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ABSTRACT
Background  Time series charts are increasingly used 
by clinical teams to monitor their performance, but 
statistical control charts are not widely used, partly due 
to uncertainty about which chart to use. Although there 
is a large literature on methods, there are few systematic 
comparisons of charts for detecting changes in rates of 
binary clinical performance data.
Methods  We compared four control charts for binary 
data: the Shewhart p-chart; the exponentially weighted 
moving average (EWMA) chart; the cumulative sum 
(CUSUM) chart; and the g-chart. Charts were set up 
to have the same long-term false signal rate. Chart 
performance was then judged according to the expected 
number of patients treated until a change in rate was 
detected.
Results  For large absolute increases in rates (>10%), 
the Shewhart p-chart and EWMA both had good 
performance, although not quite as good as the CUSUM. 
For small absolute increases (<10%), the CUSUM 
detected changes more rapidly. The g-chart is designed 
to efficiently detect decreases in low event rates, but it 
again had less good performance than the CUSUM.
Implications  The Shewhart p-chart is the simplest 
chart to implement and interpret, and performs well 
for detecting large changes, which may be useful for 
monitoring processes of care. The g-chart is a useful 
complement for determining the success of initiatives 
to reduce low-event rates (eg, adverse events). The 
CUSUM may be particularly useful for faster detection 
of problems with patient safety leading to increases in 
adverse event rates.  

Introduction
There is growing interest in using time series 
charts for monitoring clinical performance 
in order to assess safety and improve quality 
of care.1–4 However, this way of displaying 
data can lend itself to overinterpretation of 
chance fluctuations, potentially resulting in 
inappropriate decisions and improvement 
fatigue.5 6 Control charts with statistical 
control limits are useful for distinguishing 
systematic changes from  chance variation 
in processes of care and outcomes.7 

Although well used by some organisa-
tions, control charts are still not widely 
used to monitor quality and safety in 

routine healthcare delivery.8–12 For 
example, a review of 1488 charts used 
by 30 English hospital boards found that 
just 6% of charts included limits to depict 
the role of chance.8 Uncertainty about 
which chart to use has been identified as 
a barrier to the use of control charts in 
clinical settings.8 9 The myriad choices to 
be made when setting up more complex 
charts may also limit their accessibility.3

Clinical performance is often measured 
using indicators derived from binary 
event data such as care meeting a spec-
ified standard, or mortality. Shewhart 
charts for binary data include the p-chart 
that tracks the proportion with an event 
for consecutive periods13 and the g-chart 
that displays the number of cases between 
events and is specifically designed to 
detect reductions in event rates.14 More 
complex charts that accumulate informa-
tion over time include the exponentially 
weighted moving average (EWMA) chart 
and the cumulative sum (CUSUM) chart. 
These can detect small increases in event 
rates more quickly than the p-chart.15–17

Although there are several excellent 
reviews of different charts used in clinical 
settings,4 16 researchers have not system-
atically reviewed how quickly different 
charts detect change over a range of effect 
sizes that are realistic for binary clinical 
data.7 This contrasts with the industrial 
statistical process control (SPC) literature, 
in which such comparisons are standard.18

In this paper, we compare four 
control charts for binary clinical data: 
the Shewhart p-chart;13 the g-chart;14 
the EWMA chart;19 and the CUSUM 
chart.20–22 We describe how to set up 
these charts to detect increases and 
decreases in rates. We then compare the 
charts based on the expected number of 
patients until a change in the event rate 
is detected, referred to as the average run 
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length (ARL). We also describe the impact of altering 
chart settings on ARLs.

Example of control charts for 
monitoring mortality
The control charts are shown in figure 1. They use an 
example of local monitoring of 90-day mortality after 
major resection for bowel cancer in one hospital.23 
The average number of elective patients undergoing 
major resection for bowel cancer was 30 per month in 
this hospital and baseline mortality was 3%.

The formulae for the charts and their control limits 
are given in table 1.

In the Shewhart p-chart, data are aggregated, in this 
case by month, and the chart statistic is the proportion 

of patients undergoing a major resection who died 
within 90 days.

The g-chart monitors the number of patients who 
survived their procedure between each death, and a 
point is plotted for each patient who died. The trace 
moves in the opposite direction to the other charts: 
an increase in numbers of procedures between deaths 
corresponds to a reduction in mortality. The closely 
related t-chart can be used to monitor time between 
events, such as days.

The EWMA chart statistic is a weighted moving 
average of current and past individual outcomes and 
is updated with each procedure. The weight is expo-
nential, meaning that the contribution of past obser-
vations decreases going back in time. Like the p-chart 

Figure 1  Comparison of four control charts for local monitoring of 90-day mortality following major resesection for bowel cancer in one 
hospital. CUSUM, cumulative sum; EWMA, exponentially weighted moving average.
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statistic, it provides an estimate of current 90-day 
mortality.

The CUSUM chart statistic is a log-likelihood ratio 
summarising the evidence that mortality has shifted 
away from the baseline rate of 3% to a specified alter-
native event rate, in this case, 5%. It lacks the direct 
interpretability of the other chart statistics, but the 
important feature is that a higher value corresponds to 
stronger evidence.

Interpretation of control limits
In each chart, control limits define the region within 
which the chart statistic is expected to lie if current 
mortality is consistent with the baseline (expected) 
rate of 3%, subject only to chance variation.

The Shewhart p-chart is set up with 3-sigma limits, 
where sigma is the SD of the grouped monthly data 
(see online supplementary appendix for the formula). 
It also uses supplementary runs rules related to the 
2-sigma limits. Any of the following would typically 
be considered evidence of a change in the event rate: 
one point outside the 3-sigma limits; two out of three 
consecutive points outside the 2-sigma limits; and 
eight consecutive points always above or always below 
the baseline event rate.13

The Shewhart p-chart statistic does not cross either 
of the 3-sigma control limits during the 16 months of 
monitoring, but a run of 8 points exceeds the base-
line event rate at month 13 signalling an increase in 
mortality. The EWMA crosses the upper control limit 
in month 12 (approximately 500th resection) and the 
CUSUM triggers in month 9 (approximately 350th 
resection). The g-chart does not signal a reduction in 
mortality during this period.

The CUSUM chart statistic takes a minimum value of 
zero and resets, typically to zero, after the control limit 
is exceeded. Monitoring then starts again and subse-
quent evidence about performance is freshly accumu-
lated. The other charts do not require such resetting 
after a signal; their traces continue to move through 
the chart space, in or outside the control limits.

Further details about chart settings are given below, 
and summarised in table 1, and the web supplementary 
appendix, including the R code used to produce these 
charts.

Methods
Using ARL to compare charts
An ideal chart would take a short time to signal a 
genuine change in performance and a long time to 
falsely signal a change. The four charts are compared 
according to the expected number of patients (or 
procedures) until a change in the event rate is detected. 
This is commonly known as the out-of-control ARL, 
a term borrowed from SPC methods developed for 
quality control of manufactured products.4 7 15 The 
term ARL is sometimes used to mean the numbers of 
groups until a signal for the p-chart,18 or number of 

events for the g-chart.14 In turn, what we call the ARL 
is also sometimes termed the average number of obser-
vations until signal.18

When used to monitor a naturally variable process, 
even when the event rate is unchanged, the chart 
statistic will eventually exceed the control limits and 
falsely signal a change. The expected number of obser-
vations until a false alarm is signalled is known as the 
in-control ARL.

Each of the charts can be set up so that they quickly 
detect changes in performance by reducing the in-con-
trol ARL, but this comes at the cost of increasing the 
rate of false alarms. For this reason, we compare chart 
types with settings designed to give a similar in-control 
ARL. We use the term efficient to describe a chart that 
has a smaller out-of-control ARL for a similar in-con-
trol ARL.16

For chart comparisons, the charts were set up with 
an in-control ARL of approximately 10 000 indi-
vidual observations until the relevant control limit was 
exceeded. This corresponds to a low false alarm rate, 
with one false signal expected every 10 000 patients or 
procedures. This is suitable for public monitoring of 
outcomes such as mortality. For internal monitoring of 
a process of care measure, charts may be set up with 
shorter in-control ARLs, since higher false alarm rates 
may not be such a problem.

Methods for estimating ARLs for each of these types 
of chart are given in the web supplementary appendix, 
including the R code.24 25

Scope of comparisons
We have compared ARLs of one-sided charts designed 
to detect either increases or decreases in the event rate. 
The Shewhart p-chart and the EWMA chart can be used 
to detect reductions in event rates as long as the lower 
control limit is not at zero. In contrast, the g-chart is 
specifically designed to efficiently detect decreases in 
event rates, and can only detect increases when the lower 
control limit is not at zero. The charts are complemen-
tary in this respect, and although each can theoretically 
be designed to detect both increases and decreases by 
narrowing control limits or increasing volumes for the 
p-chart, this may not be possible in practice or may give 
in-control ARLs that are very short.

The CUSUM is designed to be one-sided, testing 
either for a shift towards a specified ‘poor perfor-
mance’ rate or an ‘improvement’ rate. A single 
two-sided CUSUM can be set up by using two separate 
charts in parallel.

The in-control ARLs for two-sided charts can be 
easily approximated from the ARLs of each one-sided 
chart.16 24

We compare the ARLs of charts across a range of 
shift sizes that are realistic for binary clinical data. We 
assume that the historical event rate is known. We 
express shift sizes as odds ratios (ORs)26 and absolute 
changes in rates.
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Absolute sizes of shift will be low for rarer clinical 
outcomes such as the occurrence of a surgical site 
infection and much higher for binary process-of-care 
measures such as receiving a diagnostic assessment or 
treatment within a specified time frame.

For a baseline event rate of 1%, a problem in perfor-
mance may increase the event rate by only 1%–2%, 
which is small in absolute terms but corresponds to an 
OR of 2 to 3. In contrast, for a baseline rate of 50%, a 
change in practice may change the event rate by as much 
as 15%–25%, which is large in absolute terms but again 
corresponds to an OR of approximately 2 to 3.

Setting up the charts
For each of the charts, choices need to be made about 
the settings of the chart parameters. These choices 
will influence the behaviour of the chart. The settings 
used for chart comparisons are described below, and 
summarised in table  1. The impact of altering these 
settings is then explored.

The Shewhart p-chart
For chart comparisons, volumes per period are set to 
be 200 patients for event rates of less than 2%, 100 for 
event rates of 2% to less than 10%, and 50 for event 
rates of 10% to 50%, as these give in-control ARLs of 
approximately 10 000.

Because the aim is primarily to detect sustained 
changes in performance, rather than transitory varia-
tions, we have used the Shewhart p-chart with supple-
mentary runs rules outlined above.

The g-chart
Because the chart is based on the geometrical distribu-
tion, which is highly skewed, standard 3-sigma control 
limits typically translate into short in-control ARLs for 
detecting reductions in rates (increases in numbers of 
observations between events). One option is to widen 
limits to give a desired probability of a false alarm14 
or specified in-control ARL. To achieve an in-control 
ARL of 10,000 for the purposes of comparison to the 
other charts, we widened the g-chart control limits to 
between 4 and 8-sigma limits give the same in-control 
ARLs as the p-chart (table 1).

The EWMA chart
To construct the EWMA, it is necessary to select a value 
for the weight known as lambda, λ. The weight, λ, deter-
mines how much the EWMA statistic reflects the current 
observation and how much it reflects the previous obser-
vations, with the weight given to an observation j time 
points earlier than the current observation being λ(1−λ)j. 
For example, for a value for λ of 0.01, the current obser-
vation is given weight 1% and the weights assigned to 
observations 10, 50 and 100 time points earlier are 
0.9%, 0.6% and 0.4%, respectively.

The larger the λ, the more weight is given to the 
current observation and more quickly the weight tails 

off over previous observations. Larger values of λ there-
fore produce a less smooth EWMA trace, because each 
new observation changes the EWMA statistic by a larger 
amount. Larger values of λ also make the EWMA trace 
more responsive to change, moving back inside the 
limits more quickly after an alarm has been triggered and 
performance has returned to the baseline rate.

For chart comparisons, a λ of 0.01 is selected and 
the control limits are adjusted to give the same in-con-
trol ARL as the Shewhart p-chart.

The CUSUM chart
We have used a version of the CUSUM for indi-
vidual binary data.22 It is set up to detect a shift from  
the baseline rate to a specified alternative rate, with the 
shift expressed as an OR. For chart comparisons, the 
alternative rate corresponds to an OR of 2 to detect 
increases, and 0.5 to detect decreases. In general, 
ORs should be selected to correspond to the smallest 
change that needs to be detected by monitoring. The 
value for the control limit was then chosen to give the 
same in-control ARL as the p-chart.

Results of chart comparisons
For small absolute increases in rates of less than 10%, 
the CUSUM detected change most quickly, followed 
by the EWMA and then the Shewhart p-chart (table 2). 
For example, for a baseline rate of 1%, the Shewhart 
p-chart detected a 2% absolute increase in the rate 
after 600 patients or procedures on average; the 
EWMA after 350; and the CUSUM after 320.

Larger absolute increases (>10%) were detected 
more quickly on average, and the Shewhart p-chart 
and EWMA chart then had similar out-of-control ARLs 
for the same in-control ARL. The CUSUM was more 
efficient even for larger increases. In our comparisons, 
the g-chart was unable to detect increases in rates 
(decreases in observations between events) because the 
lower control limit was at or close to zero.

The CUSUM with optimal settings outperformed 
the other charts for detecting decreases in rates. In 
contrast to the p-chart and EWMA, the g-chart was 
able to detect decreases in low event rates. The other 
charts could not detect decreases because the lower 
control limits were at zero. To be able to detect 
decreases in low event rates, control limits would need 
to be narrowed, or volumes per period would need to 
be increased for the p-chart, and the weight λ reduced 
for the EWMA.

Effects of chart settings
To describe effects of altering settings for the p-chart, 
EWMA and CUSUM, we refer to results presented in 
table 3 and tables A1 and A2 in the web supplementary 
appendix. We illustrate the impact of different settings 
using our example of monitoring mortality after bowel 
cancer surgery.
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For the g-chart, in its most common version, only the 
control limits can be altered to achieve the desired prob-
ability of a false alarm or in-control ARL.

Different reporting periods for the Shewhart p-chart
With fixed 3-sigma control limits, lengthening the 
reporting period lengthens the in-control ARL and 
the out-of-control ARL. These can become very 
long, leading to risk-averse charts that have a very 
low false alarm rate, but which take a long time to 
detect a genuine change in performance (table  3). 
Conversely, shortening periods reduces the in-con-
trol ARL and can lead to a high rate of false alarms.

As the reporting period is lengthened, the in-con-
trol ARL increases more than the out-of-con-
trol ARL. For example, for a baseline rate of 1%, 

increasing the volume per reporting period from 30 
to 200 increases the in-control ARL from 840 to 
14 400. The corresponding out-of-control ARLs for 
detecting a 2% increase are 150 and 600 (table 3). 
This improves chart efficiency, meaning that the rela-
tive chance of a false alarm versus a genuine signal 
decreases.

The ARLs do not increase smoothly with the number 
of observations per period because probability distribu-
tions for binary data are discrete (table 3).

Revisiting the bowel surgery data in figure  1, a 
Shewhart p-chart with quarterly reporting instead of 
monthly reporting would signal slightly earlier, with 
two consecutive points above the 2-sigma limits by 
12 months.

Table 2  Comparison of out-of-control ARLs, in number of observations, for the Shewhart p-chart*, the EWMA† the CUSUM‡ and the 
g-chart

Baseline event rate In-control ARL

Size of Shift Out-of-control ARL

Absolute shift OR p-chart EWMA CUSUM g-chart

1% 14 400 −0.5% 0.5 N/A§ N/A§ 1 500 2 400
+1% 2.0 1 000 990   750 N/A§
+2% 3.1   600 350   320 N/A§

10% 14 600** −5% 0.5   500 520   270   690
  9 800 +5% 1.6   400 400   330 N/A§
  9 800 +10% 2.3   200 170     70 N/A§

50%   8 750 −15% 0.5   200 250   110   500
+15% 1.9   200 250   110 N/A§
+25% 3.0   100 160     50 N/A§

*3-sigma limits and supplementary runs rules. Reporting periods=200, 100 and 50 cases for 1%, 10% and 50% baseline event rates.
†Value of λ=0.01.
‡OR=2 to detect increases and ½ to detect decreases in rates.
§The lower-limit of the chart is at zero for the selected in-control ARL and chart settings, such that decreases in rates cannot be detected by the p-chart 
or EWMA, and increases in rates cannot be detected by the g-chart. 
**In-control ARLs for a chart set up to detect a decrease can differ from those for a chart set up to detect an increase because the exact binomial 
probability of crossing the upper limit will not always be the same as the exact binomial probability of crossing the lower limit.
ARL, average run length; CUSUM, cumulative sum; EWMA, exponentially weighted moving average.

Table 3  Comparison of out-of-control ARLs, in number of observations, for Shewhart p-chart with 3-sigma limits with different reporting 
periods

Volume per period: 30 50 100 200 500

Baseline 
event rate

Absolute 
shift OR

In-
control 
ARL

Out-of-
control 
ARL

In-
control 
ARL

Out-of-
control 
ARL

In-
control 
ARL

Out-of-
control 
ARL

In-
control 
ARL

Out-of-
control 
ARL

In-control 
ARL

Out-of-
control 
ARL

1% −0.5% 0.5 N/A* N/A* N/A* N/A* N/A* N/A* N/A* N/A*   61 000 5 000
+1% 2.0   840 270 2 150 400   3 200 600 14 400 1 000   48 500 1 500
+2% 3.1   840 150 2 150 200   3 200 300 14 400   600   48 500 1 000

10% −5% 0.5 2 700 330 6 150† 500 14 600† 500 38 800†   600 1 15 000† 1 000
+5% 1.6 2190 270 5 850 400   9 800 400 29 000   600   94 500 1 000
+10% 2.3 2 190 120 5 850 150   9 800 200 29 000   400   94 500 1 000

50% −15% 0.5 4 710 180 8 750 200 16 000 200 43 000   400 1 09 500 1 000
+15% 1.9 4 710 180 8 750 200 16 000 200 43 000   400 1 09 500 1 000
+25% 3.0 4 710   60 8 750 100 16 000 200 43 000   400 1 09 500   500

*Lower-limits of chart are at zero so decreases cannot be detected.
†In-control ARLs for a chart set up to detect a decrease can differ from those for a chart set up to detect an increase because the exact binomial 
probability of crossing the upper limit will not always be the same as the exact binomial probability of crossing the lower limit.
ARL, average run length.
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Different weights for the EWMA
For a fixed in-control ARL, values of the weight λ can 
be selected to minimise the out-of-control ARL and 
maximise chart efficiency. Control limits are simul-
taneously adjusted to achieve the desired in-control 
ARL.

The optimal value of λ depends on the baseline rate 
and the shift size to be detected, with higher baseline 
rates having a larger optimal λ. Weights of around 0.01 
perform well across a range of rates (online  supple-
mentary table A1).

In figure 1 the EWMA was set up with a λ of 0.01, 
and triggers an alarm in month 12. If a λ of 0.005 
is used instead, the EWMA with the same in-control 
ARL signals slightly earlier, in month 10 (approxi-
mately 400th procedure).

Different settings for the CUSUM
The CUSUM chart is faster at detecting increases in 
rates than the other charts, even when the shift that 
it is designed to detect differs from the actual shift 
(online supplementary table A2). It is fastest when the 
hypothesised shift matches the actual shift.

An OR of 2 corresponds to a realistic increase in rate 
across a range of baseline event rates (online supple-
mentary table A2) and an OR of ½ corresponds to a 
realistic decrease.

The CUSUM in figure 1 was set up to have an alter-
native rate of 5% (OR of 1.7) and triggers an alarm in 
month 9. It triggers in the same month if an OR of 2 
is used instead.

Discussion
Main findings
For small absolute increases in event rates, less than 
around 10%, the CUSUM detects changes more 
rapidly than the EWMA, and the EWMA detects 
changes more rapidly than the Shewhart p-chart.

For larger increases in rates, over 10%, the EWMA 
and Shewhart p-chart both have good performance, 
although not quite as good as the CUSUM.

The g-chart can detect decreases in low event rates, 
whereas the p-chart may not be able to do so without 
increasing the false signal rate substantially. The 
CUSUM with optimal settings is the most efficient for 
detecting decreases.

The Shewhart p-chart is the most accessible chart, 
particularly in terms of setting up the chart. However, 
the choice of reporting period can have a large effect 
on its behaviour. In contrast, the CUSUM is the most 
difficult of the four charts to construct and interpret.

Strengths and limitations of our study
There are many charts available for monitoring binary 
data and we have not covered all of them. To take 
one example, a different EWMA chart for rare events 
has been proposed that, like the g-chart, monitors the 
number of cases between events.27 28

There are also different versions of the charts that 
we have reviewed that could affect comparisons of 
their performance. For example, we used the Shewhart 
p-chart with 3-sigma limits and supplementary runs 
rules based on the 2-sigma limits. Using runs rules 
has previously been shown to be more efficient for 
detecting shifts than narrowing the limits of the basic 
Shewhart chart when monitoring means of contin-
uous variables.24 We compared the performance of the 
Shewhart p-chart with adjustable control limits to the 
other charts, and our conclusions were unaltered.

Our comparisons cover a range of changes in rates 
that were selected to be realistic for binary clinical 
outcome or process-of-care data. The range does not 
cover very large changes. However, very large changes 
should be clear in the raw data. Persistent but smaller 
changes are arguably more important to detect since 
they may otherwise go unnoticed or disputed without 
statistical methods for detecting them.3

We used ARLs to compare the charts. Probability 
distributions of run lengths are highly skewed, so that 
the median run length is often well below the mean, 
so that more than half of false alarms would occur 
before the designed ARL. Another option would be to 
design charts with specified probabilities of detecting 
a change and signalling a false alarm over a given 
time frame for monitoring.3 Methods have also been 
proposed for directly controlling the conditional prob-
ability of a false alarm.29

We have presented comparisons for charts set 
up to have an in-control ARL of 10 000 patients or 
procedures. However, the comparative efficiency of 
the charts was similar when they were designed with 
shorter in-control ARLs. For example, with standard 
3-sigma limits, the g-chart set up to detect a decrease in 
rate from 1% to 0.5% had an in-control ARL of 5400 
and an out-of-control ARL of 1460. The CUSUM with 
the same in-control ARL had an out-of-control ARL 
of 1000.

We have also made several assumptions that may 
influence chart behaviour and our conclusions about 
their comparative efficiency. We have assumed that 
the baseline event rate is known. In practice, data 
collection may not precede the start of monitoring, 
or a very low event rate may be poorly estimated 
even when prior data are collected. Charts based on 
numbers between events have been shown to be more 
robust than the CUSUM to poor estimation of a low 
event rate.30 Technical methods have been proposed to 
adjust for uncertainty due to parameter estimation.31 
In clinical applications, an external target rate may 
alternatively be used, although this would alter inter-
pretation of the chart and any resulting signals.

We have assumed that shifts in performance occur 
at the start of the monitoring period. The Shewhart 
p-chart and g-chart do not update with each observa-
tion. If a shift in performance occurs partway through 
a reporting period for the Shewhart p-chart, or in 

https://dx.doi.org/10.1136/bmjqs-2016-005526
https://dx.doi.org/10.1136/bmjqs-2016-005526
https://dx.doi.org/10.1136/bmjqs-2016-005526
https://dx.doi.org/10.1136/bmjqs-2016-005526
https://dx.doi.org/10.1136/bmjqs-2016-005526
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between two events for the g-chart, this will increase 
their out-of-control ARLs. Simulations of shifts in the 
performance partway through monitoring had little 
effect on our estimates of ARL (results not shown) and 
did not change the findings of the study.

We have assumed that the probability of an event 
is constant over time under the null hypothesis that 
clinical performance is unchanged. In practice, clinical 
outcome data are often prone to systematic variability 
other than changes in performance such as seasonality, 
variation in patient risk factors and changes in data 
quality. Based on simulated data, in-control ARLs have 
been shown to be shorter when monitoring outcomes 
in high-risk groups of patients, leading to a higher 
rate of false alarms than the chart is designed with.32 
However, comparisons of risk-adjusted versions of 
the charts have found the CUSUM to be more effi-
cient across simulated variations in case mix16 and 
the risk-adjusted CUSUM has been recommended for 
monitoring surgical outcomes.4 21 33

Comparison with the literature
Studies examining the ARL performance of different 
charts are standard in the industrial SPC literature and 
not as common in the healthcare SPC literature. For 
binary data, other studies agree that the CUSUM and 
the EWMA are quicker than the Shewhart p-chart for 
detecting small increases in rates, and several reviews 
have recommended the CUSUM for individual binary 
data, including surgical-outcome data.4 16 18

Differences between industrial and healthcare 
settings limit the applicability of some of the findings 
from the former to the latter. For example, binary 
outcome data are more common in healthcare appli-
cations. Comparisons in the industrial SPC literature 
demonstrating better performance of the Shewhart 
p-chart for detecting large shifts do not always apply 
to monitoring individual binary data. Shifts of 2 or 3 
SDs are often defined as large,15 but such large shifts 
are rare with binary clinical data. This difference in 
the definition of small and large shifts may explain 
the finding of Grigg and Farewell that the Shewhart 
p-chart performs worse than the CUSUM even for 
‘large’ shifts in rates. Here they characterise a large 
shift using an OR of 5. This corresponds to an increase 
from 6.6% to 26.1% in their example of mortality 
after cardiac surgery, but is a shift of just 1 SD in the 
individual data.16 A comparison of the CUSUM and 
EWMA that found them to have similar performance 
was for monitoring a continuous variable, not a binary 
variable.34

Monitoring in healthcare typically covers 100% of 
patients so that use of the Shewhart p-chart requires 
data to be aggregated over a reporting period such as 
a week or a month. In contrast, sampling the output 
of a process at short intervals is common in industrial 
applications, and sample size is often not a constraint.7 
The effect of data aggregation on the efficiency of 

the CUSUM chart was examined by Reynolds and 
Stoumbos, who compared the CUSUM for individual 
binary data and for grouped binary data.22 They found 
that the former has shorter out-of-control ARLs than 
the latter for a fixed in-control ARL, although both 
charts performed better than the Shewhart p-chart.

Related to this, the Shewhart p-chart can’t always 
be optimised in healthcare applications in the same 
way that it can for many industrial applications. 
Where sample sizes are not a constraint, the rule of 
thumb of np ≥5 observations is often used, where n 
is the sample size per period and p is the event rate. 
Sample sizes larger than this are recommended for 
detecting reductions in rates.35 The rule is based on 
the threshold at which the binomial distribution can 
be approximated with the normal distribution and 
3-sigma limits perform as intended.22 In healthcare 
applications, it can be difficult to achieve sufficiently 
large sample sizes without aggregating data over very 
long reporting periods, potentially causing delays in 
detection of changes until the end of the reporting 
period.16 Another option would be to use exact bino-
mial limits in the place of 3-sigma limits.

Practical implications
We have compared the efficiency of charts for detecting 
changes in rates of binary data under ideal conditions. 
However, other practical considerations will influence 
the choice of chart.

One consideration is the frequency of the procedure 
or prevalence of the condition for which outcomes 
or processes-of-care are being monitored. For low 
volume procedures and rare conditions, it may not be 
possible to achieve volumes per reporting period that 
achieve desired ARLs. For example, oesophagogastric 
cancer surgery is performed on 25–30 patients per 
year in a typical English hospital. With postoperative 
mortality as low as 3%, we have suggested 200 patients 
per reporting period to give an in-control ARL of 
10,000 patients. For this procedure, reporting periods 
of several years would be needed, which is inappro-
priate for continuous monitoring. On the other hand, 
shorter in-control ARLs may be more appropriate, 
since even short ARLs correspond to long periods of 
calendar time. In such settings, it is useful to estimate 
the in-control ARL when selecting reporting periods, 
using table 3 as a guide. There is also a stronger case 
for using the CUSUM or EWMA that can update with 
each procedure.

The practical importance of false alarms and detec-
tion times will also vary. For a quality improvement 
team monitoring a process of care such as timely 
assessment or prescription of an appropriate medica-
tion, false alarms are not necessarily such a problem as 
for monitoring of outcomes. Each signal can be inves-
tigated in detail and action taken without compro-
mising patient safety or causing unnecessary work. In 
this situation, the Shewhart p-chart with runs rules 
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may represent the best choice and shorter reporting 
periods, corresponding to shorter in-control ARLs, 
may be appropriate. The g-chart may also be useful 
for detection of improvement. However, we still think 
it is important that users are aware of the impacts of 
their choices on ARLs and again can use tables 2 and 
3 as a guide.

In contrast, false alarms may be more detrimental 
when reporting is open to the public rather than used 
solely for internal performance review, particularly 
when reporting outcomes such as mortality.36 For 
patient safety indicators, early detection of a problem 
is also important. In these cases, charts should be 
designed with sufficiently long in-control ARLs and 
the efficiency of the CUSUM and EWMA may be a 
particular advantage. We have suggested settings for 
these charts and also provide the in-control ARLs for 
different control limits in the online supplementary 
appendix.

Simplicity and ease of interpretation of charts for 
healthcare teams are important. Both the Shewhart 
p-chart and the EWMA provide a trace that can be 
interpreted as an estimate of the current event rate 
and graphed on a natural scale as a proportion or 
percentage. The g-chart also has a natural interpre-
tation. A range of tools and how-to videos are also 
available to help set up the Shewhart charts, such as 
the Institute for Health Improvement’s Open School 
resources. [http://www.​ihi.​org/​education/​IHIO-
penSchool/​resources/​Pages/​AudioandVideo/​White-
board13.​asp]

The CUSUM lacks this interpretability. One sugges-
tion is that the CUSUM control limits can be super-
imposed on an O-E or Variable Life Adjustment 
Display  (VLAD) chart that displays the cumulative 
observed numbers of events (O) minus the expected 
number (E).37 There is a need for tools to make these 
methods more accessible if they are to become more 
widely used, and also a need for better access to skilled 
analysts with health services.38
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