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The aim of this study was to explore the effect of a hyperbaric environment alone on the cardiovascular system by ensuring
elimination of factors that may mask the effect on hyperbaria. The research was performed in a hyperbaric chamber to eliminate
the effect of physical activity and the temperature of the aquatic environment. Biochemical analysis and examination with the
Task Force Monitor device were performed before and immediately after exposure. TFM was used for noninvasive examination
of the cardiovascular system and the functional evaluation of the autonomic nervous system. Natriuretic peptides were measured
as biochemical markers which were involved in the regulation of haemodynamic circulation vasoconstriction (urotensin II). L-
arginine acted as a precursor of the level of the nitric oxide whereas angiotensin II and angiotensin (1–7) were involved in cardiac
remodeling. The study group is comprised of 18 volunteers who were professional divers of similar age and experience. The results
shown in our biochemical studies do not exceed reference ranges but a statistically significant increase indicates the hyperbaric
environment is not without impact upon the human body. A decrease in HR, an increase in mBP, dBP, and TPR, and increase in
parasympathetic heart nerves activity suggest an increase in heart afterload with a decrease in heart activity within almost one hour
after hyperbaric exposure. Results confirm that exposure to a hyperbaric environment has significant impact on the cardiovascular
system.This is confirmed both by changes in peptides associated with poorer cardiovascular outcomes, where a significant increase
in the studied parameters was observed, and by noninvasive examination.

1. Introduction

Diving exposes a body to an unnatural hyperbaric environ-
ment which can lead to increased gas dissolved in the tissues
[1]. Gas solubility in tissues is a very complex process which
cannot be described using Henry’s law being a law used for
gas solubility in liquids. It is a process for which Dalton’s

law of partial pressure needs to be taken into consideration
and also includes gas solubility in a complex phase system
(meaning law of gas solubility in two immiscible liquids).
Additional issue is the usage of saturation and dehydration of
the tissues which show the speed with which these processes
occur and mechanisms of the creation of microbubbles of
gas.
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Table 1: Demographics of the study group.

Characteristic Hyperbaric exposure
𝑛 = 18

Age [years] 31.1 ± 5.9

Body mass [kg] 82.9 ± 13.4

Body height [m] 1.79 ± 0.08

Body Mass Index [kg/m2] 25.6 ± 2.7

Heart Rate at rest [𝑛/min] 70.2 ± 9.1

sBP at rest [mmHg] 118.8 ± 12

dBP at rest [mmHg] 72.6 ± 6.8

mBP at rest [mmHg] 91 ± 8.2

diving experience [years] 8.7 ± 4.3

The complexity of these processes which take place in the
diver’s organism during descending and ascending does not
allow for its full theoretical description [1, 2].

In a clinical setting, hyperbaric oxygen treatment is used
for treatment of decompression sickness, carbon monoxide
poisoning, gas gangrene, soft tissue [3–5], postradiation
burns, and treatment of poorly healing wounds [6]. Studies
have also investigated the use of HBO after radiation or
chemotherapy [7, 8], and today there are many clinical
indications for the use of HBO therapy [9].

Another form of hyperbaric exposure is the long-term
frequent exposure to high external pressure observed among
professional divers. This type of diving usually takes place at
a significant depths and lasts much longer than recreational
diving. When subjected to a hyperbaric environment, divers’
bodies experience factors that may influence haemodynamic
and cardiovascular (CV) system function [10, 11].Thework of
a professional diver is therefore associated with stress related
not only to exposure to a hyperbaric environment, but also
to heavy physical work.This leads to, among other things, an
increased heart rate and pressure variations in the respiratory
tract affecting the chest and the venous return [11, 12].

The adaptive mechanisms in the CV system that occur
during diving remain unclear [12]. Ongoing studies suggest
that diving is associated with changes in oxidative stress
and the increased expression of regulatory proteins [13] the
consequences of which are unclear. Changes in CV function
after recreational or professional diving have been observed
in many studies but it has frequently been concluded that
confounding factors, such as physical activity or temperature,
are the cause of any changes detected [14, 15].

The aim of this study was to explore the effect of a hyper-
baric environment alone by ensuring elimination of factors
that may mask the effect. The research was performed in a
hyperbaric chamber to eliminate the effect of physical activity
and the temperature of the aquatic environment. In addition,
biochemical analysis was performed on natriuretic peptides
(BNP andANP) involved in the regulation of haemodynamic
circulation [16–19] and vasoconstriction (urotensin II) [20];
the level of the endogenic amino acid and the nitrogen
oxide precursor (L-arginine) [21–23]; and measurement of
parameters involved in cardiac remodeling (angiotensin II
and angiotensin (1–7)) [24–28].

All cardiovascular responsemechanisms of the cardiovas-
cular system are integrated and regulated by the autonomic
nervous system. Thus, the analysis of heart rate and blood
pressure variability allows determining the activity and reac-
tivity of autonomic nervous system noninvasively.

2. Material and Methods

This study was carried out in accordance with the recom-
mendations of the Bioethics Commission of the Collegium
Medicum in Bydgoszcz of Nicolaus Copernicus University
in Torun with written informed consent from all subjects.
All subjects gave written consent in accordance with the
Declaration of Helsinki. The protocol was approved by
the Bioethics Commission of the Collegium Medicum in
Bydgoszcz of Nicolaus Copernicus University in Torun.

2.1. Subjects. The study group is comprised of 18 men
(volunteers that agreed to take part in the research) with
a mean age of 31.1 ± 5.9 years, working on average for
8.7 ± 4.3 years as professional divers. Before the experiment,
all volunteers declared in a questionnaire that they did not
smoke or drink alcohol. Furthermore, 72 hours prior to the
experiment the volunteers did not do any excessive physical
activity. Anthropometric parameters for the study group are
shown in Table 1.

2.1.1. Hyperbaric Exposure. Hyperbaric exposures were per-
formed at the Department of Diving Equipment and Tech-
nologies for Underwater Works, Polish Naval Academy in
Gdynia, at the hyperbaric chambers complex DKN-120. The
exposures were performed by qualified personnel. Before and
after each exposure the subject underwent a full medical
examination. The use of the hyperbaric chamber allowed
creating comparable exposure conditions to be created for
all subjects. The expositions in hyperbaric chamber were
performed in three-person groups. Factors such as a breath-
ing gas used, physical exercise, ambient temperature, and
humidity were monitored in all experiments and then were
registered throughout the exposure. All subjects used air as
a breathing gas and were not exposed to physical exercise.
The exposure conditions imitated pressure conditions during
diving to 30 meters of sea water.
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Table 2: Biochemical analysis results before and after hyperbaric exposure. The +/−mean values of standard deviation were presented.

Parameter
Hyperbaric exposure
𝑛 = 18 subjects

before exposure after exposure 𝑃

L-Arginine (ARG) [𝜇g/mL] 87.1 ± 17.7 75.4 ± 15.3 <0.01
Brain natriuretic peptide (BNP) [pg/mL] 33 ± 21.9 46.5 ± 27.1 <0.01
Atrial natriuretic peptide (ANP) [pg/mL] 37.8 ± 24 47.2 ± 26.6

Angiotensin (ANG) [pg/mL] 4.7 ± 0.7 4.4 ± 0.6 0.1752
Angiotensin (1–7) (ANG 1–7) [ng/mL] 327 ± 117.1 266.7 ± 98.8 <0.01
Urotensin II (URO II) [ng/ml] 119.6 ± 47.6 91.2 ± 35.5 <0.01

Decompression steps
I – 6 minutes at 9 [m];

II – 10 minutes at 6 [m];
III – 16 minutes at 3 m

Plateau at the depth 30 meters
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Figure 1: The depths and durations of the decompression stops.

The volunteers were placed in a hyperbaric chamber
and exposed to compression of 40MPa (total pressure was
0.4MPa : 0.3MPa in the chamber + 0.1MPa of the atmo-
spheric pressure). The exposure plateau was equal to ca.
30 minutes, followed by gradual decompression, according
to the decompression tables of the Polish Navy (Figure 1).
For safety reasons and in order for the side effects to be
minimalised, e.g., “bends” after exposure to 30 meters, the
decompression pattern used resembled that followed after
diving to 33 meters.

2.1.2. Biochemical Parameters. Blood collected in the ante-
cubital vein was used for biochemical analyses. Samples
were collected in tubes without anticoagulant (approx 3mL)
to obtain serum for BNP, ANP, angiotensin, angiotensin
(1–7), and urotensin II determinations (Vacuette �Greiner
Bio-One). Plasma obtained from blood collected from the
same vein on anticoagulant, being 2ml of EDTA, was used
to determine L-arginine levels. Then serum was separated
by centrifuging at 2500×g at +4∘C for 15 minutes. Serum
and plasma were frozen at −80∘C and stored until used for
determinations.

All parameters were determined using commercially
available ELISA kits (Cloud-Clone Corp, USA), in accor-
dance with the instruction provided with each kit.

2.1.3. Cardiovascular and Autonomic Parameters. Before, and
immediately after, the exposure the volunteers underwent an
examination with the Task ForceMonitor (TFM, CNSystems,

Medizintechnik, Graz, Austria). The TFM performs auto-
mated and computed beat-to-beat analysis of the heart rate,
electrocardiogram (ECG), impedance cardiography (ICG),
oscillometric and noninvasive continuous blood pressure
measurements (oscBP, contBP). The calculation of hemody-
namic and autonomic parameters is based on the above-
mentioned biological signals. Furthermore, the TFM enables
continuous (beat-to-beat), reliable, and reproducible mea-
surements of all the parameters [29–31]. The TFM device
enables determination of many basic and advanced cardio-
vascular parameters, including fluid changes and peripheral
resistance. The autonomic nervous activity is also derived
from heart rate variability (HRV) and blood pressure vari-
ability (BPV) by means of spectral analysis, and spontaneous
baroreceptor sensitivity (BRS) is analyzed with the sequential
method. In addition, basic statistics of all parameters were
calculated automatically for defined periods

2.1.4. Statistics. All data are presented asmeans± SD.Normal
distribution of the study variables was verified with the
Shapiro-Wilk test. Levene’s test was used to check the homo-
geneity of variances in the analyzed samples. Depending
on distribution characteristics of analyzed variables, the
independent samples Student 𝑡-test or Wilcoxon’s-pairs test
was used to evaluate significance of differences between
measured values. All calculations were performed with the
package Statistica 10 (StatSoft), with the assumed level of
statistical significance of 𝛼 < 0.05.

3. Results

3.1. Biochemical Analysis. When peptide measurements
taken before and after hyperbaric exposure were compared
among the 18 participants, a statistically significant increase
was seen in both atrial ANP and ventricular BNP. For L-Arg
and urotensin II levels, a significant reduction in the level
of this amino acid was observed following exposure in the
hyperbaric chamber (Table 2). Percentage indicators of the
increase and decrease of the biochemical parameters values
were shown in Table 2.

3.2. Cardiovascular Assessment. When cardiovascular and
autonomic parameters were measured at rest in the 18
participants there were significant reductions in heart rate
and cardiac index and significant increases in diastolic and
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Table 3: Cardiovascular function before/after hyperbaric exposure. The +/−mean values of standard deviation were presented.

Parameter
Hyperbaric exposure
𝑛 = 18 subjects

before exposure after exposure 𝑃

HR [𝑛/1] 70.2 ± 9.1 60.7 ± 7.2 0.0002
sBP [mmHg] 118.8 ± 12 123.6 ± 10.3 0.0526
dBP [mmHg] 72.6 ± 6.8 77.8 ± 7.2 0.0013
mBP [mmHg] 91 ± 8.2 96 ± 8 0.0032
SI [ml/m2] 54.4 ± 11.1 53.8 ± 9.9 0.5565
CI [l/min/m2] 3.8 ± 0.9 3.2 ± 0.6 0.0018
TPRI [dyn ∗ s ∗m2/cm5] 1995.8 ± 667 2429.2 ± 681.9 0.0028
IC [1000/s] 63 ± 18.2 60.3 ± 16.4 0.2310
ACI [100/s2] 85.3 ± 28.8 79.1 ± 25.7 0.1226
HI [1/s2] 0.4 ± 0.1 0.3 ± 0.1 0.1329
LVWI [mmHg ∗ l/[min ∗m2]] 4.6 ± 1.2 4.1 ± 0.8 0.0477
LVET [ms] 312.6 ± 12.5 323.3 ± 15.1 0.0015
PEP [ms] 105.4 ± 12.9 109.6 ± 10.5 0.0385
ER [%] 36.4 ± 3.7 32.5 ± 2.7 0.0002

Figure 2: Subjects percentage indicators of the increase and decrease of the autonomic parameters: LFnu-RRI, HFnu-RRI, PSD-RRI, LF/HF-
RRI, LF/HF, LFnu-dBP, HFnu-dBP, PSD-dBP, LF/HF-dBP, LFnu-sBP, HFnu-sBP, PSD-sBP, and LF/HF-sBP.

mean arterial blood pressure with a parallel increase in total
peripheral resistance after hyperbaric exposure. In addition
left ventricle work index parameter significantly changed
with reductions in left ventricular work index and ejection
rate and increases in left ventricular ejection time and
preejection time. Data in Figure 2 and Table 3 presented
percentage indicators of the increase and decrease of the
cardiovascular function.

3.3. Autonomic and Baroreceptors Parameters. When we
explored changes in heart rate and blood pressure variability
on hyperbaric exposure, we showed a significant reduc-
tion in low frequency parameters (largely sympathetic) and
increase in high frequency (largely parasympathetic) with an
associated shift in sympathovagal balance after hyperbaric
exposure. The LF/HF ratios calculated from all bands of
heart rate variability and blood pressure variability were

elevated in HF component, and thus sympathovagal balance
was decreased in response to hyperbaric exposure or/and
hyperoxia or a combination of both.

There were no significant changes in baroreceptors reflex
sensitivity in all sequences, as significant decrease was
observed in numbers of detected baroreceptor measures.
Table 4 shows percentage indicators of the increase and
decrease of the autonomic function indicators.

4. Discussion

This study has confirmed that exposure to a hyperbaric
environment has a significant impact on the cardiovascular
system. This is confirmed both by changes in peptides
associated with poorer cardiovascular outcomes, where a
significant increase in the studied parameters was observed,
and by noninvasive examination with the TFM system.
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Table 4: Autonomic and baroreceptors function before/after hyperbaric exposure.The+/−mean values of standard deviationwere presented.

Parameter
Hyperbaric exposure
𝑛 = 18

before exposure after exposure 𝑃

Heart rate variability

LFnu-RRI [%] 62 ± 14.1 45.6 ± 20 0.0013
HFnu-RRI [%] 38 ± 14.1 54.4 ± 20 0.0013
PSD-RRI [ms2] 2218.5 ± 2387 2850.5 ± 2885.2 0.0279
LF/HF-RRI [𝑛/1] 2.2 ± 1.3 1.4 ± 1.4 0.0123
LF/HF [𝑛/1] 1.8 ± 0.8 1.1 ± 1.2 0.0156

Diastolic blood pressure
variability

LFnu-dBP [%] 54.5 ± 12 40.7 ± 18.5 0.0065
HFnu-dBP [%] 10.9 ± 7.1 19.9 ± 14.4 0.0222

PSD-dBP [mmHg2] 9 ± 5.6 8.7 ± 7.1 0.4724
LF/HF-dBP [𝑛/1] 7.5 ± 4.6 3.7 ± 3 0.0057

Systolic blood pressure
variability

LFnu-sBP [%] 48.6 ± 14.1 38.2 ± 19.5 0.0222
HFnu-sBP [%] 15.8 ± 10.3 22.1 ± 12 0.0123

PSD-sBP [mmHg2] 12.8 ± 9.9 11.4 ± 8.2 0.5861
LF/HF-sBP [𝑛/1] 4.9 ± 4 2.5 ± 1.9 0.0006

Baroreceptors reflex
sensitivity

Up-Events [𝑛/1] 12.8 ± 9.1 6 ± 5.5 0.0008
Down-Events [𝑛/1] 11.9 ± 9.3 5.1 ± 5.5 0.0026
Total-Events [𝑛/1] 24.8 ± 18.1 11.1 ± 10.7 0.0065
Up-Events Slope
[ms/mmHg] 27.1 ± 22 26.6 ± 13.3 0.3061

Down-Events Slope
[ms/mmHg] 16.2 ± 8.9 22.3 ± 11.5 0.0597

Total-Events Slope
[ms/mmHg] 22.6 ± 15.3 24.7 ± 10.8 0.2485

In the experiment, the influence of other factors, such
as physical activity or stress associated with being in water
(hypothermia, energy needed for sustaining physical activity
which is connected with the increased oxygen consumption),
was minimised. This is of particular importance as previous
studies have reported similar changes as those seen in the
current study, but changes have been interpreted as being
the effect of stress caused by being underwater, the ambient
temperature, and the physical activity of the divers [32–
34]. Despite intense studies conducted in recent years, the
authors have not found a publication presenting such results
concerning the direct effect of external pressure on the
cardiovascular system.

Previous studies have confirmed an increase in the level
of type B natriuretic peptide observed after diving [35–37].
It is important to note that a significant increase in BNP
or proBNP after exposure to HBO observed in these papers
was interpreted as occurring because of physical exercise;
however, in our experiment this factor was eliminated, and
still we observed a statistically significant increase that was
within a population reference range for that factor. Our
results support the following mechanism, typical also for
water immersion: exposure to pressure in hyperbaric cham-
bers results in an increase in intrathoracic blood volume,
causing dieresis because of a release of natriuretic hormones
and suppression of antidiuretic hormone [38–40].

We also found that the hyperbaric environment causes an
L-Arg change, which has influence on nitric oxide (NO) pro-
duction in vessel endothelium. Endothelium derived nitric
oxide seems to be released as free NO radical or in amore sta-
ble form (interactions with thiol or non-haem iron ligands).
Under resting conditions of flow, NO provides a constant
vasodilator tone acting against sympathetic vasoconstriction.
Following changes in environment, increased shear stress
during blood shifts, NO synthesis can be stimulated to
provide a mechanism for the local regulation of vascular tone
and blood flow [41, 42]. Observation showing the absence of
microvascular vasoconstriction during hyperbaric hyperoxic
conditions also supports our interpretation [43].

It is worth mentioning that we also observed a decrease
in urotensin II secretion in the hyperbaric environment.
Urotensin II is considered to be the most effective vaso-
constrictor, and it appears that it can be manipulated in
the hyperbaric environment. There seems to be a balance
between endothelium-independent vasoconstriction and
endothelium-dependent vasodilatation (urotensin II/NO)
[44].

Our study has confirmed that exposure to hyperbaric
pressure has no significant effect on angiotensin (Ang) but
we did find a decrease in Ang-(1–7). It is well known that
nitric oxide (NO) release is promoted by Ang-(1–7) through
activation of endothelial NO synthase (eNOS) and neuronal
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NO synthase. A few studies have shown a significant vasodila-
tor effect of Ang-(1–7) in isolated cardiomyocytes. Great part
of the research concerning Ang-(1–7) or other agonists in
the heart puts strong emphasis on its cardioprotective effects
[45].

A significant reduction of ischemia/reperfusion is pro-
duced mainly by low concentrations of Ang-(1–7). Even
though Ang-(1–7) is formed, it is observed that the blood
vessels are of the major areas where the above men-
tioned low concentrations occur. Vasodilation in aortic rings
and in several vascular territories is produced by Ang-
(1–7), the effect of which leads to a decrease in total
peripheral resistance with a consequent increase in cardiac
output.

These essentially equivalent alterations have hemody-
namic effect on blood pressure leading to no net change
in blood pressure. A right ventricular overload being an
impairment of ventricular diastolic performance may be
observed as an indication of the fact that circulating gas
bubbles during decompression are associated with cardiac
changes. There is a hypothesis of “silent” gas bubbles dam-
aging pulmonary endothelium and activating the reactive
systems of the human body with which the changes in
biochemical parameters are consistent [38, 39, 46–48]. The
results shown in our biochemical studies do not exceed
reference ranges; however, a statistically significant increase
indicates the hyperbaric environment is not without potential
impact upon the human body. A decrease in HR, an increase
inmBP, dBP, and TPR, and increase in parasympathetic heart
nerves activity suggest an increase in heart afterload with a
decrease in heart activity (HR and contractility) almost one
hour after hyperbaric exposure.These prolonged effects seem
to be related to resetting of different cardiovascular reflex
mechanisms, activated by mechanical stimulus, hyperbaric
pressure, resulting in central blood shifts and higher levels
in parameters concerning central venous pressure (increase
in heart preload). Changes of sympathoparasympathetic bal-
ance of heart innervation with increased vascular resistance
(increase in sympathetic vascular drive) indicate changes of
regulatory pattern in cardiovascular system. This difficult
(hard) haemodynamic situation helps to explain cardiac
disorders and an unexpected decease during diving activities.
It is noticed that divers whose age ranges from 60 to
70 years are highly probable to suffer from diving-related
deaths resulting from cardiovascular disease [12, 49–51].
The decrease in respiratory cardiac arrhythmia in subjects
from this age-group indicates the decrease in tonic cardiac
parasympathetic activity. Bradycardia found in our study
might be considered as a protective effect on cardiac muscle
in hyperbaric condition. Our result confirms importance of
being properly examined by a medical practitioner before
diving. The requirements for that activity differ depending
on the purpose of diving itself; for military divers they
are more stringent than for recreational divers. Hyperbaric
chamberworkers, caisson, and tunnel workers all should have
unique standards.The crucial element in those requirements,
especially in the sport and work diving community, is a
thorough verification of diving candidates for the presence of
a coronary disease.Those with an increased risk for coronary

disease due to age and chronic illness (metabolic) should not
be selected for this type of activity. We would conclude that
further studies are required to explore whether in long-term
professional divers, who are undergoing deep hyperbaric
exposures, experience delayed effects particularly related to
cardiovascular diseases, such as LVH.
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