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The overconfidence, a well-established bias, in fact leads to unrealistic expectations or faulty assessment. So
it remains puzzling why such psychology of self-deception is stabilized in human society. To investigate this
problem, we draw lessons from evolutionary game theory which provides a theoretical framework to address
the subtleties of cooperation among selfish individuals. Here we propose a spatial resource competition
model showing that, counter-intuitively, moderate values rather than large values of resource-to-cost ratio
boost overconfidence level most effectively. In contrast to theoretical results in infinite well-mixed
populations, network plays a role both as a “catalyst” and a “depressant” in the spreading of overconfidence,
especially when resource-to-cost ratio is in a certain range. Moreover, when bluffing is taken into
consideration, overconfidence evolves to a higher level to counteract its detrimental effect, which may well
explain the prosperity of this “erroneous” psychology.

s is well known, confidence leads to success in a wide range of domains including business, job perform-

ance, and competitions for champions'~. Ironically, when confidence is relatively high, the whole human

beings fall victim to overconfidence, which is considered to be the most “pervasive and potentially
catastrophic” of all the cognitive biases by some psychologists**. Such exaggerated confidence is often blamed
for labor strikes, wars, and stock market bubbles®®. But like a coin has two sides, some other authors hold
completely different opinions, insisting on its advantages in boosting morale, ambition, resolve and persistence
so as to increase the probability of success’'*. Regardless of different views, the prevalence of overconfidence is an
undeniable fact. For example, by asking people how confident they are of specific beliefs, researchers find that
confidence systematically exceeds accuracy, implying people are more sure that they are correct than they deserve
to be'*'. Further observations also show that individuals incline to form overly positive judgment of their
abilities, which is called “better-than-average effect”".

Overconfidence is a fascinating area of research, since it touches upon many different disciplines ranging from
sociology to economics. Mounting effort have been devoted to unveiling the reasons for the pervasiveness of this
faulty psychology. Prior work have mostly offered three explanations. The first posits a motivated bias:
Individuals are driven to be overconfident because it provides them with psychological benefits'®. The second
explanation highlights the cognitive processes that may sometimes produce directional biases". An additional
possibility is that overconfidence enhances the person’s social status'®. Apart from the above results, Johnson and
Fowler have presented an evolution model, demonstrating that overconfidence often prevails over accurate
assessment as long as benefits from contested resources are sufficiently large compared with the cost of com-
petition'. In fact, Johnson and his coauthors used standard assumptions about evolution dynamics'®, under
which whoever get larger fitness are more likely to survive, and better strategies will be imitated.

Treating whether to be overconfident or not as a strategy, we can associate the study of this psychology with
evolution game theory which was originally introduced as a tool for studying animal behavior*>*!, but has become
a general approach that transcends almost every aspect of evolutionary biology®*. The traditional approach of
evolutionary game theory uses deterministic dynamics to describe infinitely large, well-mixed populations®*. To
understand evolutionary game dynamics in finite-sized populations, a stochastic approach is developed>*.
Particularly, network has been found to be an important ingredient affecting evolutionary game dynamics.
While pioneering works mainly focus on spatial games on regular lattices””**~*’, more studies have been expanded
to general structured populations, such as small-world** **,scale-free networks****’, and random networks***.
Taking into account the conspicuous effect of population structure in evolutionary dynamics, one may then ask
how psychologies or emotions transmit between interacting individuals who site on specific networks, and
whether the transmission has profound significance. In fact, by reconsidering the concept of imitation,
Szolnoki et al. find that copying emotions such as goodwill and envy instead of pure strategies from more
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successful players can even resolve social dilemmas on structured
populations, additionally pointing out that the emotional profile
depends not only on the payoffs but also on the heterogeneity of
the interaction network®**".

Inspired by all the previous works above, we propose a spatial
resource competition model, simple but general, aiming at dealing
with the puzzle how overconfidence spreads and fixes in structured
populations. Square lattice prescribes that each individual competes
with his 4 nearest neighbors to collect available resources. Then
players are more likely to learn the psychology of the successful,
despite their real capabilities. Different from the model in Ref'?,
bluffing behavior has been incorporated into our model. Although
bluffing is often argued to be unstable in natural selection®?, it is
usually not reliably distinguished from the true ability®. In particu-
lar, successful disguises (bluffing) and real capacity need a much
longer time scale to evolve than that of overconfidence, so they are
treated as constant indices in our model. We will show in this study
that, moderate values of resource-to-cost ratio r/c create a more
favorable environment for the evolution of overconfidence in struc-
tured population. More importantly, the intricate relationship
between bluffing and overconfidence may be a potential driving force
for the high level of overconfidence. The simulation and theoretical
analysis details are described in the Methods.

Results

We begin by presenting overconfidence level f, as a function of
resource-to-cost ratio r/c while initial fractions of different types of
individuals are equal (see Fig. 1(a)). It is shown that moderate values,
rather than high values of r/c, boost f effectively in structured popu-
lations. Interestingly, regardless of the values of o and f3, the plateau
of high overconfidence level sharply drops to a lower platform once
r/c exceeds the critical value 2.0. This can be attributed to the fact that
considerable amount of resource stimulates everyone to make a
claim actively, leading to intensive conflicts that help one to recog-
nize his real capability. Moreover, the existence of bluffing plays a key
role on the prosperity of overconfidence, especially when /c is high.
As is shown in Fig. 1(a), without bluffing ( = 0), fo is stabilized at a

much lower level than that when bluffing exists for /c > 2.0. Players
seem to be more apt to be overconfident when facing opponents who
are not as powerful as they display, which accords with common
beliefs. However, excessive overconfidence intensity might inhibit
its spreading among the population. For instance, when « = 0.5
one individual overestimates himself so seriously that he can even
challenge opponents from higher rank of real capability (the rank gap
is 0.5), and this choice never pays off.

As a comparison, we also consider the evolution of overconfidence
in well-mixed populations (see Fig. 1(b)), by means of extended
replicator dynamic (see Methods for details). It is found that network
structure works as a “double edged sword”: When r/c is relatively
small, it plays a role as “catalyst” to impel the spreading of over-
confidence; When resource is rich (larger r/c), it acts as “depressant”
to cool down the atmosphere. The primary cause lies in the fact that
network produces a local “celebrity effect”>**. Specifically, indivi-
duals with the highest real capability get more payoff in each game
round, and thus do not incline to change their overconfidence states.
In networks, they act as hubs to influence their neighbors, forming
non-overconfidence clusters to resist invasions (detailed explana-
tions will be discussed later). Therefore no matter how large r/c is,
the existing unbiased elites ensure that overconfidence cannot dom-
inate the whole population. In contrast, in well-mixed populations
individuals always imitate the “fittest” strategy globally, thereby x* is
more sensitive to the values of r/c than f; does, and x* will finally
reach a fully overconfident state if resource is rich enough (r/c > 4.0)
when bluffing exists. However, common traits in both structured and
unstructured population exists that bluffing promotes overconfi-
dence level (see Fig. 1 (a) and (b)).

We next evaluate the impact of overconfidence intensity o and
bluffing intensity  on overconfidence level fo, as presented in Fig. 2.
When r/c = 1.5 (see Fig. 2(a)), fo sustains a high level over the whole
parameter plane of « and f. This confirms that moderate values of
resource-to-cost ratio elevate overconfidence, which is robust to
changes in overconfidence intensity and bluffing intensity.
However, when r/c = 3 (a large resource-to-cost ratio, see
Fig. 2(b)), distinction in fos with respect to o and f§ becomes more
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Figure 1| (a) Stable fraction of overconfident individuals f;, in structured population and (b) equilibrium frequency of overconfident individuals

x* in infinite well-mixed population as a function of resource-to-cost ratio r/c for different values of o« and f. Data presented in Panel (a) are obtained by
means of Monte Carlo simulations, while in Panel (b) are obtained by means of extended replicator dynamic (see Methods for details). Hollow symbols in
Panel (a) and dash line in Panel (b) correspond to cases where bluffing does not exist (f = 0). Other parameters: f;o = 0.5, fz = 0.5.

| 4:5491 | DOI: 10.1038/srep05491



0.2500

Figure 2 | The 3-D plots showing the stationary fraction of overconfident individuals £, in dependence on both @ and ffor (a) r/c = 1.5and (b) r/c = 3.
The minimum fyis about 0.77 in Panel (a) showing that overconfidence is always favored under moderate values of r/c. When r/cis high, fo becomes more
strongly dependent on the combination of o and . The maximum fo is reached when both o and f are high, indicating that higher values of

overconfidence is evolved in response to higher bluffing activities.

conspicuous. The maximum fy is reached within the region where
large « is accompanied by large . Note that for any fixed value of f3,
fo is always larger within the region above diagonal (i.e., « > f§) than
below (i.e., @ < f). In other words, an overconfidence intensity
slightly larger than bluffing intensity induces higher overconfidence
level. In this sense, overconfidence is evolved as a tool to conquer the
negative effect of others’ bluffing. One should believe himself more
than believing others’.

We have further studied the impact of initial frequencies of over-
confident individuals f;o and bluffing individuals fz on the final over-
confidence level fo, as presented in Fig. 3. It can be observed that at
any given value of fo, increasing fp will elevate fo. A larger fz means
that more individuals display an exaggerated capability. When sur-
rounded by more bluffing neighbors, one is more likely to be prof-
itable if he is overconfident. Meanwhile, for any given f, fo also
monotonously increases with f;o. Unlike the influence of initial fre-
quency on the evolution of cooperation in structured population®,
we find that the system always converges to a higher overconfidence
level compared to the initial one (i.e., fo > fi0), showing that over-
confidence is constantly favored by natural selection once bluffing
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Figure 3 | Influence of initial overconfidence level fi; and initial bluffing
level f3 on stationary fraction of overconfident individuals f, in the
contour form. Parameters are: & = 0.4, § = 0.3, and r/c = 2.5. Similar
results can be obtained whenever o > f and r/c > 2.0. Overall, larger f;o
corresponds to higher fo. For any given value of fo, increasing f5 further
promotes fo, showing that overconfidence is favored when bluffing exists.

exists. Our investigation shows that the prosperity of bluffing stimu-
lates overconfidence to prevail, given that a > f and r/c > 2.0.

For better understanding the influence of network structure on the
evolution of overconfidence, we present in Fig. 4 some typical snap-
shots of strategy patterns in time evolution. It can be observed that,
regardless of the different initial distributions, overconfidence
spreads quickly and flourishes. Individuals who have high real ability
(H), considered as “elites” here, play decisive roles in guiding social
mentality, and thus they become the core of the clusters. As evolution
proceeds, the number of overconfident elites (blue) increases, indi-
cating that they have an advantage over the unbiased elites (yellow).
However, the latter can also take advantage of the network structure
to form some solid clusters (yellow + red) to resist invasion, which
explains why the unbiased ones will not die out in the long run in
structured populations. Notably, the overconfidence clusters (blue +
green) tend to connect with each other, forming larger ones to
expand their territory, especially when initial fraction of overconfi-
dence is relatively high (fio = 0.3). Note that besides network reci-
procity®?*¥, local “celebrity effect” also plays important roles.
Individuals are susceptible to neighbor elites’ psychology. These fol-
lowers of overconfident or unbiased elites work as “buffer” in
between, preventing the direct confrontation of two types of elites.

Moreover, who benefit more from such a resource competition
game draws our attention, and thus we compare the average payoffs
of different types of individuals in Fig. 5. Firstly, real ability is fatal in
deciding one’s faith in resource competition. The higher one’s real
ability is, the higher average payoff one acquires. Just as illustrated in
Fig. 5 (a), there exist clear-cut gaps between income hierarchies, and
the lower level can never outcompete the upper one, no matter how
the initial frequencies of bluffing and overconfident individuals are.
Secondly, whether bluffing ones perform much better than unbiased
ones also depends on their real abilities. The low capability bluffing
ones have the whip hand over those who do not bluff, especially when
bluffing and overconfidence are rare initially (see the left panel of
Fig. 5(b)). While for middle and high ability, the advantage of bluft-
ing is relatively low (see the middle and right panel of Fig. 5 (b)).
Common for individuals of any level of real ability, bluffing is more
effective when the others do not bluff and meanwhile do not develop
the overconfidence, the useful tool countervailing bluffing.

Furthermore, it is worth studying the situation not only overcon-
fidence state (OS), but also bluffing state (BS) could be subject to
evolution process. In other words, we consider an extended model
that individuals can mimic any feature of others except the real
ability. Different from the case with fixed bluffing level (see Fig. 1),
where fo suddenly drops once r/c > 2.0, here fo, monotonously
increases with r/c (see Fig. 6). And in the latter case, fo is higher than
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Figure 4 | Typical snapshots of spatial patterns formed by different types of individuals under initial overconfidence levels f;o = 0.1 ((a)-(c)) and
fio = 0.3 ((d)-(f)) at different time steps. Overconfident ones are colored blue (high real ability) and green (middle and low real ability). Unbiased ones
are colored yellow (high real ability) and red (middle and low real ability). The stationary fractions of overconfident ones are 42.5% for f;o = 0.1 and
62.6% for fio = 0.3. In structured population, high real ability but unbiased individuals form clusters to resist the invasion by overconfident ones,
explaining the survival of unbiased ones even with high /c. The size of the square lattices is 100 X 100. Other parameters: & = 0.4, f = 0.3, and r/c = 3.

the former. Meanwhile, fz evolves to a higher value relative to the
initial one (0.5) when r/c > 2. And f3 is further promoted with larger
bluffing intensity f§ (see Fig. 6(b)). This may provide an explanation
why fo evolves to a higher level and does not decrease when r/c > 2.
Just like what we have shown in the scenario with fixed f3 (see Fig. 3),
a larger percentage of bluffing individuals induces higher overconfi-
dence level. It seems that overconfidence may gain more popularity if
the skill of bluffing can be learned easily.

Discussion

In summary, we have investigated the impact of spatial structure and
bluffing on the evolution of overconfidence in the resource competi-
tion game. In contrast to previous results in well-mixed popula-
tions', the stable state is no longer composed of monomorphic
overconfident individuals when the resource-to-cost ratio r/c is suf-
ficiently large. Overconfidence never dominates the whole popu-
lation and is more adaptive for moderate r/c. This is partially
ascribed to the local celebrity effect caused by the population struc-
ture and real ability hierarchies. Furthermore, a potential benefit far
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exceeding the cost of competition stimulates more conflicts'>,
which in turn depresses the psychology of self-deception, i.e., the
overconfidence.

The existence of bluffing behavior usually leads to ambiguity in
one’s perception about other’s real ability. Our study shows that
bluffing promotes overconfidence. Overconfidence is beneficial for
individuals in an environment where bluffing is prevalent, because it
makes them dare claim and compete for the resource, which would
not happen without such “erroneous self-deception”. Therefore
overconfidence is just like a tool to conquer the negative effect of
bluffing. This conclusion is robust to initial distributions or intensity
of overconfidence and blufting. Furthermore, the advantage of bluff-
ing is more significant within communities of relatively low real
abilities. If bluffing can be learned by others, it will become popular
among individuals, further promoting overconfidence level.

Allin all, the spreading of overconfidence is investigated in a more
realistic model, and we propose that the existence of bluffing is the
key factor for the prosperity of the bias towards exaggerated personal
qualities and capabilities. We hope that these observations could
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Figure 5 | Comparison of the payoffs of individuals with different real abilities. (a) The 3-D plot showing the normalized average accumulated payoffs of
individuals with high (H, crimson), middle (M, light green), and low(L, blue) real abilities respectively, as a function of f;o and fz. H ranges from 0.9350 to
1; M ranges from 0.4859 to 0.5521; L ranges from 0.0443 to 0.1065. (b) Average payoff ratio between the individuals who bluff and those who do not
(R = Payof fyiuy Payof fuon—pig) as a function of fio and fp, when their real abilities are low (R"), middle (R"), and high(R") respectively. R" ranges
from 1.03 to 8.62; R™ ranges from 1.01 to 1.634; R" ranges from 1.002 to 1.322. Data point is obtained by averaging over a period of 10000 time steps, and
we have checked that longer time period does not qualitatively change the results. Other parameters: o = 0.4, f = 0.3, and r/c = 3.
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Figure 6 | Stable fractions of overconfident individuals f, and bluffing individuals f; as a function of r/c for different values of & and f, when
players can learn both the overconfidence state and the bluffing state of others. In Panel (a), « = 0.4 and # = 0.3. Bluffing prevails once /c exceeds the
critical value 2.0. Overconfidence does not drop to lower level with increasing /¢ and remains above 0.89. In Panel (b), « = 0.7 and = 0.6. Bluffing
almost dominate the whole range of r/c. Overconfidence stays above 0.98 for #/c > 0.5. Other parameters: f;o = 0.5, and f;z = 0.5.

provide some insight into understanding this widespread erroneous
psychology in human society.

Methods

Mathematical model. Within this work, the basic model is a resource competition
game (RCG). Without loss of generality, an individual i in our model is characterized
by real capability 0;, overconfidence intensity o, and bluffing intensity f5, where 0; €
© = {1, 1.5, 2}, corresponding to low (L), middle (M), and high (H) real capabilities,
respectively. The value of o represents the perception error of a player about his own
ability when he is overconfident, while f§ represents how much stronger a player
displays than he really is. Whoever dare compete for resource is at least confident, so
we assume no self-abasement in this model. In a RCG, i belives he owns a “self-
perceived capability” k; as:

k,‘ = 9,‘ + u;o (1)
where u; = 1 if i is overconfident and 0 otherwise. He also exhibits his “displaying
capability” m; as:

m;=0,+v; ﬁ (2)
where v; = 1 if i bluffs and 0 otherwise. Supposing a resource r is potentially available
to individuals that claim it, and two players i and j both can claim this resource,a RCG
takes place. If neither individual claims the resource, then no fitness is gained. If only
one individual makes a claim, then it acquires the resource and gains fitness r and the
other individual gains nothing. If both individuals claim the resource, then each
individual pays a cost ¢ due to the conflict between them, and the results depend on
their real capabilities. Therein player i faced with j gains a payoff Py, which can be
calculated as:

e (1) Ifk; > mjand k; < m,, i claims but j does not, and thus P;; = r.

® (2) If k; < mj, i will not claim, and P;; = 0.

® (3) If k; > mj and k; > mj;, a conflict happens between i and j, whose real
capabilities determine what they can get: If 0; > 0;, P; = r — ¢ If 0; < 0,
P = —cIf0; =0, P; = r/2 — ¢ ie, ris equally distributed between them after
a battle.

® (4)Ifk; = mj, the relation between r and ¢ should be considered: If r < 2¢, i will not
claim because the upcoming conflict promises no positive benefit, and thus P;; =
0;If r> 2c and k; < m;, i gains the whole resource without any payout, and P;; = r;
If r > 2cand k; = m;, the clash is inevitable, and therefore P;; can be calculated as
in case (3).

Players are located on the vertices of L X L square lattices with periodic boundary
conditions. Capability rank and bluffing state (BS) are considered to be natural
instincts, and thus are constant throughout the evolution. Individuals can only
imitate overconfidence states (OS) of others. In an extended model we also explore the
case where individuals can mimic both OS and BS of others. fi denotes the fraction of
individuals that bluff. Monte Carlo simulations of the game are carried out com-
prising two elementary steps. Firstly, each player i collects its payoff P; by interacting
with its four nearest neighbors through RCG. The payoff of player i can be calculated
as:

P[=Zpij (3)

7€)

where Q; represents players in i’s neighborhood. Secondly, players consider chan-
ging their OS synchronously. Specifically, player i adopts the OS of the randomly
selected neighbor j with the probability

1

)= ) /K]

(4)

where K characterizes the level of uncertainty in strategy adoption®. Without loss of
generality we use K = 0.1, and we have confirmed that different values of K do not
qualitatively change the simulation results.

Extended replicator dynamic. For comparison, evolutionary dynamics of
overconfidence in well-mixed population is also investigated. In replicator
dynamics, a differential equation governs the evolution of the densities of different
strategies, lending to the notion of evolutionary stability>***'. Further,
enlightened by Ref™, we can consider the whole population to be specially
community-structured®~*, depending on different character profiles of
individuals. There are 6 character profiles, specified by a 2-bit feature name [a,a,]
where a; € [L, M, H] indicates the capability level of this individual is low,
middle, or high, while a, € [B, N] indicates whether he bluffs or not, indeed
forming 6 communities. Players imitate overconfidence states of others but cannot
change their characters, and thus the size of each community is constant and the
members cannot migrate among communities. Strategies A (or B) indicates that
an individual is overconfident (or not), while x; and y; (i = LB, LN, MB, MN, HB,
HN) denote the fractions of individuals adopting strategy A and B in community i
respectively. Here x; + y; = 1. We use p; to denote the fraction of community i
members in the whole population, and then Zi p;=1. Hence any individual
interacts with a player from community i with probability p; according to the
well-mixed assumption. In each community, the standard replicator equation
takes the form of:

{ i =xi (4 =)

) " (i=LB, LN, MB, MN, HB, HN)
Y=g —10;)

)

where 174; and #p; are the fitness of overconfident and unbiased people in
community i respectively, and 77; = x;114; + yiljp; is the average fitness of individuals
in community i. By solving above equations, we can obtain x;, the stable fixed
state of overconfidence (SFSO) of community i. Hence we can derive the SFSO of

the entire system as
X' = Z pix;
i

Assume that individuals are randomly distributed among the communities, i.e.,
for each community i(i = LB, LN, MB, MN, HB, HN), p; = 1/6, and that each one
has equal probability 0.5 to be overconfident or not. Thus initial overconfidence
level for each community is x,@ =1/12. Taking o = 0.4 and f§ = 0.3 as an
example, we can obtain the dynamic equations as:

(6)
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The stable equilibrium point of the above differential equations, i.e., the SFSO, is:
2
. r (r<2c)
x'=< r+2c (8)
1 (r>2c)

Different SFSOs with respect to other overconfidence and bluffing intensities are
shown in the main text.

. Taylor, S. & Brown, J. Positive illusions and well-being revisited-separating fact
from fiction. Psychol. Bull. 116, 21-27 (1994).

. Eisen, C. Confidence: How winning streaks and losing streaks begin and end. Libr.
J. 129, 67 (2004).

. Dunn, D. S. A primer in positive psychology. J. Soc. Clin. Psychol. 27, 896-898
(2008).

. Pallier, G. The role of individual differences in the accuracy of confidence
judgments. J. Gen. Psychol. 129, 257-299 (2002).

. Koehler, J. The psychology of judgment and decision-making. Contemp. Psychol.
40, 315-316 (1995).

. Babcock, L. & Olson, C. The causes of impasses in labor disputes. Ind. Relat. 31,
348-360 (1992).

. Kampmark, B. Overconfidence and war: The havoc and glory of positive illusions.
J. Am. Stud 40, 178-179 (2006).

. Aumann, R. Agreeing to disagree. Ann. Stat 4, 1236-1239 (1976).

. Trivers, R. The elements of a scientific theory of self-deception. Ann. Ny. Acad. Sci
907, 114-131 (2000).

. McKay, R. T. & Dennett, D. C. The evolution of misbelief. Behav. Brain. Sci. 32,
493 (2009).

. West, S. Deceit and self-deception: Fooling yourself the better to fool others.
Nature 478, 314-315 (2011).

. Johnson, D. D. P. & Fowler, J. H. The evolution of overconfidence. Nature 477,
317-320 (2011).

. Roediger, H. & Mcdermott, K. Creating false memories-Remembering words not
presented in lists. J. Exp. Psychol. Learn. 21, 803-814 (1995).

. Henson, R., Rugg, M., Shallice, T. & Dolan, R. Confidence in recognition memory
for words: Dissociating right prefrontal roles in episodic retrieval. J. Cognitive.
Neurosci. 12, 913-923 (2000).

. Alicke, M., Klotz, M., Breitenbecher, D., Yurak, T. & Vredenburg, D. Personal
contact individuation, and the better-than-average effect. J. Pers. Soc. Psychol. 68,
804-825 (1995).

. Dunning, D., Leuenberger, A. & Sherman, D. A new look at motivated inference-
Are self-serving theories of success a product of motivational forces. J. Pers. Soc.
Psychol. 69, 58-68 (1995).

. Kruger, J. & Dunning, D. Unskilled and unaware of it: How difficulties in
recognizing one’s own incompetence lead to inflated self-assessments. J. Pers. Soc.
Psychol. 77, 1121-1134 (1999).

. Anderson, C., Brion, S., Moore, D. A. & Kennedy, J. A. A status-enhancement
account of overconfidence. J. Pers. Soc. Psychol. 103, 718-735 (2012).

. Nowak, M. A. Evolutionary Dynamics: Exploring the Equations of Life (Harvard
Univ. Press, 2006).

. Smith, J. M. & Price, G. R. The logic of animal conflict. Nature 246, 15-18 (1973).

. Smith, J. M. Evolution and the Theory of Games (Cambridge Univ. Press, 1982).

. Nowak, M. A. & Sigmund, K. Evolutionary dynamics of biological games. Science
303, 793-799 (2004).

. Hofbauer, J. & Sigmund, K. Evolutionary Games and Population Dynamics
(Cambridge Univ. Press, 1998).

. Hofbauer, J. & Sigmund, K. Evolutionary game dynamics. B. Am. Math. Soc. 40,
479-519 (2003).

. Schaffer, M. Evolutionarily stable strategies for a finite population and a variable
contest size. J. Theor. Biol. 132, 469-478 (1988).

. Traulsen, A. & Nowak, M. A. Evolution of cooperation by multilevel selection.
Proc. Natl. Acad. Sci. USA 103, 10952-10955 (2006).

. Perc, M. Transition from gaussian to levy distributions of stochastic payoff
variations in the spatial prisoner’s dilemma game. Phys. Rev. E 75, 022101 (2007).

. Traulsen, A. & Nowak, M. A. Chromodynamics of cooperation in finite
populations. PLoS ONE 2, €270 (2007).

. Nowak, M. A. & May, R. M. Evolutionary games and spatial chaos. Nature 359,
826-829 (1992).

30. Nakamaru, M., Matsuda, H. & Iwasa, Y. The evolution of cooperation in a lattice-
structured population. J. Theor. Biol. 184, 65-81 (1997).

31. Szabd, G. & Toke Evolutionary prisoner’s dilemma game on a square lattice. Phys.
Rev. E 58, 69-73 (1998).

32.Szabé, G., Antal, T., Szabo, P. & Droz, M. Spatial evolutionary prisoner’s dilemma
game with three strategies and external constraints. Phys. Rev. E 62, 1095-1103
(2000).

33. Szolnoki, A., Perc, M. & Danku, Z. Making new connections towards cooperation
in the prisoner’s dilemma game. EPL 84, 50007 (2008).

34. Szabo, G. & Hauert, C. Phase transitions and volunteering in spatial public goods
games. Phys. Rev. Lett. 89, 118101 (2002).

35. Szolnoki, A., Wang, Z. & Perc, M. Wisdom of groups promotes cooperation in
evolutionary social dilemmas. Sci. Rep. 2, 576 (2012).

36. Perc, M. Sustainable institutionalized punishment requires elimination of second-
order free-riders. Sci. Rep. 2, 344 (2012).

37. Wang, X., Perc, M,, Liu, Y., Chen, X. & Wang, L. Beyond pairwise strategy
updating in the prisoner’s dilemma game. Sci. Rep. 2, 740 (2012).

38. Santos, F. C., Rodrigues, J. F. & Pacheco, J. M. Epidemic spreading and
cooperation dynamics on homogeneous small-world networks. Phys. Rev. E 72,
056128 (2005).

39. Ren, J., Wang, W. X. & Qi, F. Randomness enhances cooperation: A resonance-
type phenomenon in evolutionary games. Phys. Rev. E 75, 045101 (2007).

40. Fu, F,, Liu, L. H. & Wang, L. Evolutionary prisoner’s dilemma on heterogeneous

Newman-Watts small-world network. Eur. Phys. J. B. 56, 367-372 (2007).
. Perc, M. Double resonance in cooperation induced by noise and network variation
for an evolutionary prisoner’s dilemma. New J. Phys. 8, 183 (2006).

42. Chen, X. & Wang, L. Promotion of cooperation induced by appropriate payoff
aspirations in a small-world networked game. Phys. Rev. E 77, 017103 (2008).

43. Santos, F. C. & Pacheco, J. M. Scale-free networks provide a unifying framework
for the emergence of cooperation. Phys. Rev. Lett. 95, 098104 (2005).

44. Santos, F. C., Pacheco, J. M. & Lenaerts, T. Evolutionary dynamics of social
dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. USA
103, 3490-3494 (2006).

45. Szolnoki, A., Perc, M. & Danku, Z. Towards effective payoffs in the prisoners
dilemma game on scale-free networks. Physica A 387, 2075-2082 (2008).

46. Perc, M. Evolution of cooperation on scale-free networks subject to error and
attack. New J. Phys. 11, 033027 (2009).

47.Wu, T., Fu, F.,, Zhang, Y. & Wang, L. Adaptive role switching promotes fairness in
networked ultimatum game. Sci. Rep. 3, 1550 (2013).

48. Barabasi, A. L. & Albert, R. Emergence of scaling in random networks. Science 286,
509-512 (1999).

49. Szolnoki, A. & Perc, M. Emergence of multilevel selection in the prisoner’s
dilemma game on coevolving random networks. New J. Phys. 11, 093033 (2009).

50. Szolnoki, A., Xie, N. G., Wang, C. & Perc, M. Imitating emotions instead of

strategies in spatial games elevates social welfare. EPL 96, 38002 (2011).

.Szolnoki, A., Xie, N. G, Ye, Y. & Perc, M. Evolution of emotions on networks leads

to the evolution of cooperation in social dilemmas. Phys. Rev. E 87, 042805 (2013).

52. Smith, J. M. & Parker, G. A. The logic of asymmetric contests. Anim. Behav. 24,
159-175 (1976).

53. Basil, M. Identification as a mediator of celebrity effects. J. Brodcast. Electron. 40,

478-495 (1996).

Jackson, D. & Darrow, T. The influence of celebrity endorsements on young

adults’ political opinions. Int. J. Press-Polit. 10, 80-98 (2005).

55. Chen, X. J., Fu, F. &Wang, L. Influence of different initial distributions on robust
cooperation in scale-free networks: A comparative study. Phys. Lett. A 372,
1161-1167 (2008).

56. Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the
evolution of cooperation on graphs and social networks. Nature 441, 502-505
(2006).

57. Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560-1563
(2006).

58. Enquist, M. & Leimar, O. The evolution of fatal fighting. Anim. Behav. 39, 1-9
(1990).

59. Szabo, G. & Fath, G. Evolutionary games on graphs. Phys. Rep. 446, 97-216
(2007).

60. Taylor, P. D. & Jonker, L. B. Evolutionary stable strategies and game dynamics.
Math. Biosci. 40, 145-156 (1978).

61. Zeeman, E. C. Global Theory of Dynamical Systems (Springer, 1980).

62. Wang, J., Wu, B.,, Wang, L. & Fu, F. Consensus of population systems with
community structures. Phys. Rev. E 78, 051923 (2008).

63. Girvan, M. & Newman, M. Community structure in social and biological
networks. Proc. Natl. Acad. Sci. USA 99, 7821-7826 (2002).

64. Newman, M. Modularity and community structure in networks. Proc. Natl. Acad.
Sci. USA 103, 8577-8582 (2006).

65. Palla, G. Derenyi, L., Farkas, I. & Vicsek, T. Uncovering the overlapping
community structure of complex networks in nature and society. Nature 435,
814-818 (2005).

66. Onnela, J. P. Structure and tie strengths in mobile communication networks. Proc.
Natl. Acad. Sci. USA 104, 7332-7336 (2007).

67. Lambiotte, R., Ausloos, M. & Holyst, J. A. Majority model on a network with
communities. Phys. Rev. E 75, 030101 (2007).

4

—_

5

—

5

ks

| 4:5491 | DOI: 10.1038/srep05491



68. Fu, F., Tarnita, C. E., Christakis, N. A., Wang, L., Rand, D. G. & Nowak, M. A.
Evolution of in-group favoritism. Sci. Rep. 2, 460 (2012).

Acknowledgments
The authors are supported by NSFC (61020106005 and 61375120).

Author contributions
K.L,RC., T.W.and L.W. performed analyses, discussed the results, and contributed to the
text of the manuscript.

Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Li, K., Cong, R., Wu, T. & Wang, L. Bluffing promotes
overconfidence on social networks. Sci. Rep. 4, 5491; DOI:10.1038/srep05491 (2014).

@00

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International License. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

| 4:5491 | DOI: 10.1038/srep05491


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Title
	Figure 1 
	Figure 2 The 3-D plots showing the stationary fraction of overconfident individuals fO in dependence on both a and b for (a) r/c = 1.5 and (b) r/c = 3.
	Figure 4 Typical snapshots of spatial patterns formed by different types of individuals under initial overconfidence levels fIO = 0.1 ((a)-(c)) and fIO = 0.3 ((d)-(f)) at different time steps.
	Figure 5 Comparison of the payoffs of individuals with different real abilities.
	References

