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Reactive oxygen species (ROS) are harmful because they can
oxidize biological macromolecules. We show here that atmo-
spheric CO2 (concentration range studied: 40–1,000 p.p.m.)
increases death rates due to H2O2 stress in Escherichia coli in a
dose-specific manner. This effect is correlated with an increase in
H2O2-induced mutagenesis and, as shown by 8-oxo-guanine
determinations in cells, DNA base oxidation rates. Moreover, the
survival of mutants that are sensitive to aerobic conditions (Hpx�

dps and recA fur), presumably because of their inability to
tolerate ROS, seems to depend on CO2 concentration. Thus, CO2

exacerbates ROS toxicity by increasing oxidative cellular lesions.
Keywords: carbon dioxide; DNA; Fenton reaction; oxidative
stress; mutagenesis
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INTRODUCTION
CO2 levels have become a major point of focus of the global
community, because of their contribution to the greenhouse effect
(Cox et al, 2000). Levels are currently 389 p.p.m. (0.039%), and
worst-case climate projections predict an increase in CO2

concentration to 1,000 p.p.m. (0.1%) by 2100 (Nakicenovic
et al, 2000). The best known effect of increasing CO2 concentra-
tion is global warming, but large increases in CO2 concentration
(to 1% or 10%) are also known to affect cellular biochemical
reactions, leading to an increase in intracellular oxidative stress in
human neutrophils (Coakley et al, 2002), pulmonary inflammation
in mouse (Abolhassani et al, 2009; Schwartz et al, 2010) and
increased virulence or bactericidal activities of various pathogenic
bacteria (Visca et al, 2002; Karsten et al, 2009). However, current
and predicted concentrations are not of this order of magnitude;
hence, the probable, direct effects of CO2 on living organisms at
the predicted concentrations remain unclear.

In cells CO2 is a main by-product of metabolism. It also
constitutes the main physiological pH-buffering system in higher
eukaryotic organisms and is required for the growth of many
microorganisms (Walker, 1932). Atmospheric CO2 is in equili-
brium in liquid with dissolved CO2, bicarbonate ion (HCO3

�) and
carbonate ion (CO3

2�; equation (1)).

ð1Þ CO2ðgÞ $ CO2ðdÞ þH2O$ H2CO3  !
pKa1

HCO3
� þHþ  !

pKa2
CO3

2� þHþ

pKa1 ¼ 6:4; pKa2 ¼ 10:3 ð25�CÞ

Reactive oxygen species (ROS) are produced by aerobic
metabolism. The most common ROS are the superoxide anion
(O2

K�), hydrogen peroxide (H2O2) and the hydroxyl radical (HOK;
Imlay, 2008). ROS can oxidize all biological macromolecules
including DNA, thereby generating highly mutagenic lesions.

Interestingly, it has been shown that the oxidation of amino
acids and arsenic(III) by the Fenton reaction (equation (2)) is
dependent on the presence of the bicarbonate ion (Berlett et al,
1990; Stadtman & Berlett, 1991; Hug & Leupin, 2003).

ð2Þ H2O2 þ Fe2þ ! HO� þHO� þ Fe3þ k ¼ 4�102M�1s�1

It has been suggested that this dependence is due to the
generation of the carbonate radical (CO3

K�), a new potentially
toxic radical generated by the reaction between HCO3

� or CO3
2�

and HOK (equations (3) and (4); Augusto et al, 2002; Medinas
et al, 2007).

ð3Þ HCO3
� þHO� ! CO3

�� þH2O k ¼ 8:5�106M�1s�1

ð4Þ CO3
� þHO� ! CO3

�� þHO� k ¼ 3�108M�1s�1

Indeed, although it has a lower oxidizing potential than HOK

ðEHO�=H2O ¼ 2:3 VÞ , CO3
K� ðECO3

��=HCO3
� ¼ 1:7 VÞ is a strong

oxidant. In vitro studies have shown that CO3
K� rapidly and more

specifically oxidizes guanine residues in DNA, as well as amino-
acid residues including tryptophan, cysteine, tyrosine, methionine
and histidine (Stadtman & Berlett, 1991; Shafirovich et al, 2001).
Finally, Liochev and Fridovich (2004) showed in vitro that
CO2 is converted to CO3

K� by the peroxidase activity of
Cu,ZnSOD. The second-order rate constants of CO3

K� reactions
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with biological molecules are well-known and are of biological
relevance (106–109 M�1s�1; Medinas et al, 2007).

Moreover, H2O2 might directly react with dissolved CO2

to generate peroxymonocarbonate (HCO4
�; equation (5)),

another strong oxidant ðEHCO4
�=HCO3

� ¼ 1:8 VÞ; Richardson et al,
2003). In vitro, HCO4

� has been shown to oxidize methionine and
sulphides or tertiary amine more rapidly (100–400 times faster)
than H2O2 alone (Richardson et al, 2003; Balagam & Richardson,
2008).

ð5Þ CO2ðdÞ þH2O2 ! HCO4
� þHþ K ¼ 0:33

All of these in vitro observations led us to speculate that CO2 might
be an unexpected factor in oxidative stress in vivo. Oxidative
stress is ubiquitous and has important consequences in almost all
biological systems (Roberts et al, 2010). We therefore hypothe-
sized that the atmospheric CO2 concentration might modulate

oxidative stress in vivo. We used Escherichia coli as a unicellular
model organism in this study.

RESULTS
CO2 exacerbates H2O2 toxicity in E. coli
We measured the effect of CO2 concentration (range: 40–
1,000 p.p.m.; current atmospheric concentration: 389 p.p.m.) on
the tolerance of E. coli to H2O2. E. coli cells were spread on Luria–
Bertani (LB) agar plates containing various concentrations of H2O2

and incubated in the presence of either 40 p.p.m. (sufficient for
optimal E. coli growth, with no difference in intracellular pH and
metabolism observed between 40 and 1,000 p.p.m. of CO2; see
supplementary information online) or 300 p.p.m. CO2. Regardless
of the H2O2 concentration tested, cell viability was significantly
more affected at 300 p.p.m. CO2 than at 40 p.p.m. CO2 (Fig 1A;
Po0.05). Moreover, whereas no effect was observed at 40 p.p.m.
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Fig 1 | Synergistic effects of atmospheric CO2 concentration and H2O2 induce bacterial cell death. (A) Escherichia coli was collected at an OD600¼ 0.5

and plated in the presence of various concentrations of H2O2 (0–1.4 mM). LB agar plates were incubated in atmospheres containing two concentrations

of CO2: 40 p.p.m. (black bars) and 300 p.p.m. (white bars; see Methods section). Means±s.d. for three experiments are shown. Mann–Whitney U-tests

were used for statistical analysis. Significantly higher survival rates were recorded for cells in atmospheres containing 40 p.p.m. than for cells in

atmospheres containing 300 p.p.m. CO2, in the presence of H2O2 (asterisk). (B) E. coli was harvested at an OD600¼ 0.5 and plated in the presence

of various concentrations of CO2 (40, 300, 450, 750 and 1,000 p.p.m.), with (empty diamond) and without (filled square) H2O2 (1.2 mM). Means±s.d.

for three experiments are shown. Significantly higher survival rates were observed at 40 p.p.m. CO2 than at 300, 450, 750 and 1,000 p.p.m. CO2 in the

presence of H2O2 (asterisk) and at 300 p.p.m. than at 750 and 1,000 p.p.m. CO2 in the presence of H2O2 (circle). After 48 h, LB agar plates initially

containing H2O2 were no longer toxic for cell growth. (C) Low concentrations of CO2 (40 p.p.m.) rescued growth after the shift from anaerobic to

aerobic conditions for strains susceptible to aerobic conditions. Hpx� dps and recA fur strains were cultured in anaerobiosis and shifted to aerobiosis

with various atmospheric CO2 concentrations (40, 300 and 1,000 p.p.m.), as described in the Methods section, in the absence (solid line) or presence

(dotted line) of 2,20-dipyridyl (250mM). Atmospheric CO2 levels had no effect on the growth of the MG1655 parental strain after the shift from

anaerobic to aerobic conditions (supplementary information online). Representative results are presented in the figure and each analysis was repeated

three times. CFU, colony-forming units; LB, Luria–Bertani.
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in the presence of the lower concentration of H2O2 (0.8 mM), cell
viability was already affected in the presence of 300 p.p.m. CO2,
suggesting that CO2 exacerbated the toxicity of H2O2 in E. coli.
To confirm this synergistic effect of H2O2 and CO2, we also
measured cell viability in the presence of H2O2, at increasing
levels of CO2. No effect was observed in the absence of H2O2

(Fig 1B), but cell viability was affected in a dose-dependent manner
by increases in CO2 concentration (Fig 1B). Thus, CO2 exacerbates
the toxicity of H2O2 in E. coli in a dose-dependent manner.

CO2 increases HOK toxicity
Next, we evaluated the effect of CO2 on E. coli mutants sensitive
to aerobic growth conditions. The Hpx� dps mutant lacks the
three enzymes responsible for all E. coli peroxide-scavenging
activity (catalases KatE and KatG and the peroxidase AhpC) and
Dps, a ferretin-like protein that sequesters iron and protects
the chromosome in stress conditions (Park et al, 2005). An
anaerobic culture of Hpx� dps mutant cells was used to inoculate
fresh LB broth, which was then incubated under aerobiosis
for 3 h in the presence of three CO2 concentrations (40, 300 and
1,000 p.p.m.). Aerobiosis decreased cell viability in the presence
of CO2 concentrations of 300 and 1,000 p.p.m. (from approxi-
mately 106 to approximately 103 colony-forming units (CFU)/ml
after 3 h of aerobiosis) (Fig 1C). However, cell viability was
less affected at 40 p.p.m. CO2 (from approximately 106 to
approximately 105 CFU/ml). As the sensitivity to oxygen of
the Hpx� dps mutant has been attributed to the DNA damage
caused by Fenton reaction-based HOK production (Park et al,
2005), these finding suggest that CO2 exacerbates HOK-induced
DNA damage.

We tested this hypothesis by examining the effect of CO2

concentration on the recA fur mutant, which cannot grow in
aerobic conditions because it lacks RecA—a regulator of the SOS
response involved in DNA strand-break repair—and Fur, the main
iron homeostasis regulator in E. coli (Touati et al, 1995). The
effects were less marked than those for the Hpx� dps mutant, but
we observed that the cell viability of the recA fur mutant was also
less affected at a concentration of 40 p.p.m. CO2. As the oxygen
sensitivity of the recA fur mutant is also due to HOK-mediated
DNA damage (Touati et al, 1995), this result supports the
hypothesis that CO2 exacerbates HOK toxicity.

We sought further support for the conclusion that CO2 directly
increases oxygen toxicity, by modulating the steady-state con-
centrations of H2O2 and/or the HOK radical by using exogenous
catalase, iron chelator (2,20-dipyridyl), anaerobiosis or a radical-
trapping reagent (5,5-dimethyl-1-pyrroline N-oxide—DMPO). The
synergistic effect of CO2 on oxygen toxicity disappeared in these
conditions, providing further evidence for the hypothesis that
CO2 directly exacerbates HOK toxicity (Fig 1C; supplementary
information online).

CO2 increases H2O2-dependent mutation frequency
We investigated whether CO2 exacerbated HOK toxicity
by examining the effect of CO2 concentration on mutation
frequency. The pPY98 plasmid carries the P22 mnt repressor
gene, which confers sensitivity to tetracycline, the reversal of
which is a direct function of the cell mutational rate (Lucchesi
et al, 1986).

We grew E. coli cells harboring pPY98 in the presence
of various concentrations of CO2 (40, 300 and 1,000 p.p.m.)
and determined mutation frequencies. Mutation frequencies
in the absence of H2O2 were similar at all atmospheric CO2

concentrations used (Fig 2). The basal frequency of mutation
(as indicated by the several tetracycline-resistant clones) was
approximately 10�7, consistent with the findings of Lucchesi et al
(1986). Interestingly, mutation frequencies increased significantly
(Po0.05) on exposure to H2O2 in the presence of higher CO2

levels (Fig 2).

CO2 increases H2O2-dependent 8-oxo-guanine DNA damage
We directly quantified DNA lesions by immunofluorescence-
based detection of 8-oxo-guanine in situ. In the absence of H2O2,
no difference in fluorescence intensity was found between
samples grown in atmospheres containing the three CO2

concentrations tested (40, 300 and 1,000 p.p.m.; Fig 3). However,
in cells exposed to H2O2, fluorescence intensity and several
DNA lesions were positively correlated with CO2 concentration
(Fig 3). These experiments demonstrate that increases in CO2

concentration aggravate oxidative DNA damage.

CO2 decreases H2O2-dependent carbonyl content
We then quantified the carbonyl protein content, which is a
marker for irreversible oxidative damage to proteins. In the
absence of H2O2, no difference was found between samples
grown in the two atmospheres tested (40 and 1,000 p.p.m. CO2;
Fig 4). However, in cells exposed to H2O2, the carbonyl protein
content increased, as expected (Dukan et al, 2000), but was
negatively correlated with CO2 concentration (Fig 4).
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Fig 2 | Atmospheric CO2 levels affect the frequency of H2O2-induced

mutation in Escherichia coli. E. coli cells harboring pPY98 were prepared

as described in the Methods section. Box plot of the relative mutation

frequency observed with increasing concentrations of CO2, in the absence

(dashed line) or presence (solid line) of H2O2. The orange bar indicates

the median for 10 experiments. Mann–Whitney U-tests were carried out

for statistical analysis. Significantly higher relative mutation frequencies

were observed for 300 and 1,000 p.p.m. CO2 than for 40 p.p.m. CO2 in the

presence of H2O2 (asterisk), and for 1,000 p.p.m. CO2 than for 300 p.p.m.
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DISCUSSION
It is widely accepted that oxidative stress is caused by exposure to
ROS, which can damage proteins, nucleic acids and cell
membranes. By ruling out other possibilities, we can infer from
our data that CO2 probably reacts with ROS in vivo, such as HOK

or H2O2, to exacerbate oxidative stress.
Several lines of evidence suggest that, as has been shown

in vitro (Augusto et al, 2002; Richardson et al, 2003; Medinas
et al, 2007; Balagam & Richardson, 2008), HOK and/or H2O2

reacts in vivo with CO2, mostly generating CO3
K�. We show here

that (i) CO2 exacerbates the toxicity of H2O2 in a dose-dependent
manner; (ii) the aerobic lethality of recA fur and Hpx� dps
mutants, thought to be mediated by HOK, is CO2 dependent; (iii)
H2O2-induced mutagenesis and 8-oxo-guanine levels are CO2

dependent; and (iv) carbonyl content on H2O2 exposure is CO2

dependent. We also show that anaerobiosis or a decrease in ROS
concentrations abolishes CO2-dependent toxicity. Furthermore,
the range of CO2 concentrations used in this study had no effect
on intracellular pH, general metabolic pathways or protein
turnover, suggesting that indirect effects of CO2 on the cells are
probably not involved in this phenomenon. These findings are
thus consistent with the occurrence of direct reactions between
CO2 and ROS in vivo.

Finally, taken together, our results are consistent with a direct
reaction between CO2 and ROS. HOK reacts in the environment in
which it is generated, whereas Shafirovich et al (2001) have
shown that CO3

K� is more selective, oxidizing guanine residues in
DNA more specifically than HOK, for example. The selective
reactivity of CO3

K� with guanine rather than the other three DNA
bases is a consequence of the thermodynamic and kinetic
characteristics of this radical (Shafirovich et al, 2001). The strong
correlation between the increase in 8-oxo-guanine levels within
the cell and CO2 levels during oxidative stress is consistent with
this idea. Moreover, the amounts of carbonyl derivatives formed
by the oxidation of proline, arginine, lysine and threonine are

negatively correlated with CO2 concentration. Interestingly, the
products of HOK/CO2 reactions have a lower reactivity than HOK

alone with these amino-acid side chains (Stadtman & Berlett,
1991). Consequently, the titration of HOK with CO2 might
decrease protein carbonylation.

The CO3
K� radical seems to have a central role in the chemistry

of CO2 and ROS. However, in the light of a recent study
demonstrating extremely rapid recombination between HOK and
CO3

K� leading to the formation of HCO4
� (equation (6); Haygarth

et al, 2010), another strong oxidant ðEHCO4
�=HCO3

� ¼ 1:8 VÞ , we
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cannot exclude the possibility that HCO4
�, rather than CO3

K�

reacts with biological molecules in vivo.

ð6Þ CO3
�þHO� ! HCO4

� k ¼ 6�109M�1s�1

It will be a challenge to detect such molecules (HCO4
� and CO3

K�)
in vivo. The most commonly used method for studying short-lived
species involves the spin trapping of radicals. For instance, CO3

K�

can react with DMPO, leading to the formation of DMPO-OH
(Villamena et al, 2007). However, since 1980, DMPO has been
used to trap HOK in vivo, also resulting in the formation of
DMPO-OH (Buettner, 1987). Thus, the DMPO-OH detected
in vivo might originate from either or both HOK and CO3

K�.
The design of specific spin traps for CO3

K� and HOK is a key
challenge limiting further investigation.

In 2000, the Intergovernmental Panel on Climate Change
published its Special Report on Emissions Scenario, predicting that
the atmosphere in 2100 will contain 1,000 p.p.m. CO2 (Nakice-
novic et al, 2000). More recently, in his essay, Schneider (2009)
described an increase of this magnitude as the ‘worst-case
scenario’ and explored what a world with 1,000 p.p.m. CO2 in
its atmosphere might look like, in terms of society, economics and
environment. This study provides the first evidence that oxidative
stress is exacerbated by increasing atmospheric CO2 concentra-
tions. This exacerbation might be of great ecological concern,
with important implications for life on Earth.

METHODS
Cell growth experiments at various atmospheric CO2 concen-
trations. Cell growth experiments were carried out in sealed-flow
chambers with Crystal Mix (Air Liquide) containing N2/O2 (80/20%)
and CO2 at concentrations of 0–1,000 p.p.m.
Lethality studies on LB agar plates. E. coli (MG1655) was grown
aerobically in liquid LB broth, at 37 1C, with shaking at 160 r.p.m.
When the OD600 reached 0.5, cells were exposed to various
concentrations of CO2 (40, 300, 450, 750 or 1,000 p.p.m.). LB
agar plates with and without H2O2 in the medium were allowed to
equilibrate for 20 h at the CO2 level to be tested (40, 300, 450,
750 or 1,000 p.p.m.). Serial dilutions of cell suspensions in
phosphate buffer (0.05 M, pH 7.4) were prepared and aliquots
(150–200 cells) were spread onto the LB agar plates. Colonies
were counted after incubation at the CO2 concentration tested for
16 h at 37 1C. After this period of incubation, no extra colonies
were observed.
Aerobic cell growth and viability. MG1655, Hpx� dps and recA
fur strains were cultured twice (anaerobic chamber containing
40 p.p.m. CO2), in anaerobic LB broth supplemented with 0.2%
glucose, to an OD600 of 0.3. They were then mixed with fresh
aerobic medium to yield an OD600 of 0.003 and incubated in
atmospheres containing various concentrations of CO2 (40, 300
and 1,000 p.p.m.). The aerobic medium was filter-sterilized and
allowed to equilibrate in an atmosphere containing the concen-
tration of CO2 tested for 3 h before use. This equilibration process
had no detectable effect on the pH of the LB broth. Viability was
assessed by mixing cells at various time points with anaerobic
phosphate buffer (0.05 M, pH 7.4) and spreading them on
anaerobic LB agar plates. Colonies were counted the next day.
Mutation frequency. E. coli harboring pPY98 was cultured to an
OD600 of 0.2 in LB broth supplemented with ampicillin (20 mg/ml),
in an atmosphere containing 40 p.p.m. CO2, at 37 1C. The culture

was then split into six subcultures. Two subcultures each were
equilibrated in the presence of 40, 300 and 1,000 p.p.m. CO2. We
then subjected one subculture for each set of CO2 conditions to
oxidative stress (0.3 mM H2O2) for 5 min. These challenge
conditions induced no detectable bacterial cell death. The cells
were then centrifuged and washed twice in phosphate buffer
(0.05 M, pH 7.4). We then plated 100 ml (approximately 108 cells)
of the cell suspension on an LB agar plate containing ampicillin
(20 mg/ml) and tetracycline (3.5mg/ml) and determined the number
of CFU after incubation for 16 h at 37 1C in an atmosphere
containing 40, 300 or 1,000 p.p.m. CO2.
8-oxo-guanine detection by immunofluorescence. Overnight
aerobic cultures of E. coli grown in an atmosphere containing
40 p.p.m. CO2 were mixed (1/100) with LB broth, equilibrated
with an atmosphere containing 40 p.p.m. CO2 for 1 h, and then
subcultured twice to yield an OD600 of 0.3 in an atmosphere
containing 40 p.p.m. CO2. The cells were then transferred to LB
broth that had been previously equilibrated at the atmospheric
CO2 level tested (40, 300 and 1,000 p.p.m.) for 3 h. This
equilibration process had no detectable impact on the pH of the
LB broth. H2O2 was added to a concentration of 0.5 mM when the
OD600 was 0.2 and the suspension was incubated for 10 min.
These challenge conditions induced no detectable bacterial cell
death. Cells were then centrifuged, washed twice in phosphate
buffer (0.05 M, pH 7.4) and diluted 1:10 in the same buffer. 8-oxo-
guanine detection by immunofluroescence was performed as
indicated in the supplementary information online.
Carbonylation assays. Cells were prepared as described by using
the 8-oxo-guanine immunofluorescence procedure. H2O2 was
added to a concentration of 0.5 mM when the OD600 was 0.2, and
the culture was incubated for 10 min. These challenge conditions
induced no detectable bacterial cell death. The cells were then
centrifuged, washed twice in phosphate buffer (0.05 M, pH 7.4)
and lysed by passage through a French press. Carbonylated
proteins were detected with an OxyBlotTM protein oxidation
detection kit (Chemicon International), as described previously
(Dukan et al, 2000).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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