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ABSTRACT
Cleavage of the Amyloid Precursor Protein (APP) generates amyloid peptides that accumulate in
Alzheimer Disease (AD), but APP is also upregulated by developing and injured neurons, suggesting
that it regulates neuronal motility. APP can also function as a G protein-coupled receptor that
signals via the heterotrimeric G protein Gao, but evidence for APP-Gao signaling in vivo has been
lacking. Using Manduca as a model system, we showed that insect APP (APPL) regulates neuronal
migration in a Gao-dependent manner. Recently, we also demonstrated that Manduca Contactin
(expressed by glial cells) induces APPL-Gao retraction responses in migratory neurons, consistent
with evidence that mammalian Contactins also interact with APP family members. Preliminary
studies using cultured hippocampal neurons suggest that APP-Gao signaling can similarly regulate
growth cone motility. Whether Contactins (or other APP ligands) induce this response within the
developing nervous system, and how this pathway is disrupted in AD, remains to be explored.
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Amyloid precursor protein and the control of
neuronal migration

The Amyloid Precursor Protein (APP) has been the
focus of intense scrutiny for many years, but its normal
functions remain controversial. Originally identified as
the source of b-amyloid (Ab) peptides that accumulate
in Alzheimer Disease (AD),1 APP is a type-1 transmem-
brane glycoprotein that may play a variety of roles in
both the embryonic and adult nervous system.2,3 Like
many proteins, APP can be rapidly cleaved by mem-
brane-associated proteases (secretases) that help clear
the holoprotein from the cell surface.4 During “non-
amyloidogenic” processing, sequential cleavage of APP
by a- and g-secretases liberates soluble ectodomain
fragments (sAPPa) and cytoplasmic AICDs (APP intra-
cellular domains). By comparison, during “amyloido-
genic” processing, cleavage by b- and g-secretases
generates a smaller ectodomain fragment (sAPPb), an
identical AICD, and the infamous Ab peptides that
accumulate in the brains of AD patients and that can
induce neurotoxic responses inmodel systems. Frustrat-
ingly, drugs targeting Ab have been largely unsuccessful

in treating human subjects,5,6 bolstering the argument
that the loss of normal APP-dependent functions might
also contribute to neurodegeneration in AD.3,7

Although several cleavage products derived from
APP exhibit biologic activities in different assays,
increasing evidence suggests that holo-APP can func-
tion as a transmembrane receptor, capable of regulating
neuronal responses in both the developing and mature
brain.2,8 Notably, APP family proteins are upregulated
in regions of active neuronal motility, where they may
function as both cell adhesion molecules and guidance
receptors.2,7 For example, studies have suggested that
APP regulates neuroblast migration and growth cone
navigation;9,10 synaptic growth and remodeling;11,12 and
retraction/regrowth responses following injury.13,14

Conversely, disrupting these functions might contribute
to diseases linked with abnormal APP levels, including
Down Syndrome and AD.15,16

However, establishing authentic functions for APP
has been complicated by 2 close orthologs in mamma-
lian systems (APP-Like Proteins; APLP1 and 2) that
are co-expressed with APP and exhibit overlapping

CONTACT Philip F. Copenhaver, PhD copenhav@ohsu.edu Department of Cell, Developmental And Cancer Biology L215, Oregon Health & Science Uni-
versity, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
© 2017 Jenna M. Ramaker and Philip F. Copenhaver. Published with license by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/
4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in
any way.

NEUROGENESIS
2017, VOL. 4, NO. 1, e1288510 (12 pages)
http://dx.doi.org/10.1080/23262133.2017.1288510

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1080/23262133.2017.1288510


biologic activities.17 Moreover, APP can either
restrict10,18 or promote9,19 motile responses under dif-
ferent conditions, akin to other guidance receptors
whose functions can be modulated by alternative
ligands and co-receptors. Indeed, APP can potentially
bind a wide variety of membrane-associated proteins,
extracellular matrix components, and cytoplasmic
adaptor proteins,7,20 although many of these interac-
tions have yet to be validated in vivo.

Particularly noteworthy are studies implicating APP
in the control of neuronal migration within the develop-
ing mammalian cortex, although different experimental
strategies have yielded contradictory results. By geneti-
cally deleting all 3 APP family members (APP, APLP1
&ALP2) inmice, Herms and colleagues induced a strik-
ing pattern of ectopic migration, whereby cortical neu-
rons traveled beyond the pial membrane to form
cortical heterotopias (resembling cobblestone lissence-
phaly).10 These results suggest that signaling by APP
family proteins normally restricts the extent or direc-
tionality of migration, potentially in response to guid-
ance cues encountered in the developing brain. In
contrast, inhibiting APP expression using RNA interfer-
ence methods resulted in premature stalling and arrest
of neuronal migration,9 arguing that APP normally pro-
motes (rather than restricts) migratory behavior. A
potential advantage of this method is that acutely
knocking down APP expression might circumvent
potential compensatory responses mediated by other
proteins (including APLP1 and 2). However, since APP
family members also regulate the mitotic behavior of
cortical progenitors,21,22 these manipulations might
have altered cell fate decisions during neurogenesis
rather than directly affecting their subsequent migratory
behavior. Other studies have suggested that molecular
redundancy with additional guidance receptors might
mask the normal functions of APP within the complex
environment of the developing cortex.23 Ultimately, to
understand how APP family proteins can elicit different
types of neuronal behavior in a context-dependentman-
ner, we first need to define the signal transduction
mechanisms by which they regulate motile responses
under physiologic conditions.

APP may function as a non-canonical G
protein-coupled receptor

Although many intracellular proteins can interact with
APP under certain conditions,7 considerable evidence

has shown that holo-APP directly binds and regulates
the heterotrimeric G protein Go,24-26 suggesting that
APP functions as an unconventional G protein-
coupled receptor (GPCR). Whereas canonical GPCRs
assume a heptahelical configuration, several type-1
(single pass) receptors also regulate heterotrimeric G
protein signaling.27 Based on structural analyses of
Insulin-like Growth Factor II (which activates Gi),
Nishimoto and colleagues identified a 20-amino acid
motif within the cytoplasmic region of APP as a candi-
date G protein-interacting domain, and they showed
that this “peptide 20” domain bound the a-subunit of
Go (Gao) but not other G proteins in vitro.24,28 Nota-
bly, Gao is the most abundant heterotrimeric G pro-
tein in the brain and is highly enriched in developing
neurons.29 Also like APP, Gao-dependent signaling
can both promote and inhibit neuronal motility under
different circumstances,29,30 supporting the concept
that APP-Gao interactions might serve important
functions in both the developing and adult brain.

Lacking authentic ligands for APP, several groups
subsequently showed that crosslinked antibodies
against APP could induce Go activation, while hyper-
activating this response in cultured neurons provoked
calcium (Ca2C) overload, increased reactive oxygen
species (ROS) levels, and induced apoptosis.31-33

Moreover, mutant forms of APP that cause familial
forms of AD were found to hyperactivate Gao and
induce neurotoxic responses in cell culture, arguing
that disease-associated isoforms of APP function as
constitutively active Go-coupled receptors.34 Notably,
these neurotoxic effects were independent of Ab,31

although subsequent work showed that Ab could also
provoke APP-dependent cytotoxic responses that
were blocked by pertussis toxin (PTX), a specific
inhibitor of Gi/Go proteins.35,36 Intriguingly, studies
using human brain samples revealed a decline in
APP-Gao interactions in patients with elevated levels
of amyloid pathology.36 In combination, these experi-
ments support the model that APP normally functions
as a Go-coupled receptor that when chronically acti-
vated (by Ab or other age-related factors) provokes
neurodegenerative responses.

Unfortunately, a variety of issues have hindered
efforts to develop this model more fully. Many early
studies relied on overexpression assays in transfected
cells that generated contradictory results. For example,
some experiments suggested that APP-dependent
responses were mediated by Gbg dimers rather than
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Gao, or that APP stimulation might inhibit (rather
than activate) Go.25,37 By comparison, another group
recently demonstrated that CTFs and membrane-
tethered AICD fragments derived from APP could
interact with a different G protein (Gas) and promote
Gas-dependent outgrowth.38,39 Whether APP or its
fragments endogenously interact with Gas (as well as
Gao) in developing neurons remains to be determined.

An alternative perspective has recently been devel-
oped by K€ogel and colleagues, who have focused on
the neuroprotective role of the APP-Go pathway.
Based on reports that soluble sAPPa ectodomain frag-
ments of APP (produced by a-secretase cleavage) can
directly bind the transmembrane holoprotein,40 they
showed that acute treatment with sAPPa induced
pro-survival responses mediated by the PI3K/Akt
pathway, a response that was both APP- and PTX-
sensitive (implicating Gao/i proteins).41 These results
integrate previous evidence that both holo-APP and
sAPPa fragments can elicit neuroprotective responses,
providing support for the concept that APP-Gao sig-
naling serves important physiologic functions in the
adult brain.

A role for APP-Gao signaling in neuronal migration:
Manduca as a model system

Besides its association with AD in humans, APP is
actually a member of an evolutionarily ancient class of
transmembrane proteins found in most animals. In
contrast to vertebrate systems, however, invertebrates
typically express only one APP ortholog, facilitating
experiments designed to explore their normal func-
tions. In particular, insects express APPL (APP-like),
which has been shown to play important roles in both
the developing nervous system and in genetic models
of AD.42 Structurally, APPL contains the same motifs
found in human APP695 (the most prominent neuro-
nal isoform), including an Ab-like domain that indu-
ces neurodegenerative responses when overexpressed
in the fly brain,43 and a well-conserved Go domain
that specifically binds Gao but not other G
proteins.19,26 Moreover, genetic manipulations in Dro-
sophila have shown that human APP695 can rescue
deficits caused by the loss of APPL, demonstrating
that these proteins are both functionally and structur-
ally homologous.44 Unlike human APP, however,
insect APPL is only expressed by neurons,45,46 further
simplifying an analysis of its normal functions in vivo.

In previous work, we established the enteric ner-
vous system (ENS) of Manduca sexta (hawkmoth) as
a unique preparation for testing the role of APPL-Gao
signaling in neuronal migration.26,47 As in vertebrates,
the insect ENS is organized into small peripheral gan-
glia and interconnected nerve plexuses that are formed
via sequential waves of neuronal and glial migration
(Fig. 1A). In particular, an identified set of »300
neurons (EP cells; magenta) delaminates from a
neurogenic placode in the foregut and then disperse to
form an Enteric Plexus that spans the foregut-midgut
boundary.47 After encircling the foregut (Fig. 1A1),
subsets of EP cells migrate and extend axons along 8
equivalent muscle bands (“b”) on the midgut
(Fig. 1A2). As they migrate, the neurons become rap-
idly ensheathed by a trailing population of proliferat-
ing glial cells (green) that also help regulate their
trajectories (as noted below). Throughout this period,
the EP cells extend exploratory processes onto the
adjacent interband regions (“ib”) but normally remain
on their band pathways until after migration and axon
outgrowth are complete, whereupon they branch
laterally to provide a diffuse innervation to the visceral
musculature. Of note is that the superficial location of
the EP cells allows them to be directly imaged and
manipulated in cultured embryos,47,48 while subse-
quent immunostaining with antibodies against the cell
adhesion receptor Fasciclin II (Fas II) labels the neu-
rons and their processes, permitting unambiguous
quantification of their migration and outgrowth.26

In published studies, we showed that the EP cells
robustly express APPL as they migrate along their band
pathways, and that APPL colocalizes with Gao in their
leading processes.46 Using co-immunoprecipitation
protocols, we demonstrated that APPL endogenously
interacts with Gao (but not Gas or Gai) in lysates from
both Manduca and Drosophila, and we showed that this
interaction was downregulated by Gao activation (simi-
lar to conventional GPCRs). In parallel, we showed that
APP endogenously interacts with Gao (but not Gas) in
mouse and human brain lysates.26 Using bimolecular
fluorescence complementation (BiFC) methods, we then
demonstrated that APPL specifically binds Gao (but not
Gas or Gai) via its Go domain in transfected COS7
cells. More importantly, by co-expressing our BiFC
constructs in developing photoreceptors of transgenic
Drosophila, we demonstrated for the first time that APP
family proteins directly bind Gao within synaptic-termi-
nals of the CNS.

NEUROGENESIS e1288510-3



Figure 1. Neuronal migration inManduca is regulated by MsContactin-dependent activation of APPL-Gao signaling. (A), Schematic representa-
tion of neuronal and glial cell migration during the formation of the Enteric Plexus in Manduca. Each panel shows a dorsal view of the embry-
onic ENS near the foregut-midgut boundary (FG/MG); embryos raised at 25�C complete their development in 100 hr post-fertilization (HPF).
(A1), Embryo at 55 HPF: Enteric Plexus neurons (EP cells; magenta) have delaminated from a neurogenic placode in the foregut epithelium and
spread bilaterally to encircle the foregut. Subsets of EP cells align with one of eight longitudinal muscle bands (“b;” curved arrows) on the mid-
gut surface; only the 4 dorsal bands are shown. Homophilic interactions mediated by the Ig-CAM Fas II (Fasciclin II; expressed by both the neu-
rons and the bands) subsequently promote EP cell migration and outgrowth specifically along the bands, during which the neurons typically
avoid the adjacent interband regions (“ib”). Concurrently, proliferating glial cells (green) closely follow the migratory neurons, rapidly surround-
ing their somata and processes. (A2), By 70 HPF, the EP cells have transitioned from migration to a prolonged period of axon outgrowth, during
which they extend processes posteriorly along the bands (beyond the field of view). Glial ensheathment of the neurons is typically complete by
this stage (arrows). Only once axon elongation is complete (80 HPF) will the neurons extend terminal synaptic processes onto the interband
regions (not shown). (A3), Manipulations that inhibit APPL expression (by the EP cells) or MsContactin expression (by the glial cells; illustrated
by fainter green shading) permit the neurons and their processes to travel inappropriately onto the adjacent interband regions (open arrow-
heads).49 Inhibiting Gao activity in the EP cells also induces the same distinctive pattern of ectopic migration and outgrowth.26 By comparison,
glial migration is unaffected by reduced MsContactin expression. (A4), Overstimulating APPL-Gao signaling in the EP cells (with MsContactin-Fc
fusion proteins) induces a dramatic collapse/stall response in the neurons, resulting in the premature termination of migration (arrows) and
reduced axonal outgrowth. (B), Enteric Plexus in a filleted Manduca embryo (at 60 HPF) immunostained with anti-APPL (blue), anti-GPI-Fas II
(green), and anti-MsContactin (red). Anti-APPL specifically labels the migratory EP cells (arrows), while anti-MsContactin and anti-GPI-Fas II co-
label adjacent glial cells (arrowheads). (C), Higher magnification of the boxed region in panel B. Arrowheads indicate areas of colocalization of
MsContactin (red) with GPI-Fas II (green) in glial processes ensheathing the migratory neurons (“n”) expressing APPL (blue). Scale barD 45 mm
in (A); 30 mm in (B); 10 mm in (C). (D), Model of how Gao-dependent signaling might be regulated by APP family proteins. In the migratory EP
cells of Manduca, glial MsContactin functions as a ligand for neuronal APPL, inducing the local activation of Gao in their leading processes; in
turn, activated Gao can regulate their motile behavior (potentially via both Ca2C-dependent and independent effectors), resulting in local
retraction responses that prevent ectopic migration and outgrowth. In cultured hippocampal neurons, activation of APP signaling by antibodies
against its extracellular domain, including crosslinked 22C11 (double arrows) or non-crosslinked nAPP-3 (single arrow), also induces collapse/
stall responses in a Gao-dependent manner, whereas antibodies against the cytodomain (cAPP) do not. Whether physiologic activation of
APP-Gao signaling regulates the behavior of developing neurons in the mammalian nervous system remains to be explored. Different candi-
date ligands (including other Contactins and sAPPa ectodomain fragments) might also promote or restrict motile responses in a context-spe-
cific manner, depending on the presence of additional co-receptors or Gao effectors.
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Using our Manduca embryo culture assay, we sub-
sequently showed that inhibiting either APPL expres-
sion or Gao activity in the EP cells induced a
distinctive pattern of ectopic migration and
outgrowth, whereby the neurons and their processes
traveled into the interband regions (illustrated sche-
matically in Fig. 1A3). This effect was remarkably sim-
ilar to the pattern of ectopic growth caused by
blocking G protein-dependent Ca2C currents in the
migratory neurons.48 Together, these results support
the model that activation of APPL-Gao signaling in
the EP cells mediates their inhibitory response to guid-
ance cues encountered as they migrate within the
developing ENS, thereby preventing ectopic growth
into inappropriate regions.26 In general terms, our
results in Manduca are also analogous to the cortical
dysplasias caused by deleting all 3 APP family proteins
in mice, wherein subsets of developing neurons
migrated ectopically beyond their normal locations.10

In a screen for APPL ligands, we identified
Manduca Contactin (MsContactin),49 a glycosylphos-
phatidylinositol (GPI)-linked member of the immu-
noglobulin superfamily of cell adhesion molecules.50

Whereas mammals express 6 Contactins, several of
which may interact with APP family proteins either in
cis or trans,51-53 insects only express a single Contactin
ortholog that is typically restricted to epithelial cells
and glial cells.54 Using in situ hybridization
histochemistry and whole-mount immunostaining
protocols, we found that MsContactin is expressed by
the glial cells that ensheath the migratory EP cells
(Fig. 1B–C, red), co-localizing with the glial marker
GPI-Fas II (green), whereas APPL is exclusively
expressed by the neurons (blue). We also showed that
MsContactin fusion proteins bound to the EP cells in
an APPL-specific manner. Again using our embryo
culture assay, we then demonstrated that knocking
down MsContactin expression in the glial cells pro-
duced the same distinctive pattern of ectopic migra-
tion and outgrowth caused by inhibiting APPL or
Gao (Fig. 1A3). In contrast, hyperstimulating APPL
signaling with Contactin fusion proteins (Cont-Fc)
induced a dramatic collapse/stall response (Fig. 1A4)
that was both APPL- and Gao-dependent.49 Notably,
this response was also induced by hyperstimulating
Gao in the EP cells.48

In combination, these results support the model
that APP and its orthologs function as unconventional
Gao-coupled receptors in the nervous system. In

addition, our analysis of neuronal migration in
Manduca offers new evidence that Contactins can
serve as authentic ligands for APP family proteins
(shown schematically in Fig. 1D). Within the develop-
ing ENS, we propose that glial MsContactin stimulates
APPL-dependent activation of Gao in the EP cells,
which in turn induces local retraction responses that
prevent their ectopic outgrowth into inappropriate
regions. More generally, our experiments provide the
framework for investigating how APP-Gao signaling
might regulate neuronal responses to a variety of guid-
ance cues (including mammalian Contactins and
sAPPa), and how APP signaling might be modulated
to promote or restrict neuronal growth in a context-
dependent manner.

Does APP-Gao signaling regulate neuronal motility
in developing hippocampal neurons?

Based on our results in Manduca, we recently investi-
gated whether APP-Gao might also regulate similar
types of motile responses in mammalian neurons. For
these studies, we used cultured rat hippocampal
neurons prepared from both male and female
embryos, following the protocols developed by Kaech
and Banker.55 Briefly, hippocampi were dissected
from E18 pups, digested with Trypsin, and triturated
into single-cell suspensions. Neurons were plated on
18 mm glass coverslips coated with poly-L-lysine at a
density of 20,000–25,000 cells per coverslip, and then
maintained above astroglial feeder layers in Neuro-
basal Medium supplemented with B27 and glutaMAX
(Thermo Fisher). After 24 hr, the neurons were fixed
in 4% buffered paraformaldehyde, permeabilized for
10 min with 0.1% Triton-X 100 in phosphate-buffered
saline, and pre-blocked with 5% fish skin gelatin for
30 min.

Replicate cultures were then immunolabeled with
different combinations of the following antibodies:
mouse anti-APP 22C11 (Millipore #MAB348; 1:25),
targeting AA 66–81 of human APP695; rabbit anti-
APP-Y756 (Abgent #AP9053a; 1:200), targeting AA
735–763 of human APP770; chick anti-APP-3 (Aves
Labs # nAPP-3), targeting AA 433–452 of human
APP770; chick anti-APP-4 (Aves Labs # nAPP-4), tar-
geting AA 501–522 of human APP770; chick anti-
cAPP (Aves Labs # cAPP); targeting AA 749–770
within the cytoplasmic domain of APP770; and affin-
ity-purified anti-Gao (1:50); generated against a
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conserved sequence shared by Manduca and mamma-
lian Gao isoforms.26,56 Primary antibodies were
detected with secondary antibodies conjugated to
Alexa Fluor 488, 568, or 647 (Life Technologies/
Thermo Fisher; 1:1000). Coverslips containing the
neurons were mounted in Elvanol and imaged on a
Nikon compound microscope (Optiphot2-UD), using
a DXM1200F digital camera and Nikon ACT-1 soft-
ware; subsequent cropping and adjustments of bright-
ness and contrast were performed with Adobe
Photoshop software. Similar images of APP-Gao
colocalization were obtained with each of the forego-
ing antibody combinations.

To examine whether APP and Gao colocalize
within axonal growth cones, we focused on neurons

that had initiated axon elongation, accompanied by
active growth cone exploration. As shown in Fig. 2A1,
we found that Gao (magenta) was readily detectable
throughout the axons and dendrites of cultured hippo-
campal neurons and was noticeably more concen-
trated in the leading growth cones, where it
colocalized with APP (green). This colocalization was
particularly apparent at the lamellipodial margins and
filopodial protrusions associated with active motility
(Fig. 2A2, arrowheads). Similar results were obtained
using antibodies against both the N- and C-terminal
domains of APP, indicating that Gao colocalizes with
the transmembrane holoprotein in growth cones. This
result is also supported by our co-immunoprecipita-
tion studies showing that Gao interacts with full-

Figure 2. (For figure legend, see page 7.)
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length APP in both mouse and human brain lysates,
whereas we were unable to detect interactions between
Gao and the smaller C-terminal cleavage fragments
derived by secretase processing of the holoprotein
(including CTFs and AICDs).26

To explore whether APP-Gao signaling regulates
the motile behavior of developing hippocampal
neurons, we treated replicate cultures of neurons
(grown for 24 hr in vitro) with reagents targeting
APP or Gao, then fixed and immunolabeled the
neurons with anti-b-III tubulin (Tuj-1), followed
by counterstaining with Phalloidin-Tetramethylr-
hodamine B isothiocyanate (Rhod-Phalloidin) to
label polymerized actin filaments. Figure 2B shows
an example of a neuron treated with control
medium: anti-b-III tubulin antibodies robustly
labeled microtubules throughout the axon (arrow)
and primary dendrites, while the growth cone was
enriched in polymerized actin (as previously
reported).57 Figure 2B2 shows an enlarged view of
the growth cone labeled with Rhod-Phalloidin
(boxed region in Fig. 2B1; shown in gray scale);
arrowheads indicate strongly labeled filopodia.

Cultured hippocampal neurons exhibit a dynamic
pattern of motility as they extend processes, during
which their growth cones undergo cyclic patterns of
expansion and retraction.57,58 To assess how manipu-
lating the APP-Gao pathway affected their overall
behavior, we quantified the morphologies of axonal
growth cones in our different treatment groups, focus-
ing on neurons that did not contact other somata or
processes. Growth cones were classified as “extended”
if they widened at their tips and had lamellipodial veils
between filopodial protrusions; “collapsed” if they had
truncated filopodial protrusions and minimal lamelli-
podial veils between filopodia; and “retracted” if they
lacked an actin-rich growth cone and exhibited thin-
ning of the axonal process, associated with retraction
debris.

For this analysis, we combined the collapsed and
retracted phenotypes into a single category to quantify
average growth cone responses. Approximately 50
neurons per condition were selected at random by an
investigator blinded to the treatment conditions. The
frequency of growth cones with extended or col-
lapsed/retracted morphologies within each experiment

Figure 2. (see previous page) Growth cone motility in cultured rat hippocampal neurons may also be regulated by APP-Gao signaling.
(A-F), Embryonic rat hippocampal neurons after 24 hr that had established normal polarity (Stage 3), with a single elongating axon
(arrows) and a variable number of smaller dendrites extending from their somata. (A1), Neuron that was immunolabeled with anti-nAPP
(22c11; green) and anti-Gao (magenta). (A2), Enlarged view of boxed region in (A1), showing that APP and Gao colocalize within the
axonal growth cone, particularly at the leading lamellipodial margin and in some of the larger filopodial extensions (arrowheads; colo-
calized immunolabeling appears white). (B-F), Representative examples of neurons that were treated with reagents targeting APP or
Gao, then immunolabeled with anti-b-III tubulin (Tuj; green) and counterstained with Phalloidin-Tetramethylrhodamine B (Rhod-Phal-
loidin; green) to label polymerized actin. Enlarged regions (indicated by white boxes in each panel) show only Rhod-Phalloidin staining
in gray scale to highlight growth cone morphologies. (B1), Neuron treated with control medium, exhibiting anti-Tuj1 immunolabeling
along the length of its axon and dendrite, and strong Rhod-Phalloidin staining in its growth cones (associated with active motility). (B2),
The axonal growth cone in this neuron exhibited a typical “extended” morphology. (C1), Neuron treated with the Gao/Gai activator Mas-
toparan 7 (Mas 7, 50 mM; Enzo Life Sciences) exhibited a dramatic reduction in Rhod-Phalloidin staining and a more moderate reduction
in anti-Tuj1 immunoreactivity. (C2), The axonal growth cone in this neuron exhibited a typical “collapsed” morphology. (D1), Neuron
treated with the Gao/Gai inhibitor PTX (100 ng/ml; List Biological Labs) exhibited an expansion of its axonal and dendritic growth cones.
(D2), The axonal growth cone in this neuron exhibited an “extended” morphology. (E1), Neuron treated with non-crosslinked anti-nAPP
antibodies (nAPP-3; 0.1–0.5 mM; Aves Laboratories) exhibited a collapsed/retracted morphology (highlighted in panel E2). (F1), Neuron
that was pre-incubated with PTX before treatment with anti-nAPP antibodies showed morphological features similar to control neurons.
(F2), The axonal growth cone in this neuron exhibited an “extended” morphology, similar to the control neuron shown in panel (B). Scale
bar D 30 mm in low-magnification images and 3 mm in highlighted boxed regions. (G), Quantification of the proportion of neurons in
each treatment group that possessed axonal growth cones with either extended (green bars) or collapsed/retracted morphologies
(orange bars). P-values above each histogram are derived from pairwise comparisons with controls after applying the Bonferroni correc-
tion; NS D not significantly different. Compared to controls, treatment with Mas 7 induced a significant increase in neurons exhibiting
collapsed/retracted growth cones, whereas PTX treatment had the opposite effect, increasing the number of growth cones with
extended morphologies. Treatment with anti-nAPP-3 induced a concentration-dependent increase in the proportion of growth cones
with collapsed/retracted morphologies, with a maximal response similar to the effects of Mas 7. Pre-incubation with PTX prevented the
effects of anti-nAPP treatment. The percentage of extended growth cones in neurons treated with PTX plus anti-nAPP (0.1 mM) was sig-
nificantly greater than in cultures treated with 0.1 mM anti-nAPP alone (p D 0.004), but was not significantly different from controls
after applying the Bonferroni correction. Likewise the percentage of extended growth cones in neurons treated with PTX plus anti-
nAPP (0.5 mM) was significantly greater than in cultures treated with 0.5 mM anti-nAPP alone (p D 0.010), and was not significantly dif-
ferent from controls. By comparison, growth cone morphologies were unaffected by treatment with antibodies targeting the cyto-
plasmic domain of APP (cAPP; see Fig. 1D).
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were compared across all treatment groups, using
row-by-column contingency tables. If significant
differences between groups were identified, pairwise
chi-square tests were subsequently performed to
compare each treatment group with control neurons.
For experiments using PTX pretreatment, pairwise
chi-square tests were conducted to compare neurons
treated with each concentration of anti-nAPP with the
matched sets of neurons that were pretreated with
PTX. The Bonferroni correction was applied to
reported p-values (to account for 10 pairwise compari-
sons), and p-values were considered significant at the
a D 0.05 level.

Consistent with previous studies,59,60 we found
»40–50% of the growth cones in control cultures
exhibited an extended profile (Fig. 2B), while the
remainder exhibited collapsed/retracted morphologies
(quantified in Fig. 2G). In contrast, when we treated
neurons with the mastoparan analog Mastoparan 7
(Mas 7), which selectively activates members of the
Gao/Gai subfamily, we found that most neurons
exhibited growth cone collapse and retraction
(Fig. 2C), whereby only 11% retained an extended
morphology (Fig. 2G). By comparison, neurons were
unaffected by treatment with the inactive analog of
Mastoparan 17, exhibiting »45% extended growth
cone morphologies (not shown). Conversely, treating
neurons with PTX had the opposite effect, resulting in
growth cone expansion (Fig. 2D) and a significant
reduction in the proportion of growth cones exhibit-
ing collapsed/retracted morphologies (Fig. 2G).
Whereas PTX is specific for Gao in insect systems,61 it
inhibits both Gao and Gai in mammalian neurons;62

hence, this finding will need to be validated with more
selective reagents that target only Gao. Nevertheless,
these results support past experiments (including our
studies in Manduca) showing that local Gao activa-
tion in developing neurons can induce filopodial
retraction, inhibit growth cone exploration, and termi-
nate migratory behavior.29,30,56

We then tested whether activating APP signaling
also affected the motile behavior of developing hippo-
campal neurons. Initially, we treated neurons with
crosslinked antibodies targeting the extracellular
domain of APP (22C11) to mimic ligand activation
(shown schematically in Fig. 1D), based on past
reports that this method induced APP-Gao responses
in transfected cells.32,33,63 Although we consistently
observed an increase in growth cone collapse/stall

responses in these cultures, a caveat is that forced mul-
timerization with crosslinked antibodies might induce
pathological changes in APP-dependent responses,
including caspase-associated regulation of secretase
trafficking.64 As an alternative, we used a new genera-
tion of anti-peptide polyclonal antibodies targeting
different domains in APP (Aves Laboratories), which
recognize both membrane-associated and intracellular
pools of APP in mammalian neurons (unpublished
observations). As illustrated in Fig. 2E, we found that
treating neurons with anti-nAPP-3 (targeting the E2
domain of APP) increased growth cone collapse/
retraction responses, compared to controls (including
neurons treated with nonspecific IgY). This response
did not require antibody crosslinking and was concen-
tration-dependent, recapitulating the inhibitory
effects of Mas 7 (Fig. 2G). In contrast, treatment with
antibodies against the cytoplasmic domain of APP
(anti-cAPP) had no obvious effect on growth cone
behavior.

Lastly, to explore whether these effects were Go-
dependent, we pre-incubated cultured neurons with
PTX before stimulation with anti-APP antibodies. As
illustrated in Fig. 2F, we found that PTX prevented
the collapse/stall responses caused by subsequent
treatment with anti-nAPP antibodies, resulting in a
significant increase in the proportion of growth cones
that maintained extended morphologies (Fig. 2G).
Given considerable evidence that APP family proteins
directly interact with Gao but not Gai,24,26 28 and that
the effects of anti-APP antibodies require APP expres-
sion,24,63 these results suggest that APP induces
growth cone collapse and retraction in cultured hippo-
campal neurons via Gao-dependent pathways.

Based on these experiments, we postulate that the
APPL-Gao pathway identified in Manduca may be
evolutionarily conserved (Fig. 1D). Just as MsContac-
tin appears to function as an authentic ligand for
APPL in the developing ENS, mammalian Contactins
that are known to interact with APP family proteins
might also induce Gao-dependent responses in the
developing nervous system. This hypothesis is also
supported by reports that Contactin and APP family
members are often expressed in similar brain regions
and are associated with similar developmental func-
tions, including axon guidance, synaptogenesis and
remodeling, and neuronal migration.50,52,65 Moreover,
since both protein families may interact in cis as well
as trans, activation of APP-Gao signaling by
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Contactins might potentially modulate Gao-
dependent responses both positively and negatively,
depending on their expression patterns. Alternatively,
given strong evidence that sAPPa ectodomains can
induce Gao-dependent responses to modulate stress
responses in the brain,8,41 it will be interesting to
explore whether sAPPa-dependent activation of Gao
can also regulate motile responses in developing
neurons (Fig. 1D).

Lastly, although our studies in Manduca focused on
the role of APPL-Gao signaling during prenatal aspects
of neuronal motility (including Ca2C-dependent migra-
tory and outgrowth responses), many other studies have
shown that APP family proteins are also upregulated
during synaptic remodeling in the brain, as well as by
neurons undergoing retraction/regrowth responses fol-
lowing injury.14,66 Hence, modulation of the APP-Gao
pathway by either physiologic or pathological factors
might continue to regulate the motile responses of neu-
rons throughout life.7,67 Moreover, given suggestive evi-
dence that the misregulation of normal APP signaling
can induce neurodegenerative responses (as noted
above), we speculate that chronic activation of Gao-
dependent targets (including Ca2C channels and stress/
survival kinases) might also perturb synaptic remodeling
and provoke neuronal dystrophy, thereby contributing
to brain atrophy. In this context, determining the down-
stream effectors of the APP-Gao pathway in our devel-
opmental assays might reveal new therapeutic targets for
diseases in which APP is misregulated, including Down
Syndrome and AD.
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