the
model. Furthermore, as a type of physiological electrical signal,
some of the results of this study can be used not only in the design
and development of cognitive assessment systems, but also in the
application of other physiological signals such as EMG and ECG.
In the meantime, our study is an exploratory study and requires
more data samples and subsequent studies for validation.

CONCLUSION

A novel method for the detection of aMCI based on EEG
time-frequency analysis was proposed. That is, after the time-
frequency analysis of the EEG signal with the spectral entropy,
CNN is used to extract the potential information in the spectral
entropy images. The performance of the method with different
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overlap window overlap rates is given in the paper. The
results show that for a 75% segmented window overlap
rate, the highest accuracy can reach 95.077%. In addition,
to reduce the complexity of the model, a convolution
module is proposed, which reduces the learnable parameters
of the model by about 35% while maintaining accuracy
(Total number of opt-model learnable parameters: 3,876).
One more thing, the research results of this paper provide
a new way of thinking on how can effectively use CNN
to mine the potential representation information in EEG
and identify aMCI abnormalities. This facilitates large-
scale screening and cognitive ability testing of patients with
cognitive impairment; It also contributes to the development
of remote diagnostic systems for neurological diseases, which
are necessary for remote towns and villages that lack trained
neurologists and facilities.
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