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Acute myeloid leukemia (AML) is a type of hematological malignancy with diverse genetic pathogenesis. Identification of the miR-
93-5p targeted pathogenic markers could be useful for AML diagnosis and potential therapy. We collected 751 miR-93-5p targeted
and AML-related genes by integrating the results of multiple databases and then used the expression profile of TCGA-LAML to
construct a coexpression function network of AML WGCNA. Based on the clinical phenotype and module trait relationship, we
identified twomodules (brown and yellow) as interesting dysfunctionmodules, which have a significant association with cytogenetics
risk and FAB classification systems. GO enrichment and KEGG analysis showed that these modules are mainly involved with cancer-
associated pathways, including MAPK signal pathway, p53 signal pathway, JAK-STATsignal pathway, TGF-beta signaling pathway,
mTOR signaling pathway, VEGF signaling pathway, both associated with the occurrence of AML. Besides, using the STRING
database, we discovered the top 10 hub genes in each module, including MAPK1, ACTB, RAC1, GRB2, MDM2, ACTR2, IGF1R,
CDKN1A, YWHAZ, and YWHAB in the brown module and VEGFA, FGF2, CCND1, FOXO3, IGFBP3, GSF1, IGF2, SLC2A4,
PDGFBM, and PIK3R2 in the yellow module. +e prognosis analysis result showed that six key pathogens have significantly affected
the overall survival and prognosis in AML. Interestingly, VEGF with the most significant regulatory relationship in the yellow
modules significantly positively correlated with the clinical phenotype of AML. We used qPCR and ELISA to verify miR-93-5p and
VEGF expression in our clinical samples. +e results exhibited that miR-93-5p and VEGF were both highly expressed in AML.

1. Introduction

Acute myeloid leukemia (AML) is one of the most common
hematological malignancies in adults and is characterized by
clonal expansion of abnormally differentiated blasts of a
myeloid lineage [1]. Usually, patients who are initially di-
agnosed with AML are often accompanied by severe clinical
symptoms [2]. So, the early untreated disease progresses of
AML is very rapid, and the mortality rate is also very high
[3]. In recent years, with the rapid development of molecular

biology and other technologies, the pathogenic genes of
AML have been continuously discovered, and the devel-
opment and clinical exploration of new drugs targeting AML
have also been accelerated [4–6]. However, it is established
that the treatment outcome of patients with AML is still not
optimistic currently, and the 5-year survival rate of patients
is only maintained at approximately 30% [7]. At present,
AML has the characteristics of low cure rate, poor prognosis,
and high rate of relapse, so it is imperative to find new
biomarkers and targeted therapeutic molecules.
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For nearly two decades, studies have found that the
noncoding RNAs are closely related to tumor occurrence
and development [8]. It plays an essential role as “onco-
genes” or “tumor suppressor genes,” but the specific regu-
latorymechanism is still unclear entirely [9]. MicroRNAs are
a noncoding single-stranded RNA class with a length of
approximately 19–22 nucleotides encoded by endogenous
genes [10]. It was stated that miRNA is involved with various
types of critical biological processes in the human body
through posttranscriptional gene expression regulation [11].
Studies have increasingly reported that miRNAs’ abnormal
expression is related to various tumors in the body [12].
+ere is also a close association between AML and several
microRNAs [13, 14]. So, in-depth research on the miRNAs’
function will have significant scientific significance and
clinical value in AML.

MiR-93 belongs to themiR-106b-25 cluster, which can play
an essential role in aging, hyperglycemia, and osteoblast cal-
cification [15]. Recently, studies have demonstrated that miR-
93-5p could participate in the occurrence, development, and
drug resistance of numerous types of tumors [16–18].
Meanwhile, miR-93-5p can act as an oncogene by promoting
angiogenesis. It can suppress integrin-β8 expression, which is
ultimately associated with the tumor, and overexpression of
miR-93 is associated with cell spreading, growth, migration,
and tube formation of cancer cells [19]. +e highly expressed
miR-93-5p has been found in other types of tumors such as
neuroblastoma, non-small-cell lung cancer, and lacrimal ad-
enoid cystic carcinoma [20–22]. Furthermore, increased ex-
pression of miR-93-5p is associated with the poor prognosis of
gastric cancer and squamous cell carcinoma of the head and
neck [23, 24]. Still, researchers have found a close association
between AML and abnormal expression of miR-93-5p. It can
promote tumor growth, blood vessel formation, and cell
proliferation in AML. Also, the expression levels ofmiR-93 are
closely associated with VEGF formation in AML.+ese studies
proved thatmiR-93 is associated with several cancers, including
AML [25]. However, the specific molecular mechanism that
miR-93-5p participates in AML in pos-transcriptional regu-
lation still needs further study. +erefore, the current study
aimed to determine the expression of miR-93-5p and its tar-
geted genes in AML based on integrative bioinformatics
analysis and clinical validation.

2. Materials and Methods

2.1. Data Resources. Firstly, to collect the target genes ofmiR-
93-5p, we used the miRNet [26] (https://www.mirnet.ca/
miRNet/home.xhtml) to obtain miR-93-5p target genes from
miRTarBase v8.0 [27], TarBase v8.0 [28], and miRecords [29]
database.+us, we got 2624 genes that were the targets ofmiR-
93-5p. Moreover, we obtained a gene set that contains 985
genes that closely interact with the pathogenesis of AML from
the National Center for Biotechnology Information (NCBI-
Gene) database [30] and the Human Online Mendelian Ge-
netic (OMIM) database [31]. +en, we searched in the protein
interaction (STRING) database [32]. We further expanded to
3900 genes that are defined as AML-related genes in this study.
+rough a comprehensive comparative analysis in the

expression profiling of AML from +e Cancer Genome Atlas
(TCGA) database (n� 151) [33], we have initially constructed
an expression matrix including miR-93-5p targeted and AML-
related potential pathogenic genes.

Furthermore, we constructed a coexpression gene net-
work in AML-related genes profile based on weighted gene
coexpression network analysis (WGCNA) [34]. We analyzed
the hub genes as key pathogenic markers in dysfunctional
modules. Besides, the clinical data of TCGA-LAML was
downloaded from TCGA to investigate the survival prognosis
of key pathogenic markers. +e flowchart of the analysis
procedure in the previous study is shown in Figure 1.

2.2. Coexpression Recognition Module Based on Relevant
Network Analysis. WGCNA is a newly developed method
that aims to identify gene modules cooperatively expressed by
characteristic genes, explore the association between gene
networks and phenotypes of interest, and identify critical
genes in a specific phenotype [35]. +is new mathematical
method is different from previous biological experimental
processes. It is an effective way to identify new essential genes
involved in AML and discover potential predictive and di-
agnostic indicators for AML patients. In this study, we used
the WGCNA package for constructing the coexpression
network of potential pathogenic genes in AML. In the con-
struction process, we chose the unsigned coexpression net-
work, selecting the power of β� 5 as the soft threshold to
ensure the connections between genes in the network and
obey the scale-free network distribution. +e minimal
number of genes in an individual module is set as 20.

Finally, the hierarchical clustering tree was constructed
through the correlation coefficients between genes, and the
similarity coexpressionmodule was shown as the topological
overlap matrix (TOM). Besides, to determine the correlation
between clinical phenotype andmodules, we used the person
method to calculate the relationship between module
eigengenes and the phenotypes of AML.

2.3. GO Enrichment and KEGGAnalyses of the Dysfunctional
Modules. To explore the genes’ biological functions and
signal pathways in dysfunctional modules, we used the
GSEA [36] to perform the gene ontology (GO) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis for interested functional modules. +e GO terms
and KEGG pathways were confirmed as an enrichment
when FDR <0.05.

2.4. Identification of Module Hub Genes in Dysfunctional
Modules. +ebiomarker is helpful for the diagnosis, staging,
or classification of diseases. Based on WGCNA, we have
established a coexpression network of AML-related genes,
and we use the Cytoscape (version 3.8.0) for screening the
module hub genes [32]. +en, the “CytoHubba” [37] plugins
of Cytoscape (version 3.8.0) were used to detect and visualize
the hub genes of the interested functional modules. +e hub
genes were screened with the top 10 degrees in dysfunctional
modules.
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2.5. Analyzing the Effect of Hub Genes on Clinical Survival
Based on the Dataset of TCGA-LAML. To analyze the
prognosis value of screened hub genes in AML patients, the
clinical information was obtained from the profile of TCGA-
LAML (https://portal.gdc.cancer.gov/) in January 2020. +e
difference between the two groups was compared using KM
survival analysis and log-rank.

For the Kaplan–Meier curve analysis, the hazard ratio
(HR) with 95% confidence interval (CI) and the P value was
derived from log-rank tests and univariate Cox proportional
regression [38]. +e analysis methods and packages were
executed using the R program version 4.0.3 (+e R Foun-
dation for Statistical Computing, 2020). P< 0.05 was con-
sidered statistically significant.

+e univariate and multivariate Cox regression analysis
was used to identify the significant variables to establish the
nomogram [39]. +e “forestplot” package in the R program
was used for displaying the forest plot of the P value, HR,
and 95% CI between each variable. +e multivariate Cox
proportional hazard analysis results were used to develop a
nomogram for predicting the 3-year overall recurrence. +e
nomogram provided a graphical contribution of the factors,
which can be used to estimate the risk of recurrence for an
individual patient by the points associated with each risk
factor through the “rms” R package.

2.6. Verifying the Expression of miRNA-93 and VEGF in
Clinical Samples. To verify the expression of two molecules
from the most significant modules that are still not clearly
defined, we have validated the expression of miR-93-5p and
VEGF. Bone marrow samples from 18 patients who were

newly diagnosed with AML were collected at our institution
between January 2019 and September 2019. Diagnose AML
according to the classification criteria of the World Health
Organization MICM (morphology, immunology, cytoge-
netics, and molecular biology) [40]. +e inclusion criteria
were as follows: the bone marrow blasts count of ≥20%. +e
exclusion criteria were as follows: (1) age at diagnosis <18
years and (2) follow-up information not complete. +ere
were six male patients and 12 female patients, ranging from
20 to 79 years old. Histologically, two patients had M1, nine
patients had M2, one patient had M3, two patients had M4,
and four patients had M5. +e bone marrow samples were
collected in anticoagulated tubes before treatment. +e
leukemic cells were isolated by using 1.077 g/mL Ficoll-
Isopaque (Pharmacia). +e proportion of leukemic cells was
estimated using May–Grünwald–Giemsa-stained cytocen-
trifuge preparations and light microscopy. +e cell samples
selected for analysis contained at least 90% blasts after
separation. Each sample containing 2 to 10 million cells was
stored in TRIzol (Invitrogen, Carlsbad, CA, USA) and frozen
at −80°C as soon as possible. +e clinical information of the
patient included in this study was collected, with the last
follow-up on September 30, 2019. +e mononuclear cells
were isolated from the peripheral blood of two anonymized
healthy volunteers as control samples.

cDNAwas generated using the Reverse Transcription Kit
(Foregene, Chengdu, China). +e expression levels of
miRNA-93 were quantified using SYBR Green Master Mix
(SYBRGREEN, Beijing, China), and theU6 gene was used as
an internal control. +e following primers were used: miR-
93-5p, 5′-CAAAGTGCTGTT CGTGCAGGTAG -3′ and U6
5′-GGATGACACGCAAATTCGTGAAGC-3′. qRT-PCR

NCBI gene database obtained 
AML-related genes (n = 850)

OMIM gene database obtained 
AML-related genes (n = 286)

Integration of AML-related genes (n = 985)

STRING database sought interaction 
genes (n = 3900)

Expression profile of AML in TCGA 
database (n = 151)

Construct an expression matrix of miR-93 
targeted and AML-related genes

8 dysfunction modules constructed by weighted 
gene coexpression network analysis 

(WGCNA)

GO function enrichment

KEGG pathway enrichment

Hub genes were visualized and identified 
based on “CytoHubba” plugin in Cytoscape

Construct the interacted proteins of 
each module as subnets based on 

STRING database

“ggplot2,” “survival,”
“forestplot,” “smr”

package in R program
(version 4.0.3)

Survival analysis based on
TCGA-LAML dataset

qPCR to verify the expression of miRNA-93 
and VEGF in clinical samples

Analyzing the effect of hub genes on 
clinical survival based on the dataset 

of TCGA-LAML

Prediction of miR-93
target genes based on 

miRTarBase v8.0

Prediction of miR-93
target genes based on 

TarBase v8.0

Prediction of miR-93
target genes based on 
miRecords database

miRNet obtained 
miR-93 target 

genes (n = 2624)

Figure 1: +e overall analysis process of the present study.
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was performed on ViiATM 7 System software (+ermo
Fisher Scientific, ABI7500, USA). +e results were nor-
malized to the expression of the U6 gene and are presented
as the fold change (2−ΔΔCT). VEGF protein expression by
bone marrow mononuclear cells was quantified for media
samples collected from different experiments using VEGF
ELISA kit per manufacturer protocol (human vascular en-
dothelial growth factor ELISA Kit, Wuhan, China).

3. Results

3.1. Data Processing. To systematically study the critical role
of miR-93-5p regulatory target genes in the pathogenesis of
AML, we collected a large number of results from multiple
online databases. First, we obtained 2624 target genes of
miR-93-5p from the miRNet, and these genes were predicted
by three commonly used databases (miRTarBase v8.0,
TarBase v8.0, and miRecords database). Second, to further
screen these target genes related to AML, we sought to
obtain 3900 AML-related genes from NCBI-Gene and
OMIM databases. +en, we screened 751 interact genes
between miR-93-5p target genes and AML-related genes to
determine the essential regulatory functions of miR-93-5p
and its target genes in AML. +e Venn diagram is shown in
Figure 2.

3.2. Ce Coexpression Network of miR-93-5p Target Genes in
Acute Myeloid Leukemia Was Constructed Based on the
Comprehensive Analysis. In the current research, to match
and construct an expression matrix of miR-93-5p targeting
AML-related genes, we downloaded the RNA-seq profile of
151 AML samples from the TCGA database. +e clinical
information is represented in Table 1. In the process of
network construction, we adopt a soft threshold (β� 5) to
ensure the stability of the scale-free network, and we
established eight coexpressed gene modules. +e clustering
of module gene expression behaviors in AML is shown in
Figure 3.+e relationship between themodules’ connectivity
and the gene’s significance is as shown in Figure 4. +e
eigengene adjacency heatmap and module trait relationships
are shown in Figure 5.

3.3. Correlation between Clinical Phenotype and Modules.
We found that two modules are significantly correlated with
the FAB classified subtypes and cytogenetic risks [41].
According to our finding, both the brown and yellow
modules are positively associated with FAB classified sub-
type of AML (R2 � 0.61 and R2 � 0.51) (Figure 6). Further-
more, we also observed a positive correlation between the
yellow module and cytogenetic risks (R2 � 0.28), and brown
modules were negatively correlated with cytogenetic risks
(R2 � -0.32) (Figure 7). What is noteworthy is that FAB
morphological classification and cytogenetic risk are closely
associated with the progress of AML, so it is necessary to
identify further the biological functions and critical genes of
these two modules.

3.4. Identification of Functional Modules and Pathways Cat
Are Involved in thePathogenesis ofAML. As the two modules
(yellow and brown) have been observed with the highest
correlated modules with AML subtype and cytogenetic risk,
we performed the GO enrichment on characteristic genes in
these two modules, including biological process (BP), cel-
lular component (CC), and molecular function (MF). +e
mainly enriched terms in the brown module were regulation
of protein metabolic and modification process, regulation of
intracellular signal transduction, regulation of phosphorus
metabolic process, and positive regulation of molecular
function. +e significant GO terms of the brown module are
visualized in Figure 8. Besides, the genes in the yellow
module were mainly enriched in response to endogenous

3149 1873751

AML-related genes miRNet-target genes

Figure 2: Venn diagram of miR-93-5p target genes and AML-
related genes.

Table 1: Clinical information of the patient with AML fromTCGA.

Patient characteristic Total
Age 54.17± 17.07
Gender

Male 83
Female 68

Leukocyte 35.02± 41.34
Monocyte 11.72± 15.13
Hemoglobin 9.47± 1.62
Platelet 64.38± 53.13
FAB classification systems

Mo 15
M1 35
M2 38
M3 15
M4 29
M5 15
M6 2
M7 1
Not classified 1

Cytogenetics risk
Unclassified 2
Favorable 31
Intermediate/normal 82
Poor 36

Note: FAB classification systems, French-American-British classification
systems.
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stimulus, positive regulation of the developmental process,
and cell differentiation and proliferation regulation. +e
result of GO enrichment of the yellow module is visualized
in Figure 9. +e KEGG pathway analysis shows that brown
and yellowmodules are mainly involved pathways in cancer,
neurotrophin signaling pathway, focal adhesion, adherens
junction, MAPK signaling pathway, insulin signaling
pathway, p53 signaling pathway, TGF-beta signaling path-
way, mTOR signaling pathway, VEGF signaling pathway,
and these signaling pathways involved in the occurrence,
invasion, and metastasis of AML (Figure 10).

3.5. Identification of Hub Genes in Coexpression Modules.
Our research found that the brown and yellow functional
modules are composed of many potential genes, and these
genes have significant interaction regulation relationships
among different available modules. +erefore, we con-
structed the protein-protein interaction (PPI) network in
brown (83 nodes and 243 edges) and yellow modules (41
nodes and 103 edges) based on the STRING database. +en,
we screened the top 10 hub genes in these two modules

separately, includingMAPK1, ACTB, RAC1, GRB2, MDM2,
ACTR2, IGF1R, CDKN1A, YWHAZ, and YWHAB in the
brown module (Figure 11), and VEGFA, FGF2, CCND1,
FOXO3, IGFBP3, GSF1, IGF2, SLC2A4, PDGFBM, and
PIK3R2 in the yellow module (Figure 12). +ese genes play
essential regulatory roles in the modules and have been
identified as critical roles in the pathogenesis of AML.

3.6. Ce Affection of Hub Genes on Survival in AML Patients.
To verify the screened key pathogens’ clinical prognosis
value, we demonstrated the effects of hub genes on the AML
prognosis from the TCGA database. +e result shows that
six hub genes significantly impact the overall survival by
using a log-rank test (P< 0.05). Highly expressedACTR2 and
YWHAB are associated with poor prognosis. Low expression
of IGF2, IGFBP3, SLC2A4, and IGF1R is related to poor
prognosis contrarily (Figure 13). Besides, the result of no-
mogram analysis shows that these hub genes both affect
AML’s overall survival, and we could predict the 1-year, 2-
year, and 3-year survival based on patient characteristics and
the hub genes expression level (Figure 14).

Sample clustering to detect outliers

0

500

1000

1500

2000

H
ei

gh
t

(a)

Scale independence

1

2

3

4
5

6
7

8
910 12 14 16 18 20

22 24 26 28 30

Mean connectivity
1

2

3
4 5 6 7 8 910 12 14 16 18 20 22 24 26 28 30

−0.2

0.0

0.2

0.4

0.6

0.8

Sc
al

e f
re

e t
op

ol
og

y 
m

od
el

 fi
t, 

sig
ne

d 
R2

5 10 15 20 25 300
Soft threshold (power)

0

20

40

60

80

100

120

M
ea

n 
co

nn
ec

tiv
ity

5 10 15 20 25 300
Soft threshold (power)

(b)

Cluster dendrogram

hclust (*, "average")
as.dist(dissTOM)

Dynamic
module
Merged
module

0.6

0.7

0.8

0.9

1.0

H
ei

gh
t

(c)

Network heatmap plot, all genes

(d)
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3.7. Validation of the Expression of Key Genes in Clinical
Samples. In this study, the miR-93 targeted genes with
significant correlation with AML were identified. We no-
ticed that the miR-93-5p targeted genes had not been

extensively studied in AML, and the considerable impact of
miR-93-5p target gene networks on pathogenesis in AML is
still unclear. +us, to further verify the specific characteristic
genes found in this study, we selected the genes with the
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Figure 6: +e correlation of FAB classified subtype of AML and dysfunction modules. +e brown and yellow modules are significantly
associated with FAB classified subtype (P< 0.05).
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Figure 7: +e correlation of cytogenetics risk of AML and dysfunction modules. +e brown module is negatively associated with cy-
togenetics risk (R2 � −0.32, P< 0.05), and the yellow module is oppositely associated with cytogenetics risk (R2 � 0.28, P< 0.05).
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most significant regulatory relationship among the yellow
modules that are significantly positively correlated with the
clinical phenotype of AML. +us, we verified the expression
of miR-93-5p and VEGF in our clinical samples. +e results
indicated that miRNA-93-5p is highly expressed in AML,
which is significantly higher than in the healthy (Figure 15).
Besides, we also found that VEGF is highly expressed in
AML (Figure 16). +ese results might provide us with novel
insights for further molecular phenotype and function
mechanism research.

4. Discussion

Acute myeloid leukemia (AML) is a highly aggressive ma-
lignant tumor caused by abnormal cloning of hematopoietic
stem cells [42]. Cytogenetic abnormalities have been iden-
tified as diagnostic and prognostic markers [43]. In AML
with different genetic characteristics, miRNAs have differ-
ential expression profiles, and this differential expression
profile can be used as a basis for clinical diagnosis and
prognosis of AML [44]. +e carcinogenic mechanism of
some miRNAs that are abnormally expressed in leukemia
has been elucidated [45]. It is expected that drugs targeting

these miRNAs will be developed in the future to provide new
targets for the treatment of leukemia.

MicroRNA-93 is a member of the miR-106b-25 cluster,
located in intron 13 of theMCM7 gene [46]. It is a new type
of miRNA that is highly expressed in a variety of human
malignancies. Increasing evidence indicates that abnormal
expression of miR-93-5p involves many kinds of human
tumors [47, 48]. +e dysregulation of miR-93-5p is associ-
ated with the development of multidrug resistance in various
types of cancer [20, 49]. Recently, research has reportedmiR-
93-5p was abnormally expressed in AML, and the abnormal
expression of miR-93-5p may affect the prognosis of AML
[50]. However, the exact mechanism ofmiR-93-5p in AML is
still unclear. +erefore, to fully explore the specific mech-
anism ofmiR-93-5p regulating target genes to mediate in the
pathogenesis of AML, we adopted comprehensive bio-
informatics research. In this study, we obtained 2,624 miR-
93-5p target genes through the prediction of target genes
from multiple online databases. At the same time, to further
determine these miR-93-5p target genes are closely associ-
ated with the pathogenesis of AML, we collected a gene list
related to AML through NCBI-GENE and OMIM. +en, we
obtained 751 interacted genes between miR-93-5p target
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Figure 8: +e significant GO enrichment results of brown module genes.
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Figure 9: +e significant GO enrichment results of yellow module genes.
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Figure 13: +e Kaplan–Meier survival analysis of the gene signature. (a) IGF2, (b) IGFBP3, (c) ACTR2, (d) SLC2A4, (e) IGF1R, and (f)
YWHAB.
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Figure 14: +e results of Cox regression and nomogram analysis in hub genes. (a) Hazard ratio and P value involved in univariate Cox
regression and the parameters of the hub genes. (b) Hazard ratio and P value involved in multivariate Cox regression and some parameters
of the hub genes. (c) Nomogram to predict the 1-year, 2-year, and 3-year overall survival based on AML patients’ characteristics and critical
gene expression. (d) Calibration curve for the overall survival nomogram model in the discovery group. A dashed diagonal line shows the
ideal nomogram, and the blue line, red line, and orange line represent the 1-year, 2-year, and 3-year observed nomograms.
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genes and AML associated genes. Besides, based on the
RNA-seq profile of TCGA-LAML, we constructed an ex-
pression matrix for WGCNA analysis. Our new ideas about
collecting disease-related genes and gene cluster modula-
rization may provide a feasible research method for other
diseases like AML that lack strict controls. As the result of
WGCNA, we conducted eight dysfunction modules to
characterize the pathogenesis of AML. Interestingly, we
found that two modules were significantly correlated with
the phenotype of AML. Furthermore, GO analysis shows
that these two modules are involved in protein metabolism
and modification, intracellular signal transduction, and cell
differentiation and proliferation regulation. KEGG pathway
analysis also indicates that these two modules were mainly
involved in the cancer pathways, such as MAPK signaling
pathway, insulin signaling pathway, p53 signaling pathway,
TGF-beta signaling pathway, mTOR signaling pathway,
VEGF signaling pathway, and other different pathways that
are closely connected with the pathogenesis of AML [51, 52].

As we have found in our research, the hub genes with
core regulatory roles in brown and yellow modules were
further identified. Using connectivity to calculate the rela-
tionship between module genes, we screened ten hub genes
in each module. VEGF has been a core regulatory position in
the yellowmodule, andMAPK1 also acts as a core regulatory
role in the brown module. Vascular endothelial growth
factor (VEGF) is an essential factor in promoting angio-
genesis in vivo, promoting the proliferation, differentiation,
and infiltration of tumor cells [53]. It has been proved that
VEGF could lead to an increase of leukemic cells, and pa-
tients with higher expression levels of VEGF are more likely
to have poor prognoses [54]. Studies have found that AML
patients with higher expression of VEGF are more likely to
relapse [54, 55]. As far as we have known, angiogenesis plays
an essential role in the bone marrow microenvironment,
which leads to the pathogenesis, metastasis, and infiltration
of AML. +e VEGF/VEGFR complex’s critical regulatory

part in angiogenesis may be the key to studying the path-
ogenesis of AML [56]. Furthermore, the current studies have
found that VEGFmay affect the pathogenesis and treatment
of AML in three forms: higher levels of VEGF can be de-
tected in the BMSCs of leukemia patients, which resists the
apoptosis of leukemia cells by chemotherapeutics through
autocrine pathways and promotes leukemia Cell resistance;
VEGF can stimulate endothelial cells to secrete growth
factors and reversely bind to receptors on leukemia cell
membranes, thereby promoting vascular endothelial pro-
liferation and secreting cytokines that encourage cell leu-
kemia proliferation and indirectly promote the pathogenesis
of leukemia through the paracrine pathway; VEGF can also
promote the expansion of leukemia stem/progenitor cells
[57]. +erefore, research on the VEGF signaling pathway’s
downstream regulatory mechanism will guide the devel-
opment of new treatments for AML.

In addition, we verified the expression of VEGF and miR-
93-5p in our clinical samples. +e result shows that these two
regulators are both highly expressed in AML compared to
those in the healthy group.miRNA-93 is a member of themiR-
106b-25 cluster, which plays an essential regulatory function in
promoting oncogenes’ expression and inhibiting the expression
of apoptotic proteins [58]. Studies have shown that the
overexpression of miRNA-93 can promote osteosarcoma
proliferation and angiogenesis [59]. Besides, experiments on
leukemia cells in vitro found that the high expression of
miRNA-93 is closely related to the increase of VEGF. +e
proliferation of VEGF expression level is also clinically asso-
ciated with AML patients’ prognosis [50]. +ese related results
further reflect the potential biological functions of the two
biomarkers. +eir regulatory relationship could be an essential
molecular mechanism that induced tumor cell proliferation
and microangiogenesis and even mediates the pathogenesis of
AML [60]. Unfortunately, we have not yet found research
reports on the exact mechanism of the specific regulatory
relationship between miR-93-5p and VEGF. However, after
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Figure 16: +e different expression of VEGF between AML and healthy group. Ctrl represents the healthy group.
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predicting target genes through the TargetScan Human data-
base (http://www.targetscan.org), we discovered that miRNA-
93 might be targeting hypoxia-inducible factor 1α (HIF-1α)
affecting the expression ofVEGF [61]. At the same time, studies
have found that the miRNA-93 consensus sequence also exists
in the 3′UTR region of VEGFmRNA, which inspires our next
research:miRNA-93maymediate the occurrence development
of AML by regulating the expression of HIF-1α/VEGF [22].
However, the cell phenotype produced by miR-93 regulating
the expression of HIF-1α/VEGF in AML and whether its ex-
pression characteristics are related to the treatment and
prognosis of AML are scientific issues worthy of further study.

MiR-93-5p may be associated with the translational
signaling of AML and a broader spectrum of hematological
malignancies. +e mechanistic study revealed that miR-93
was found to inhibit the phosphorylation of AKT (pAKT)
[62]. In contrast, miR-93 promoted the proliferation, in-
vasion, progression, and metastasis of cancer cells through
activation of PI3K/AKT signaling [16, 63, 64]. Also, over-
expression of miR-93 has associated with drug resistance in
cancer cells through the miR-93/PTEN/AKT signaling
pathway [65]. Besides, the PI3K-Akt-mTOR signaling
pathway is upregulated in AML cells, ultimately contributing
to metabolic reprogramming of AML [66]. Similarly, dys-
regulated mammalian target of rapamycin (mTOR) pro-
motes AML. mTOR plays a central role in AML and a
broader spectrum of hematological cancers. It was found
that the rapamycin derivatives inhibit AKT signaling in
primary AML cells both in vitro and in vivo, supporting the
therapeutic potential of mTOR inhibition strategies in
leukemias and multiple myeloma dissemination and an-
giogenesis [67, 68]. Interestingly, we also got the mTOR
pathway is enriched in the dysfunctional modules (Fig-
ure 10) of AML. It was stated that mTOR is implicated in
leukemic cell growth, tumor-associated angiogenesis, and
VEGF expression in AML [69, 70].+e persistently secreted
VEGF from myeloid cells and the elevated levels were de-
tected in the AML microenvironment [56], which is one of
the important pathophysiological processes. Since inhibition
of mTOR complex 2 restrains tumor angiogenesis, mTORC2
is an advanced stage of a translational application being a
theragnostic target [68] and also promotes cancer via the
formation of new vessels that are essential for the growth and
energy production of cancer cells. Altogether, miR-93 may
be associated with regulating the miR-93/AKT/mTOR/
VEGF pathway in AML, and clinical investigation will be
warranted. However, our findings still need more clinical
samples and broader prospective studies to validate further.

5. Conclusions

In summary, our work provides comprehensive and novel
insights into the pathogenesis of AML. By constructing a
coexpression module of miR-93-5p targeted and AML-re-
lated genes and verifying the expression of clinical samples,
we initially explored the molecular mechanism ofmiR-93-5p
targeting and regulating VEGF-mediated pathogenesis of
AML. Further, we laid a theoretical foundation for the re-
search on targeting miR-93-5p to treat AML.
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