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Abstract

Purpose: To automatically assess the aggressiveness of prostate cancer (PCa)

lesions using zonal‐specific image features extracted from diffusion weighted

imaging (DWI) and T2W MRI.

Methods: Region of interest was extracted from DWI (peripheral zone) and T2W

MRI (transitional zone and anterior fibromuscular stroma) around the center of 112

PCa lesions from 99 patients. Image histogram and texture features, 38 in total,

were used together with a k‐nearest neighbor classifier to classify lesions into their

respective prognostic Grade Group (GG) (proposed by the International Society of

Urological Pathology 2014 consensus conference). A semi‐exhaustive feature search

was performed (1–6 features in each feature set) and validated using threefold strat-

ified cross validation in a one‐versus‐rest classification setup.

Results: Classifying PCa lesions into GGs resulted in AUC of 0.87, 0.88, 0.96, 0.98,

and 0.91 for GG1, GG2, GG1 + 2, GG3, and GG4 + 5 for the peripheral zone,

respectively. The results for transitional zone and anterior fibromuscular stroma

were AUC of 0.85, 0.89, 0.83, 0.94, and 0.86 for GG1, GG2, GG1 + 2, GG3, and

GG4 + 5, respectively.

Conclusion: This study showed promising results with reasonable AUC values for

classification of all GG indicating that zonal‐specific imaging features from DWI and

T2W MRI can be used to differentiate between PCa lesions of various

aggressiveness.
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1 | INTRODUCTION

Prostate cancer (PCa) remains the most common noncutaneous can-

cer among men and one of the most common causes of cancer‐
related deaths.1 PCa ranges from nonsignificant indolent to an

aggressive cancer with fatal outcome.2 The histopathological aggres-

siveness of PCa is graded by the Gleason Score (GS), which is a

powerful predictor of progression, mortality, and outcomes of the

disease.3 The GS describes the degree of differentiation and growth

patterns of cells in the tumor.2 Higher GS indicates higher level of

aggression with worse prognosis.2 The GS from prostate biopsies is

used for clinical decision‐making, treatment selection, and prediction

of outcomes for patients. However, due to the random sampling

when obtaining prostate biopsies, the GS differs from that deter-

mined after radical prostatectomy (RP).3,4 At the time of diagnosis,

the ability to distinguish between indolent, intermediate, and aggres-

sive PCa is limited, leading to incorrect risk stratification and possible

over‐ and undertreatment.5

Radical treatment approaches, such as RP or radiation therapy,

are common treatment options for PCa patients.4 However, due to

the adverse side effects of radical treatments, such as urinary incon-

tinence, bowel problems, and erectile dysfunction, more conservative

treatments, such as active surveillance (AS), are increasingly being

considered for men with relatively indolent cancers.3

Of patients initially enrolled in AS, up to 33% are initially under-

staged or has disease progression within 2–5 years leading to active

treatment. Furthermore, significant cancers are found in RP speci-

mens in 73% of patients who are initially eligible for AS.4 Primary

focal therapy like focal brachytherapy or cryotherapy, is increasingly

considered as an alternative treatment option with less morbidity

while still achieving cancer control for selected patients with low

and intermediate‐risk PCa.4 Thus, accurate pretherapeutic risk‐
assessment is crucial for correct patient‐tailored treatment planning.6

Multiparametric Magnetic Resonance Imaging (mpMRI) has been

widely used for detection of PCa in recent years, because of its high

sensitivity and negative predictive value for clinically significant

PCa.7 Typically, mpMRI consists of an anatomical T2‐weigted (T2W)

imaging sequence combined with functional diffusion‐ (DWI) and

perfusion (DCE) weighted imaging. However, using a reduced bipara-

metric MRI (bpMRI) protocol, including only T2W and DWI (ADC,

apparent diffusion coefficient) is increasingly being studied to reduce

costs and decrease image acquisition time while preserving accuracy

for PCa diagnosis.8,9 In clinical settings the interpretation of prostate

MRI is based on the clinical guideline prostate imaging reporting and

data system version 2 (PI‐RADS v2).10 PI‐RADS v2 uses a dominant

MRI sequence based on zonal location for lesion scoring (DWI for

peripheral zone (PZ) lesions and T2W for transitional zone (TZ)

lesions) since the zones differ significantly in both biological and

imaging features.11 DCE imaging is used for equivocal findings in PZ

but is not used for TZ lesions.10

Evidence suggests that mpMRI also has the ability to noninva-

sively assess the GS and could be used in the treatment plan-

ning.12,13 As the analysis of prostate mpMRI is time‐consuming,

complex and affected by interobserver variability, computer‐aided
diagnostic (CAD) systems are increasingly being designed to assist

radiologists in their work and could overcome the abovementioned

limitations. Building a CAD system to accurately determine the true

pretherapeutic GS can potentially help identify patients suitable for

different treatment options.14

Current CAD systems have been limited to a two‐ or three‐tier
classification of PCa lesions.

The two‐tier systems were designed to differentiation between

malignant and nonmalignant prostate tissue, or separate indolent/low

grade (3 + 3) from clinically significant/high grade (≥3 + 4) dis-

ease.15,16 Only one study investigated a three‐tier (low, intermediate,

and high grade) system and reported low performance compared to

their two‐tier system.12 Moreover, the majority of studies using CAD

systems are further limited to include only one prostatic zone (often

the PZ), which is a major drawback as PCa is a multifocal heteroge-

neous disease that often occurs in other prostatic zones. A state‐of‐
the art study assessing PCa GS classification reported accuracies up

to 0.93 in differentiating GS 6 from ≥7 and separating 7(3 + 4) from

7(4 + 3) using T2W and ADC image features.13 Another recent

study presented an automatic method using convolutional neural

networks (CNN) combined with handcrafted features (conventional

features, like histogram and texture) for differentiating between non-

cancerous, indolent (≤6), and clinically significant cancers (GS ≥ 7).

They achieved significantly better results compared to the state‐of‐
the art system based on handcrafted features alone, with a sensitiv-

ity of 100% and a specificity of 76.92% separating GS ≤ 6 from

GS ≥ 7 tumors.17 Both studies included PCa lesions from the whole

prostate but were limited to a two‐tier classification.
Future system should include all prostatic zones and more accu-

rate separation of PCa than two or three groups, as the prognosis

and therapeutic options differ for each GS grading.2 Therefore, the

objective of this study was to assess the use of zonal‐specific image

features to accurately determine the GS of PCa lesions from the

whole prostate gland using bpMRI.

2 | METHODS

2.A | Data

Data used in this study were obtained from The Cancer Imaging

Archive sponsored by the international society for optics and pho-

tonics (SPIE), National Cancer Institute/ National Institutes of Health

(NCI/NIH), The American Association of Physicists in Medicine

(AAPM), and Radboud University.18 The full dataset consisted of 162

PCa patients with MRI examination including T2W (axial and sagit-

tal), Ktrans (computed from DCE), DWI, and ADC images. A total of

182 PCa lesions were split into a training set (112 lesions) and a test

set (70 lesions). Data from the training set were used for this study,

as the pathological records (reference standard) have not been

released for the testing data set at the time of this study.

For the training set, the location (zone, and center coordinates of

the lesion) and the pathological‐defined Prognostic Gleason Grade
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Group (GG), split into GG 1 (GS = 6), GG 2 (GS 3 + 4 = 7), GG 3

(GS 4 + 3 = 7), GG 4 (GS = 8), and GG 5 (GS = 9–10), were pro-

vided.2 Table 1 summarizes the data used for this study. All lesions

were biopsied under MRI guidance in the scanner. According to the

PI‐RADS v2 guidelines we use the dominant MRI sequence based on

zonal location. Lesions located in the anterior fibromuscular stroma

(AFS) were scored similar to lesions in the TZ, and therefore

grouped.19

2.B | MRI image acquisition

All images were acquired on two different Siemens 3T MRI scanners,

a Magnetom Trio, and a Skyra, without an endorectal coil. All patient

examinations included T2W, DWI (3 b‐values: 50,400 and 800), ADC

(calculated by the scanner software), and DCE sequence as described

in Ref. [20] A single‐shot echo planar imaging sequence was used to

acquire the DWI series with slice thickness of 3.6 mm and in plane

resolution of 2 mm. The T2W images had in plane resolution of

≈0.5 mm and slice thickness of 3.6 mm and were acquired using a

turbo spin echo sequence. Lastly, the DCE sequence was acquired

using a 3‐D turbo flash gradient echo sequence with 4 mm slice

thickness, 1.5 mm in plane resolution, and 3.5 s temporal resolution.

2.C | Preprocessing

All analyses were done using Matlab 2017b. Heavy computations

were performed in parallel on a local cluster with 20 workers (pro-

cessing units) available. Axial T2W and DWI (b‐value = 800) image

series were resampled to 0.5 mm × 0.5 mm and T2W series were z‐
score normalized to account for interpatient intensity variation.

Region of interest (ROI) was defined as a 2D image region of

61 × 61 pixels around the provided lesion coordinate. The size of

the ROI was chosen large enough to ensure coverage of largest

tumors but as tightly around the lesion as possible. Examples of the

ROI around a lesion in AFS and in PZ in shown in Fig. 1. No image

coregistration was performed as T2W and DWI series were not used

together, and the image fragment of 61 × 61 pixels should ensure

that the lesion is within the fragment even with some geometric

distortion.

2.D | Feature extraction

The use of texture features in PCa imaging diagnosis is well demon-

strated, even though little is known about the pathophysiology

behind.21 For this study 11 gray level run length (GLRL) texture

statistics derived by Galloway22 and 14 Haralick texture features

were used.23

For all texture features the mean of four directions (0°, 90°,

180°, 270°) with 128 numbers of gray levels were calculated. His-

togram‐based metrics such as median, mean, and 10th percentile

have previously been shown to correlate with the final GS of PCa

lesions.24 However, due to substantial overlap in the values and GS,

none of these metrics alone can accurately predict the GS. Thirteen

histogram features were extracted in this study.

A total of 38 features were extracted from each image fragment,

see Table 2.

2.E | Feature selection

Feature selection is an important task, as removing redundant and

irrelevant features can significantly improve the performance of a

classifier. Furthermore, a limited number of features decrease the

risk of overfitting, especially with small datasets. The optimal feature

set is found by exhaustively searching through the whole feature

set, however, this task quickly becomes computationally expensive

as the number of features increases. For this study, a semi‐exhaus-
tive feature search was performed using all combinations of 1–6 fea-

tures of the 38 features for each image sequence to find

discriminative features without risking overfitting. This resulted in

584.934 feature combinations to be evaluated for each image

sequence. A flowchart describing the feature selection is presented

in Fig. 2.

2.F | Classification

K‐Nearest Neighbor (KNN) is a simple nonparametric supervised

classifier, which produces a classification output based on a distance

search to find the nearest neighbor between training and testing

data. KNN was chosen for this study because it is fast, has the abil-

ity to learn from small example sets and has shown good results in

previous PCa diagnosis mpMRI studies.16,25

Each feature combination was evaluated using a KNN classifier

with feature normalization and correlation as distance measure.

TAB L E 1 Data overview.

Data Number

Patients 99

Peripheral zone (PZ) 50

GG1 14

GG2 21

GG3 9

GG4 3

GG5 3

Transitional Zone and Anterior 62

Fibromuscular Stroma (TZ + AFS)

GG1 22

GG2 20

GG3 11

GG4 5

GG5 4

Total 112

Data used for this study, with number of lesions in each Gleason Grade

Group for the peripheral zone, and transitional zone and anterior fibro-

muscular stroma.
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2.G | Validation

K‐fold cross‐validation (CV) is a commonly used method to estimate

model performance, optimize the use of all samples in small data-

sets for training and avoiding overfitting. In this study, stratified

threefold CV was used. Stratification was used due to imbalance in

the dataset in the CV, such that each fold contains approximately

the same percentage of “positive” samples as the full data set. This

setup will yield three sets of train/test data where all folds will

contain samples from both groups even for the smallest groups.

Using stratification in CV improves both bias and variance. Mean

ROC AUC (Receiver Operator Characteristic area under curve) was

calculated from the threefold CV to find the most optimal feature

set. This was done for the PZ and TZ + AFS separately. A one‐ver-
sus‐rest design was used to construct a binary classifier for each

class, using samples from one class as ones, and samples from all

other classes as zeros. To classify an unseen sample using one‐ver-
sus‐rest design, the sample would be classified using all classifiers

(a) (b)

(c) (d)

F I G 1 . Example of region of interest
(white square) around lesion from patient 4
(a and b) with a lesion located in the
anterior fibromuscular stroma and patient
55 (c and d) with a lesion in the peripheral
zone. Left column is T2W and right
column DWI sequence. Asterix inside
region of interest denotes the point from
where the prostate biopsy was obtained.

TAB L E 2 Image Features Extracted from DWI and T2W.

11 gray level run length texture 14 Haralick texture 13 histogram

1. Short Run Emphasis

2. Long Run Emphasis

3. Gray Level Nonuniformity

4. Run Length Nonuniformity

5. Run Percentage

6. Low Gray Level Run Emphasis

7. High Gray Level Run Emphasis

8. Short Run Low Gray Level Emphasis

9. Short Run High Gray Level Emphasis

10. Long Run Low Gray Level Emphasis

11. Long Run High Gray Level Emphasis

12. Angular Second Moment

13. Contrast

14. Correlation

15. Variance

16. Inverse Difference Moment (Homogeneity)

17. Sum Average

18. Sum Variance

19. Sum Entropy

20. Entropy

21. Difference Variance

22. Difference Entropy

23. Information Measure of Correlation I

24. Information Measure of Correlation II

25. Maximal Correlation Coefficient

26. Mean

27. Variance

28. Skewness

29. Kurtosis

30. Energy

31. Min

32. Max

33. Median

34. 10th percentile

35. 20th percentile

36. 30th percentile

37. 40th percentile

38. 75th percentile

Overview of the 38 features extracted from DWI and T2W from each 61 × 61 pixel image fragment.
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and the one yielding the highest probability score would be

assigned as class label.

Each prostatic zone (PZ and TZ + AFM) were analyzed using the

following binary models:

• GG1 vs rest (GG2-5)

• GG2 vs rest (GG1 + 3+4 + 5)

• GG1 + 2 vs rest (GG3-5)

• GG3 vs rest (GG1 + 2+4 + 5)

• GG4 + 5 vs rest (GG1-3)

Optimally, GG4 and 5 were classified separately, however, due

to the low number of samples in these groups, they were merged as

one group. As selected patients with GG2 (GS 3 + 4) tumors may be

considered suitable for AS,26 a model where GG1 and GG2 were

grouped was also evaluated.

Evaluation of each binary classification model was performed

using AUC in addition to classification accuracy, sensitivity, and

specificity.

3 | RESULTS

At total of 112 lesions were included in this study, with 50 lesions

placed in the PZ and 62 in TZ or AFS. Of the 99 included patients

(mean age 65 years, range 42–78 years), 87 patients had one cancer-

ous finding (lesion), 11 patients had two findings, and a single patient

had three findings.

The evaluation results for lesions in the PZ can be seen in Fig. 3.

For this zone, AUC values ranged from 0.87 to 0.98, with GG3 vs

rest showing the best performance with only two misclassified

lesions out of 50 and 100% sensitivity.

The TZ + AFS AUC values ranged between 0.83 and 0.94 as

shown in Fig. 4. Similarly, the TZ + AFS GG3 vs rest achieved the

best performance with three lesions misclassified, one false negative

and two false positives.

For both PZ and TZ + AFS the worst performing classification

model was differentiating GG1 from more aggressive lesions.

Overall classification of lesions in the PZ revealed better perfor-

mance compared to TZ + AFS, with overall mean AUC of 0.92 for

PZ and 0.87 for TZ + AFS.

Computational time for feature selection and classification was

approx. 6.5 hr for each zone (PZ and TZ + AFS) using 12 of the 20

workers on the local cluster.

Our results indicate that combinations of histogram and texture

features achieve the best performance.

The number of features used for the classification models ran-

ged from 5 to 6 for DWI in PZ (see Table 3) and 4 to 6 features

for T2W in TZ + AFS (see Table 4). Histogram features were the

most used features for classifying lesions in the PZ, with 14 his-

togram features used for the five models. The use of GLRL tex-

ture features were limited in this zone with only five features

used. Ten Haralick features were used in PZ with correlation fea-

tures dominating.

For TZ + AFS, the use of all three feature groups were more

equal; nine GLRL texture, eight Haralick texture, and nine histogram

features. Only seven of the features were not used in any models in

neither PZ nor TZ + AFS.

4 | DISCUSSION

The aim of this study was to determine the ability of imaging fea-

tures extracted from bpMRI to accurately determine the pathological

Gleason grade of 112 PCa lesions from 99 patients. We found that

AUC values using our method are comparable to, or higher than,

previously published studies using 2‐tier classification algorithms (i.e.,

low vs high grade or benign vs malignant).

F I G 2 . Flowchart of semi‐exhaustive feature selection used in this
study. A feature set, with 1–6 features, is generated and evaluated
using KNN classifier in a threefold cross validation setup. Mean AUC
from the threefolds are ranked to find the most optimal feature set.
The process is repeated n times, where n (n = 584.934) equal the
number of exhaustive combinations that can be generated out of 38
features (for DWI and T2W), using 1–6 features at the time.
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Interestingly, classifying GG3 revealed the best results for both

PZ and TZ + AFS. Only one GG3 was misclassified (false negative) in

TZ + AFS and none in the PZ. For GG4 + 5 only one false negative

sample was found in PZ. However, since the sensitivity is highly sus-

ceptible to one or two false negatives with low number of true

positive samples, the sensitivity was as low as 0.83 in PZ. The two

false negative GG4 + 5 in TZ + AFS resulted in the lowest sensitivity

of 0.78.

For PZ, GG1 + 2 vs higher GG showed good performance with

only one false positive and one false negative. For TZ + AFS,

F I G . 4 . Classification results from
threefold cross validation using features
extracted from T2W for the transition
zone and anterior fibromuscular stroma
(62 lesions). Mean AUC is presented
together with accuracy, sensitivity,
specificity.

TAB L E 3 Features used classification of lesions in the peripheral zone.

GG 1 vs rest GG 2 vs rest GG 1 + 2 vs rest GG 3 vs rest GG 4 + 5 vs rest

GLRL 9,11 3 1 1

Haralick 14 20, 24 12, 25 13, 14 19, 20, 24

Histogram 27, 28, 29 32, 33, 37 30, 34, 35, 36 27, 34, 36 35

Features used for each classification model for lesions in the peripheral zone. The feature number refers to the list of features in Table 2.

TAB L E 4 Features used for classification of lesions in transitional zone and anterior fibromuscular stroma.

GG 1 vs rest GG 2 vs rest GG 1 + 2 vs rest GG 3 vs rest GG 4 + 5 vs rest

GLRL 3, 5 3, 6 4 6, 7 2, 11

Haralick 15, 22 13 13, 16, 22 14, 19

Histogram 35, 37 35, 38 31, 33 32, 38 31

Features used for each classification model for lesions in transitional zone and anterior fibromuscular stroma. The feature number refers to the list of

features in Table 2.

F I G . 3 . Classification results from
threefold cross validation using features
extracted from DWI for the peripheral
zone (50 lesions). Mean AUC is presented
together with accuracy, sensitivity,
specificity.
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however, ten lesions of 62 were misclassified, which is the worst

performance presented in this study. This could suggest, that the

selected features are specific for each GG and the six features used

for this model lack differentiability for grouping GG.

Our results are similar to other studies confirming that mpMRI

can be used to classify PCa lesions into grade categories. The win-

ning group for the recent PROSTATEx challenge in differentiating

between significant (GS ≥ 6) and nonsignificant (GS < 6) lesion

reached an AUC of 0.87 for their model among 33 participating

groups.27 An AUC of 0.92 was obtained using a KNN‐classifier with

textural and statistical features from T2W, DWI, ADC, and Ktrans

for differentiation PCa from benign conditions.16 Several studies

have previously investigated the use of histogram and texture fea-

tures extracted from mpMRI for PCa imaging.14 Both texture and

histogram features have also previously been shown to correlate

well with PCa aggressiveness.24,28 Although texture features have

been used for both PCa detection and assessment of aggressiveness,

the underlying biology is not yet clear.21

Previous works within mpMRI PCa imaging have used different

feature selection methods like filter, wrapper, and embedded.13,29

For this study we chose to use a semi‐exhaustive features search.

The specific choice of selection method is based on the specific

application, since an overall aim is to minimize bias, avoid overfitting,

and obtain good classification performance. Sequential feature selec-

tion methods, like forward and backward selection, were investi-

gated (results not presented), but we found that it quickly got

trapped in local minima (e.g., finding one feature, which was descrip-

tive for a particular fold, but not representative for the full

dataset alone). Finding local minima is a known disadvantage of

sequential selection methods.30 Including some randomness into the

algorithm might be able to solve the problem but was not investi-

gated in this study.

All models in this study used both histogram, GLRL and Haral-

ick texture features, and the features differed for each GG and

zone of the prostate. A recent multi‐institutional study also

showed that mpMRI features for PCa detection in PZ differ from

those in the TZ.31 This fits well with the PIRADS v2 guidelines

suggesting that the prostatic zones should be analyzed sepa-

rately.10 Knowledge about zone should be available for automatic

system, either from an automatic detection algorithm or from man-

ual detection by a radiologist and can therefore easily be included

in assessment models.

Clinical factors, like patient age, PSA (prostate specific antigen),

prostate/lesion volume, and T‐stage might improve the performance

of the models and could be included in future models. However, one

study did include patient characteristics and did not see any

improvement in AUC.16 According to PIRADS v2 both ADC map and

high b‐value images should be included in the PCa analysis. We

choose to focus our analysis in the PZ on high b‐value DWI image

series. For future studies it might be favorable to use the ADC map

or to combine DWI and ADC for GG assessment.

A KNN classifier was used in this study because it is fast and

works well with small datasets. We did not consider other classifiers,

because KNN performed well for our data. Other popular classifiers

include SVM and Naïve Bayes and could be investigated for compar-

ison. Mean AUC was used to find the most optimal features in this

study. AUC is a popular metric for evaluating classifier performance

and has been proven better than accuracy, both empirically and the-

oretically. Furthermore, the use of AUC makes it possible to com-

pare the performance of the classifier to those of others, as AUC is

a commonly reported metric. However, other metrics, like accuracy

or F‐score could also be considered.32 The choice of evaluation met-

rics is application‐dependent and should be based on the classifica-

tion model and data set; for example, accuracy may yield

overoptimistic results for imbalanced class distributions, as algo-

rithms tend to favor the class with most samples.32 The metric used

might be altered to either value high sensitivity or specificity

depending on the clinical situation. For example, when determining if

a patient is eligibile for AS it might be favorable to obtain a high

specificity for GG1 to make sure that those classified as GG1 with

high probability are GG1. Including a patient with high grade PCa

into AS could cause undertreatment.

We acknowledge some limitations to the present study; First,

it is a limitation that the models were not tested on the test set

(70 lesions) from the challenge. This would evaluate the true pre-

dictive performance of the models by testing on an independent

dataset, which is generally recommended. Second, a future study

should include the separation of GG4 and GG5. This was not done

in this study, due to the low number of samples in these two

groups (3 and 3 for PZ and 5 and 4 for TZ + AFS for GG4 and

GG5, respectively). Finally, as no lesion delineation was available

for this study, a squared ROI around the lesion center was chosen

for feature extraction. As the lesion size varies, it is likely that

some noncancerous tissue is included in the ROI and for some

lesions not included the whole lesion. Previous studies have shown

that delineation of the entire lesion improves accuracy compared

to bounding box approach.33 A lesion delineation might improve

the models; however, such delineation requires experienced per-

sonnel and is very time‐consuming. If delineation could significantly

improve the models, it should be done automatically in order to

minimize the workload.

A substantial amount of papers has been published on automatic

PCa detection models.14 Combining such a model with an automatic

assessment of GG could aid radiologists in their daily work and

hopefully improve the pretherapeutic risk assessment of PCa

patients. Such a system would need to be validated in clinical set-

tings to determine its performance.

5 | CONCLUSION

In conclusion, this study showed that zonal‐specific imaging features

from DWI and T2W MRI enables automatic differentiate between

GG in PCa lesions with promising results. Features used for all the

binary classification models included both texture and histogram

features.
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