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The thymus is the primary site of T lymphocyte development, where mutually inductive

signaling between lymphoid progenitors and thymic stromal cells directs the progenitors

along a well-characterized program of differentiation. Although thymic stromal cells,

including thymic epithelial cells (TECs) are critical for the development of T cell-mediated

immunity, many aspects of their basic biology have been difficult to resolve because

they represent a small fraction of thymus cellularity, and because their isolation

requires enzymatic digestion that induces broad physiological changes. These obstacles

are especially relevant to the study of metabolic regulation of cell function, since

isolation procedures necessarily disrupt metabolic homeostasis. In contrast to the

well-characterized relationships between metabolism and intracellular signaling in T cell

function during an immune response, metabolic regulation of thymic stromal cell function

represents an emerging area of study. Here, we review recent advances in three distinct,

but interconnected areas: regulation of mTOR signaling, reactive oxygen species (ROS),

and autophagy, with respect to their roles in the establishment and maintenance of the

thymic stromal microenvironment.
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INTRODUCTION

Appropriate tissue function requires integration of intra- and extracellular signals that govern
cellular division, migration, and growth, as well as the regulation of organelle size, macromolecule
synthesis, and gene expression. Efficiently carrying out such functions requires a balance of
catabolic activity required for energy generation, and anabolic activity required for biogenesis.
The mechanisms by which signal transduction pathways downstream of growth factor signaling
regulate metabolism to influence cellular energy and redox status are well-characterized (1), and it
is now clear that the metabolic pathways employed in a given cell feedback to signal transduction
pathways. For instance, metabolite-mediated and ROS-mediated modification of proteins involved
in signal transduction may alter their activity, and de novo intracellular signaling transduction can
be initiated by mitochondrial ROS production (2). These types of metabolic signaling influence
fundamental cellular decisions such as quiescence vs. activity (3–5), and stem cell self-renewal vs.
differentiation (6–8).

The role of metabolic pathways as regulators of cellular function has become an area of
increasing interest over the last decades, and T cells have been amajor area of focus (3, 9). Metabolic
control of processes such as activation downstream of TCR engagement, and effector functions
such as IFNg production have been shown to be mediated by mitochondrial ROS and the glycolytic
enzyme GAPDH, respectively, in T cells [reviewed in (3)]. In contrast, relatively little is known
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about metabolic regulation of thymic stromal cell function.
Understanding metabolic regulation of stromal cells is important
as a basic feature of their biology, but is particularly relevant for
thymic stromal cells for several reasons. First, metabolic function
and dysfunction are closely linked to aging (6, 10), and the
stromal cells of the thymus are the primary targets of what could
be considered among the first hallmarks of aging, thymic atrophy
[reviewed in (11)]. Second, integration of metabolic information
is critical in controlling cell size and morphology (7, 12), which
are uniquely and dynamically regulated in thymic stromal cells
(13), directly governing the niches available for T cell generation
(14). Moreover, autophagy, in addition to its ubiquitous roles in
energy homeostasis and repair of oxidative damage to organelle,
also plays an additional role in thymic stromal cells by generating
peptide antigens for presentation critical for T cell selection
and tolerance induction (15). In this review, we will consider
the integration of three aspects of metabolic regulation: mTOR
signaling, the redox status of the cell, and autophagy, in the
steady-state function and age-associated dysfunction of thymic
stromal cells.

mTOR SIGNALING IN TEC

The mechanistic target of rapamycin, mTOR, plays an integral
role in cell growth and proliferation in response to a wide array of
environmental cues. mTOR is a serine/threonine protein kinase
belonging to the PI3K-related protein Kinases (PIKK) family (16,
17) and is the main catalytic subunit in two distinct complexes
named mTOR complex 1 (mTORC1) and mTOR complex 2
(mTORC2). These complexes integrate environmental cues and
result in both distinct and common cellular outcomes, with
significant crosstalk between mTORC1 and mTORC2 signaling
pathways. mTORC1 responds to inputs such as energy status,
nutrients, growth factors, oxygen and stress, and promotes
biosynthetic pathways. It also inhibits autophagy and other
catabolic process. mTORC2 is thought to be activated primarily
by growth factor signaling, and, like mTORC1, also promotes
anabolic metabolism, proliferation, and survival. In addition,
mTORC2 signaling regulates cytoskeletal reorganization, with
impacts on cell motility (17).

mTOR signaling appears to be a critical regulator of
thymus function, as demonstrated by the pronounced thymic
atrophy caused by high dose rapamycin administration (18–
20). Rapamycin-induced atrophy has been associated with
arrested thymocyte proliferation (18), consistent with its well-
characterized immunosuppressive properties (21). However,
recent studies have revealed that mTOR signaling is also a critical
regulator of thymic stromal cell function.

Liang and colleagues explored the role of mTOR signaling in
thymic epithelial cells (TECs) using a tissue-specific knockout
mouse model (19). In this system, the mTOR protein is ablated
in TEC, resulting in disruption of both mTORC1 and mTORC2
signaling. This genetic ablation resulted in decreases in the
number of medullary TECs (mTECs) and cortical TECs (cTECs)
during fetal development and at 2 weeks after birth, as well
as a reduction in the frequency and number of MTS24+

progenitors. Knockout mice also showed decreased proliferation
and increased autophagy in TEC, as well as dysregulated T cell
development (19). These effects may be explained by disruptions
of either mTORC1 or mTORC2.

A pair of recent studies addressed the role of each mTOR
complex independently. In mice in which mTORC1 was
selectively inhibited in TEC, Wang et al. found that total
thymus cellularity, cTEC, and mTEC number decreased. TEC in
knockout mice also showed decreased proliferation, and glucose
uptake, but TEC survival was not affected. These results are
consistent with a role for mTORC1 signaling in TEC proliferation
and early growth of the thymus. The effect on cell number was
most substantial in mTEC, such that the cTEC frequency in
knockout mice was significantly higher than in wildtype mice.
The frequency of MHCII high mature cTEC and mTEC were
decreased in knockout mice up to ∼3 weeks of age, after which
the frequency was the same as in wildtype mice, consistent with a
role for mTORC1 signaling in the establishment and maturation
of the TEC compartment in growth phases (22).

In mice in which mTORC2 was selectively inhibited, total
thymus cellularity and TEC cell number were likewise decreased
(23). In contrast to mTORC1 deficiency, cTEC and mTEC ratios
were not altered in mTORC2 deficient mice, because the average
number of both cTEC and mTEC declined (although the cTEC
declines were not statistically significant), indicating a potential
additional role for mTORC2 signaling in cTEC as well as mTEC.
Consistent with this, maturation of cTEC, as indicated by high
MHCII, expression was diminished. Although cTEC appeared
to be less affected in the knockout mice relative to mTEC, T
cell numbers were decreased beginning at the earliest (cortical)
stages, consistent with decreased cTEC function (23).

A role for mTOR signaling in cTEC is also supported by our
recent confocal imaging study, in which we found a unique cTEC
morphology. cTEC morphology is characterized by projections
that comprise extensive labyrinths creating compartments within
each cTEC that contained up to approximately 100–150
lymphoid cells per cTEC. The overall shape of cTECs was
generally similar to a compressed ovoid and they were aligned
radially with respect to the capsule (13). In aged mice, cTEC
processes collapsed, and this loss of cell size occurred in
the absence of changes in cell number, resulting in increased
cTEC density. During thymus regeneration cTECs partially
recovered their processes and labyrinth morphology, but did not
proliferate extensively (13). Thus, the size and shape of cTEC
are critical for maintaining overall thymus cellularity with age,
as well as the regeneration induced by castration. In order to
understand the mechanisms regulating cTEC morphology and
size, we mined our transcriptional database to find Reactome
pathways (reactome.org) associated with cell signaling that were
significantly enriched in cortical stromal cells. We found that 3
of the top 4 most significantly enriched pathways were related
to mTOR signaling (13), which, as described above, is well-
recognized as a regulator of cell and tissue size via effects on
metabolism and cytoskeletal organization (16, 24). When we
looked in more detail at changes in mTOR pathway enrichment
in cortical stromal cells during aging and regeneration, we found
that mTOR signaling pathway enrichment declined with age
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and increased dramatically in the early stages of regeneration,
before falling again as regeneration wanes (13). The expression
patterns of key mTOR pathway components likewise support
the notion that mTOR signaling in cortical stromal declines
with age, and is activated during regeneration. Notably, we find
upregulation of the mTORC1 regulator Tsc1, consistent with
preferential signaling through the mTORC2 pathway important
for cytoskeletal remodeling [reviewed in (12)].

We also investigated potential sources of soluble ligand
capable of activating the mTOR pathway. These were either
absent or not changed during aging and regeneration in cortical
stromal cells, making autocrine signaling unlikely (13). Such
soluble ligands could be endocrine-derived, however, the cortex
of the thymus (but not the medulla) is immune-privileged and
separated by a relatively impermeable blood-thymus barrier (25).
These observations indicate that intrathymic paracrine signaling
may account for the mTOR activation seen in young mice and
during regeneration. We found that several ligands, most notably
known TEC regulators IGF1 (26) and FGF21 (27), were both
diminished with age, and dynamically upregulated in medullary
stromal cells during regeneration, presumably as a response to
systemic signals induced by castration.

Together, the literature indicates a critical role for mTOR
signaling in regulating TEC development, proliferation, size,
and function. mTORC1 activity may be particularly critical
for early growth phases of the thymus in ontogeny and
during regeneration, when anabolic metabolism is required for
generation of macromolecules for cell growth and division.
mTORC2 activity may be more important during maintenance
phases in TEC, when catabolic metabolic process such as
autophagy are important for TEC function. As discussed
below, extensive crosstalk between mTOR signaling, ROS, and
autophagy has been described in diverse model systems, and this
integration optimizes cellular responses.

REDOX REGULATION OF TEC FUNCTION

Reactive oxygen species (ROS) are generated as byproducts of
cellular respiration (28), and may therefore be regulated by
mTOR-mediated increases in metabolism (6, 29–31). ROS can
also be generated by oxidative enzymes, detoxified by antioxidant
enzymes, andwhen present at moderate levels, function as critical
signaling molecules (32), including as important regulators of T
cell receptor signaling (3). ROS are critical modulators of stem
cell activity, including in intestinal epithelium (33) and bone
marrow (34), when within moderate concentration ranges (6). At
high levels, ROS can cause oxidative damage to cellular proteins,
lipids, DNA, and other macromolecules (35), and oxidative
damage has long been considered to be a primary cause of
aging (36).

Several lines of evidence point to an unusual redox
environment within thymic stromal cells. First, thymic stromal
cells, notably cTEC, are continuously exposed to developing T
cells undergoing especially high rates of cell division (37, 38). As
a result, the stromal cells, unlike lymphoid cells which quickly
exit the cell cycle and emigrate (39), will persist in a state
of exposure to the cell-permeable products of high metabolic
rates and cell division such as ROS (2), including H2O2, and

may therefore experience particularly high ROS levels. Indeed,
a similar scenario has been demonstrated in the bone marrow,
where Cx43-depenent channels facilitate transfer of ROS from
proliferating hematopoietic stem cells to adjacent bone marrow
stromal cells, a function critical for hematopoietic regeneration
(40). In addition, studies have shown that thymic stromal cells,
especially those in the cortex, express conspicuously low levels
of the H2O2-quenching enzyme, catalase (41). As a result,
TECs are especially vulnerable to oxidative DNA damage, which
accumulates in TEC at significantly higher levels than that found
in thymic lymphocytes in mice (41) and humans (42). This
oxidative damage is a major contributor to age-associated thymic
atrophy, which is delayed by dietary or genetic complementation
of catalase activity (41).

Given the cellular damage incurred as a result of oxidative
stress, as well as the impact of oxidative damage on thymus
size, it is somewhat surprising that catalase expression is found
at such low levels in thymic stromal cells, and suggests a
selective advantage for a highly oxidative environment within
this population. Positive regulators of catalase expression include
FOXO transcription factors, which are inhibited by AKT
signaling downstream of many growth factors, including those
that promote mTOR activation, such as IGF (28, 43, 44). In
this way, the same ligands that activate mTOR in TEC, may
also inhibit expression of catalase and other antioxidant enzymes
and promote ROS production. Conversely, the unfolded protein
response (UPR), which can be initiated by ROS (45), can
negatively regulate mTORC1 activity (17). In the sections below,
we consider the interactions between high levels of ROS, mTOR
activity, and autophagy in the regulation of critical TEC functions
in the steady state thymus.

AUTOPHAGY IN TEC

Autophagy is the process through which cellular components
are degraded and shuttled to the lysosome in order to produce
new building blocks during times of nutrient deprivation (46). In
the immune system, autophagy is also considered an important
regulator of inflammation and antigen presentation (47).
Autophagy in thymic stromal cells is essential for presentation
of self-antigens, positive and negative selection, and induction
of central tolerance (15). Transplantation of autophagy deficient
(Atg5 KO) thymi into athymic hosts results in aberrant T cell
selection and profound autoimmune disease due to loss of central
tolerance in the defective transplanted thymicmicroenvironment
(15), and this result has been corroborated by studies using
varying models of autophagy deficiency in TEC (48).

As mentioned above, cTECs partially recover the age-
associated loss of their processes and labyrinth morphology
during regeneration (13). These results indicate that cTEC
morphology regulates overall thymus size, and is also likely to
affect the cell surface area available for antigen presentation
necessary for proper T cell selection. The observation that
thymus size is regulated by cTEC morphology suggests a
novel mechanism by which autophagy may regulate thymus
function, in addition to the known roles in generation of self-
peptide and antigen presentation. Autophagy has an emerging
role in establishing and maintaining cellular morphology in a
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FIGURE 1 | Potential cross-talk and co-regulation of mTOR signaling, ROS, and autophagy in TEC. Growth factor signaling induces AKT activation upstream of

mTORC1/mTORC2 complexes. Both complexes promote cell proliferation and survival. mTORC1 signaling drives biogenesis including production of mitochondria

required for oxidative phosphorylation. Increased metabolism leads to increased byproducts of metabolism including ROS, which can damage DNA and other

macromolecules, including mitochondrial damage that exacerbates ROS production. ROS production is also promoted through the AKT-mediated inhibition of FOXO

transcription factors that regulate antioxidant enzymes like Cat and SOD. ROS can feedback to inhibit mTORC1 activity via the UPR, and can activate the NLRP3

inflammasome. ROS promote autophagy, which also mitigates mitochondrial damage by increasing turnover of damaged organelles. Autophagy also promotes

antigen processing and presentation in TEC, and may influence cell morphology, for instance, through turnover of integrins. Autophagy is mitigated by mTORC1

signaling via decreases in TFEB-mediated transcription of autophagy genes, as well as inhibition of proteosome activity and autophagosome assembly. mTORC2

phosphorylates several PKC family members, including PKCα, which regulate cell morphology and size through the actin cytoskeleton. Potential impacts of hypoxia

are indicated by red arrows. Created with BioRender.com. Becn1-PI3KC Complex, Beclin 1- phosphatidylinositol 3-kinase complex; Cat, catalase; Foxo, class O of

forkhead box transcription factors; MIIC, MHC class II-containing compartment; PKCα, Protein Kinase Cα; SOD, superoxide dismutase; STAT3, signal transducer and

activator of transcription 3; ROS, reactive oxygen species; TFEB3, transcription factor EB; UPR, unfolded protein response.

number of systems including macrophages in flies and mice
(49), HeLa cells (50), and mouse mammary tumor models (51),
where autophagy has generally been shown to promote cell
spreading by promoting extension of F-actin protrusions, and
turnover of integrins and focal adhesions, respectively. Together,
these observations suggest that autophagy may regulate cellular
projections that are critical for cTEC function via generation of
extensive niches which may regulate antigen presentation and
thymus size.

In TEC, unlike most other cells, autophagy is active
constitutively, rather than being starvation-induced (15, 46).
This is somewhat predictable for functions such as antigen
presentation or maintenance of cell morphology, which are
continuously required. However, the mechanisms regulating this
constitutive activation of autophagy have not been identified in
TEC. In other biological systems, ROS are known to induce

autophagy [(2) and reviewed in (52)], with established roles
during physiological stress [i.e., oxidation/activation of Atg4
during starvation (53)] and in disease [i.e., cardiac ischemia
(54)]. This suggests that the constitutively high levels of ROS
established by low catalase expression in TEC, especially cTEC,
may promote the high basal levels of autophagy critical for
their function.

CROSSTALK BETWEEN MTOR, ROS, AND
AUTOPHAGY

Significant crosstalk occurs between the metabolic pathways
described above, and the balance between them may be critical
for thymic stromal cell function and maintenance. Some relevant
potential interactions are highlighted in Figure 1. For instance,
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upon stimulation by an mTOR-stimulating ligand such as IGF1,
growth factor receptor signaling initiates a kinase cascade that
activates AKT (17). AKT activation leads to stimulation of the
mTORC1 and mTORC2 complexes (17, 55), as well as inhibition
of antioxidant activity via downregulation of FOXO-mediated
transcription of enzymes like catalase and SOD (44), which would
be expected to cause an increase in ROS. The consequences of
increased ROS may include inhibition of mTORC1 through the
UPR (17), stimulation of the NLRP3 inflammasome (56), and
increased autophagy flux, for instance via activation of Atg4
(53). Increased ROS-mediated autophagy may in turn mitigate
some ROS-induced cellular damage by increased turnover of
damaged mitochondria (1), and may also promote self-antigen
presentation required for T cell tolerance induction (15). This
autophagic activity may in turn be antagonized by mTORC1
(12). In addition to the effects on antioxidant enzyme expression,
activation of mTORC1 by AKT may also increase ROS by
increasing metabolic flux as described above (6), however,
mitochondrial biogenesis downstream of mTORC1 activation
may balance this effect by producing healthy mitochondria to
replace those that are damaged and may be a source of ROS
(17). Notably, both ROS-induced oxidative damage (41) and
NLRP3 inflammasome signaling (57) promote TEC damage
during thymic atrophy.

The interaction of mTOR signaling, ROS, and autophagy
should also be considered within the context of hypoxia. The
thymus is hypoxic under physiological conditions (58, 59), and
in fact hypoxia appears to promote thymocyte survival and
development (58). This is consistent with studies showing that
long-term repopulating hematopoietic stem cells are largely
concentrated in hypoxic regions of the bonemarrow (60). Little is
known regarding the effect of hypoxia on TEC biology. Although
stabilization of HIF1a represents a primary signaling pathway
downstream of mTORC1 signaling under normoxic conditions
(61), hypoxia also inhibits mTORC1 activity (62). This represents
one way in which the downstream outcome and balance
of mTORC1/mTORC2 signaling may be unique in hypoxic
TEC, relative to other populations. In TEC, physiologically
hypoxic conditions may generally inhibit mTORC1 signaling,
while HIF1a stabilization, and therefore downstream signaling,
is maintained by hypoxic conditions directly, independent of
mTORC1. Another way the hypoxic steady state conditions
in the thymus may affect the balance of mTORC signaling
outcomes is by diminishing TCA cycle flux and downstream
ETC flux [reviewed in (63)]. Increases in ROS mediated by
low levels of O2 available as an electron acceptor (63) may

influence ROS-mediated impacts on mTOR signaling. Hypoxia
also promotes autophagy (64), which may allow for higher levels
of autophagic flux in TEC under conditions favoring mTORC1
activity relative to cells under normoxic conditions. Potential
impacts of hypoxia on mTOR activity, ROS, and autophagy are
indicated in Figure 1.

On balance, the available data support a role for mTORC1
activation in promoting TEC proliferation during thymus
growth (13, 22). Activation of mTORC2 would be expected to
promote lipogenesis required for cell growth, and for cytoskeletal
organization (16) that may be important for maintaining TEC
morphology, consistent with published reports (13, 23). Given
the physiological importance of mTOR signaling, ROS, and
autophagy in TEC, as well as the highly interactive nature of
these metabolic pathways, further studies will be required to
unravel the mechanisms that regulate the balance of catabolic
and anabolic processes in TEC. Such studies will be most
informative when done in a physiological setting, in situ. The
genetic and imaging tools required for assessing the morphology
of individual TEC, autophagy flux, as well as selective ablation or
promotion of the individual pathway components are emerging.
For instance, by randomly activating expression of one of four
potential fluorophores, Confetti mice (65) allow identification
of individual cell morphology, including TEC morphology
in situ. Beclin 1 knock-in mice (66) allow independent
manipulation of autophagy flux, which can be visualized
using RFP-GFP-LC3 fusion mouse models (67). mTORC1 and
mTORC2 signaling pathways can be independently disrupted
using floxed Raptor (68) and Rictor (69) alleles, respectively.
ROS can be independently manipulated by overexpression or
ablation of antioxidant genes such as Catalase (70). Studies
exploiting models such as these may allow more comprehensive
understanding of the basic biology of stromal cells in the steady
state thymus, and facilitate the design of informed strategies for
delaying and reversing age-associate thymus dysfunction.
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