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Selective AKT kinase inhibitor capivasertib in combination
with fulvestrant in PTEN-mutant ER-positive metastatic
breast cancer
Lillian M. Smyth 1,12, Gerald Batist2, Funda Meric-Bernstam3, Peter Kabos4, Iben Spanggaard5, Ana Lluch 6,7, Komal Jhaveri1,
Andrea Varga8, Andrea Wong9, Alison M. Schram1, Helen Ambrose10, T. Hedley Carr 10, Elza C. de Bruin 10, Carolina Salinas-Souza10,
Andrew Foxley10, Joana Hauser10, Justin P. O. Lindemann 10, Rhiannon Maudsley10, Robert McEwen10, Michele Moschetta10,
Myria Nikolaou10, Gaia Schiavon10, Pedram Razavi 1, Udai Banerji 11, José Baselga1,13, David M. Hyman1,12 and
Sarat Chandarlapaty 1✉

Five to ten percent of ER+ metastatic breast cancer (MBC) tumors harbor somatic PTEN mutations. Loss of function of this tumor-
suppressor gene defines a highly aggressive, treatment-refractory disease for which new therapies are urgently needed. This Phase I
multipart expansion study assessed oral capivasertib with fulvestrant in patients with PTEN-mutant ER+ MBC. Safety and tolerability
were assessed by standard methods. Plasma and tumor were collected for NGS and immunohistochemistry analyses of PTEN protein
expression. In 31 eligible patients (12 fulvestrant naive; 19 fulvestrant pretreated), the 24-week clinical benefit rate was 17% in
fulvestrant-naive and 42% in fulvestrant-pretreated patients, with objective response rate of 8% and 21%, respectively. Non-functional
PTEN was centrally confirmed in all cases by NGS or immunohistochemistry. Comutations occurred in PIK3CA (32%), with less ESR1
(10% vs 72%) and more TP53 (40% vs 28%) alterations in fulvestrant-naive versus fulvestrant-pretreated patients, respectively. PTEN
was clonally dominant in most patients. Treatment-related grade ≥3 adverse events occurred in 32% of patients, most frequently
diarrhea and maculopapular rash (both n= 2). In this clinical study, which selectively targeted the aggressive PTEN-mutant ER+ MBC,
capivasertib plus fulvestrant was tolerable and clinically active. Phenotypic and genomic differences were apparent between
fulvestrant-naive and -pretreated patients.

Trial registration number for the study is NCT01226316.
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INTRODUCTION
Breast cancer (BC) is the most frequently diagnosed malignancy
and the leading cause of cancer mortality in women1, with
estrogen-receptor-positive (ER+), human epidermal growth factor
receptor 2 negative (HER2–) BC being the most common BC
subtype2. Within this heterogeneous subtype, 5–10% harbor
somatic mutations in PTEN, a frequently mutated tumor-
suppressor gene in human cancer3,4. Phosphatase and tensin
homolog (PTEN) functions as a negative regulator of the PI3K/AKT/
PTEN pathway; therefore, its loss results in pathway activation that
drives tumor growth5. Loss of function of PTEN is associated with
poor prognosis in BC6,7 and the ER+ HER2– subtype (Fig. 1) and
has been implicated in resistance to endocrine therapy and
CDK4/6 and PI3Kα inhibitors8–12. The development of effective
therapeutic strategies after progression on these agents remains
an unmet need in metastatic BC (MBC). To that end, an
understanding of both de novo and acquired driver tumor
genomic alterations may unlock precision medicine approaches
for patients with this disease.

Capivasertib (AZD5363) is an oral, potent, selective, ATP-
competitive pan-AKT kinase inhibitor13–15. In a multipart Phase I
study (ClinicalTrials.gov, NCT01226316), capivasertib monotherapy
and, subsequently, combination therapy with fulvestrant was
tested in a number of genomically selected expansion cohorts
with expected PI3K/AKT/PTEN pathway activation14. Here we
report the Phase I expansion cohort evaluating capivasertib and
fulvestrant in PTEN-mutant, ER+ MBC patients. Study objectives
were to confirm14,16 safety and tolerability and assess preliminary
antitumor activity of the combination therapy in this patient
population, and to describe exploratory genomic biomarker
analyses of collected circulating tumor DNA (ctDNA) and tumor
samples.

RESULTS
Patient demographics and disease characteristics
In total, 32 patients with PTEN-mutant ER+ MBC were enrolled
across eight sites in six countries, of whom 31 patients ultimately
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Fig. 1 PTEN mutations are associated with a poor prognosis in ER+ HER2– breast cancer. a Early-stage ER+ HER2– breast cancers
(METABRIC data)19. b Metastatic ER+ HER2– breast cancers (MSK-IMPACT data)12. Kaplan–Meier survival analysis for ER+ HER2– breast cancer
patients by PTEN status in early-stage and metastatic BC: a overall survival of patients with ER+ HER2– primary breast tumors (n= 1398) by
PTEN mutation status, using the same criteria employed in this study for enrollment; b overall survival from time of metastatic recurrence of
patients with metastatic ER+ HER2– breast cancer (n= 949) by PTEN status. A patient with multiple metastatic samples sequenced by next-
generation sequencing was considered PTEN altered if at least one sample harbored an eligible PTEN alteration. Overall survival for the
METABRIC data utilized univariable or multivariable Cox proportional hazards models to examine the association between mutations and
survival. Breast cancer-specific survival was used as the endpoint. Patients with deaths from other or unknown causes were censored at the
date of death, and all other patients were censored at the date of last contact19. Overall survival for the MSK-IMPACT data, as defined by time
of metastatic recurrence until death or last follow-up, was analyzed utilizing the MSK cohort12 restricted to patients with metastatic
ER+/HER2– disease (n= 949 patients). Univariate P values were calculated using the log-rank test. The models were further adjusted using left
truncation methods37 for late entry when tumor sequencing to assess PTEN status was performed after metastatic recurrence. ER+ estrogen-
receptor-positive, HER2– human epidermal growth factor receptor negative.
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received treatment with capivasertib in combination with
fulvestrant (n= 12 fulvestrant naive and n= 19 fulvestrant
pretreated). Patient demographics and disease characteristics are
shown in Table 1 and Supplementary Table 1. Mean age of study
participants was 53 years (range 31–70). Most (90%) patients had
visceral disease at enrollment and were heavily pretreated, with a
median of 7 (range 1–13) prior therapies. Although the median
number (7) of prior anticancer regimens was equivalent in the
cohorts, fulvestrant-naive patients received more prior lines of
chemotherapy (median 4 vs 2) and fewer lines of endocrine
therapy (median 2 vs 4) compared with fulvestrant-pretreated
patients. The slightly higher rates of visceral involvement (100% vs
84%) and progesterone-receptor-negative status (17% vs 5%)
observed in the fulvestrant-naive versus fulvestrant-resistant
patients may also support this observation. Patients in the
fulvestrant-pretreated group were also more likely to have
received prior mTOR inhibitors (48% vs 25%), CDK4/6 inhibitors
(63% vs 8%) and PI3K inhibitors (11% vs 0%) than fulvestrant-naive
patients (Table 1).

Efficacy analyses
At data cut-off (June 2019), three patients remained on study
treatment, the majority having discontinued because of disease

progression (n= 24; Supplementary Fig. 1). Response Evaluation
Criteria in Solid Tumors (RECIST) response data are presented in
Fig. 2 and summarized by prior fulvestrant exposure in Table 2. Of
30 patients with available RECIST data at baseline and at least one
follow-up assessment, 17 (57%) demonstrated target lesion
shrinkage (Fig. 2). Objective response rate (ORR) was 8% (1/12,
95% confidence interval [CI] 0–39) in fulvestrant-naive patients
and 21% (4/19, 95% CI 6–46) in fulvestrant-pretreated patients;
clinical benefit rate at 24 weeks (CBR24) was 17% (2/12, 95% CI
2–48) and 42% (8/19, 95% CI 20–67), respectively. Median duration
of response (DOR) was 169 days (95% CI not calculable) in the
fulvestrant-naive cohort (n= 1) and 210 days (95% CI 43–670) in
the fulvestrant-pretreated cohort (n= 4). Median progression-free
survival (PFS) was 2.7 months (95% CI 2–4) in all patients (n= 31):
fulvestrant naive 2.6 months (95% CI 1–4), fulvestrant pretreated
4.1 months (95% CI 2–7).

Safety and therapy exposure
Median treatment duration (at data cut-off) was 103 days (range
22–740) overall: 102.5 days (24–410) in fulvestrant-naive patients
and 103 days (22–740) in fulvestrant-pretreated patients. All
patients experienced adverse events (AEs; Table 3), the most
common of which were diarrhea (n= 21, 68%) and nausea
(n= 14, 45%). Grade ≥3 AEs occurred in 17 patients (55%), most
frequently maculopapular rash (n= 3, 10%), headache and
diarrhea (both n= 2, 7%). Twelve grade ≥3 AEs occurring in 10
patients were considered causally related to capivasertib, of which
both diarrhea and maculopapular rash were seen in two patients.
Serious AEs (Supplementary Table 2) were reported in 11 patients
(36%), 3 (10%) of which were considered causally related to
capivasertib (malaise, nausea, vomiting). Capivasertib dose reduc-
tion and discontinuation was required because of diarrhea (n= 1,
3%) and drug hypersensitivity (n= 1, 3%), respectively. No
treatment-related or AE-attributable deaths in either cohort were
observed.

Exploratory biomarker analyses
Thirty-one patients were enrolled based on detection of an
eligible PTEN alteration by local testing of tumor tissue (n= 29) or
ctDNA (n= 2; Fig. 2). The majority of detected PTEN alterations led
to a premature stop codon (21, 68%; frameshift, n= 14; stop gain,
n= 5; splice, n= 2). Actionable missense mutations were detected
in three (10%) patients, and a PTEN gene deletion was detected in
the remaining seven (23%). Although numbers were very small,
there was no apparent correlation between the type of PTEN
alteration and clinical response during the study. Central next-
generation sequencing (NGS) of plasma and/or tissue detected
the PTEN alteration in 28 of the 30 (93%) cases with evaluable
samples. Central immunohistochemistry (IHC; n= 25) showed
complete loss of PTEN protein in 21 cases (84%), with various
levels of PTEN expression in the remaining four evaluable samples.
Overall, evidence of non-functional PTEN by central testing was
confirmed in all patients by NGS or IHC.
Interestingly, two PTEN-positive cases by IHC had a C124S PTEN

mutation by NGS, a dominant-negative form of PTEN reported to
inhibit phosphatase activity17. Intriguingly, one of these patients
had a complete response (CR) to study therapy (Fig. 2). The two
other PTEN-positive cases may have been related to potential
heterogeneous expression of the PTEN mutations; for one patient,
central NGS analysis of the PTEN-positive primary breast tumor did
not identify a PTEN alteration, whereas the central ctDNA analysis
identified the same PTEN alteration as detected by local NGS
analysis of a liver metastasis. For the other patient, low-intensity
PTEN protein expression was identified in only a small subset of
tumor cells (30%).
Broader genetic profiling by NGS of baseline ctDNA samples

revealed co-occurring alterations in PIK3CA in 9/28 (32%)

Table 1. Demographic and disease characteristics in 31 PTEN-mutanta

ER+ MBC patients treated with capivasertib and fulvestrant.

Characteristics Fulvestrant naive
(N= 12)

Fulvestrant
pretreated (N= 19)

Mean age, years (range) 51 (31–68) 55 (42–70)

Female gender, n (%) 12 (100) 19 (100)

Race, n (%)

White 10 (83) 16 (84)

Black or African American 1 (8) 1 (5)

Asian 0 1 (5)

Other 1 (8) 1 (5)

WHO performance status, n (%)

0, normal activity 5 (42) 8 (42)

1, restricted activity 7 (58) 11 (58)

Visceral disease, n (%) 12 (100) 16 (84)

ER+ and PR+, n (%)b 10 (83) 17 (89)c

ER+ and PR–, n (%)b 2 (17) 1 (5)c

HER2+, n (%)b 1 (8) 2 (11)

Median number of prior
anticancer regimens (range)d

7 (1–11) 7 (3–13)

Chemotherapye 4 (0–10) 2 (1–8)

Endocrine therapye 2 (0–4) 4 (1–6)

Prior CDK4/6 inhibitor, n (%) 1 (8) 12 (63)

Prior mTOR inhibitor, n (%) 3 (25) 9 (47)

Prior PI3K inhibitor, n (%) 0 2 (11)

Thirty-two patients were enrolled, but 1 patient deteriorated prior to
starting study treatment; therefore, data are presented here for 31 treated
patients.
ER+ estrogen-receptor-positive, HER2+ human epidermal growth factor
receptor positive, IHC immunohistochemistry, MBC metastatic breast
cancer, PR+/–, progesterone-receptor-positive/negative.
aA PTEN alteration was detected in all patients.
bIncludes both primary and metastatic biopsies.
cProgesterone receptor status was missing for one patient in the
fulvestrant-pretreated cohort.
dInclusive of adjuvant and metastatic therapies received.
eExploratory analyses.
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patients with sufficient tumor DNA for analysis (Fig. 2), a slightly
greater rate than that (19–20%) reported by The Cancer Genome
Atlas and METABRIC analyses18–20. Three of the four cases with a
partial response (PR) had a co-occurring PIK3CA mutation, but
the association of co-occurring PIK3CA mutations with PFS did
not reach statistical significance (P= 0.15) in this small cohort. As
expected, there was a higher prevalence of co-occurring ESR1
mutations in the fulvestrant-pretreated compared with the
fulvestrant-naive cohort (72% vs 10%, respectively). In contrast,
co-occurring TP53 mutations were more prevalent in the
fulvestrant-naive than in the fulvestrant-pretreated cohort (40%
vs 28%, respectively). No other mutations in the PI3K pathway
were identified. A closer look at the comparison of the PTEN
mutant allele fractions (MAFs) with the median of the co-
occurring mutation MAFs in each patient showed that PTEN was
detected at or above the median MAF in almost all patients,
suggesting PTEN as the dominant driver mutation in those
patients (Fig. 2).

DISCUSSION
This Phase I expansion study reported on the safety and efficacy of
the pan-AKT inhibitor, capivasertib, in combination with the ER
antagonist, fulvestrant, in a genomically selected advanced ER+
BC population harboring an eligible deleterious PTEN gene
alteration in the tumor. PTEN mutations select for an aggressive
genomic subtype of ER+ BC, with associated resistance to
standard-of-care therapies.
Capivasertib plus fulvestrant had an acceptable safety profile that

was consistent with prior data16 and demonstrated antitumor
activity in this heavily pretreated patient cohort (median 7 prior
therapies), including in those previously treated with fulvestrant.
Although efficacy appeared marginally better in fulvestrant-
pretreated than in fulvestrant-naive patients, there were notable
phenotypic and genomic differences between these patient cohorts.
Specifically, at enrollment, fulvestrant-naive patients had more
visceral disease, received less prior endocrine and more chemother-
apy, and, likely reflective of this prior therapy receipt, had a lower

Fig. 2 Best RECIST response, PTEN, and broader mutation profiling in patients with PTEN-mutant ER+MBC treated with capivasertib and
fulvestrant. AF allele fraction, ER+ estrogen-receptor-positive, FFPE formalin-fixed paraffin-embedded, IHC immunohistochemistry, MAF
mutant allele fraction, MBC metastatic breast cancer, NGS next-generation sequencing, RECIST Response Evaluation Criteria in Solid Tumors.

Table 2. Clinical efficacy summary in patients with PTEN-mutant ER+ MBC treated with capivasertib and fulvestrant.

Fulvestrant naive (N= 12) Fulvestrant pretreated (N= 19) Total (N= 31)

Objective response rate, % (95% CI) 8 (0–39) 21 (6–46) 16 (6–34)

Stable disease ≥24 weeks, n (%) 1 (8) 4 (21) 5 (16)

Clinical benefit rate, % (95% CI)a 17 (2–48) 42 (20–67) 32 (17–51)

Median progression-free survival, months (95% CI) 2.6 (1–4) 4.1 (2–7) 2.7 (2–4)

CI confidence interval, ER+ estrogen-receptor-positive, MBC metastatic breast cancer.
aPercentage of responders (patients who had a confirmed partial or complete response) plus those with stable disease for ≥24 weeks.

L.M. Smyth et al.

4

npj Breast Cancer (2021)    44 Published in partnership with the Breast Cancer Research Foundation



ESR1- and higher TP53-mutation rate, which indeed could also be
indicative of a more aggressive disease biology at baseline21. Overall,
however, and given the poor prognostic genomic subgroup selected
for this study, reasonable efficacy (ORR 21%; CBR24 42%) was seen in
the fulvestrant-pretreated cohort. On the whole, this clinical dataset
supports prior observations7,22 suggesting PTEN as a negative
prognostic biomarker in BC, given the relatively short median PFS
(2.7 [95% CI 2–4]) duration observed across the study population.
In this multicenter international study, local testing was reliable,

with central retrospective confirmation of non-functional PTEN
status achieved in all patients. Importantly, PTEN did appear to be
the dominant driver tumor mutation in this study population. In
addition, the trial adds support for enrollment in genomically
selected studies to be based primarily on local testing, thus
avoiding delays to study accruals from the impact of central testing,
particularly in early-phase signal-seeking studies such as these.
The incorporation of mTOR and CDK4/6 inhibitors into

endocrine therapy has led to substantial improvements in patient
outcomes23–27. Almost half of our PTEN-mutant study population
had received prior CDK4/6 inhibitor therapy. This is of particular
interest given recent data proposing PTEN inactivation as a
mechanism of resistance to this therapeutic class as well as PI3Kα-
selective inhibitors, lending support to direct AKT inhibitors in this
setting9,11,28.
Notably, in the Phase I/II randomized FAKTION study, which

demonstrated a PFS benefit with the addition of capivasertib to
fulvestrant in a molecularly unselected, aromatase-inhibitor-resistant
but fulvestrant-naive ER+ MBC population, a subgroup of patients
with PIK3CA mutation (by digital droplet polymerase chain reaction)
and/or PTEN loss (by IHC) did not appear to have any greater
sensitivity to the combination than those without the predefined
alterations. Importantly, however, no FAKTION participants had
received previous CDK4/6 inhibitor therapy, and the rate of AKT1
and PTEN mutations in that study has not yet been reported29.
Our study had several important limitations, including the trial not

being formally powered to compare efficacy across fulvestrant-naive
and -pretreated cohorts, as well as the small patient numbers. It is
also noteworthy that the fulvestrant-naive patients enrolled may
have had a more aggressive disease phenotype and a poorer
prognosis than the fulvestrant-pretreated cohort, although the

sample size limited any formal comparisons. At the planned interim
analysis, the fulvestrant-naive cohort did not meet its target value
for CBR24, so recruitment was halted, resulting in a cohort of only 12
patients. Furthermore, the rarity of this biomarker led to slow accrual
in the fulvestrant-pretreated cohort (approximately 29 months), with
the result that this cohort was closed before reaching the target of
24 patients.
In conclusion, this study shows that capivasertib in combination

with fulvestrant has clinical activity in heavily pretreated PTEN-
mutant ER+MBC patients, a poor prognostic BC subtype. PTEN was
the dominant driver tumor mutation in these patients. Further
analyses of patients pretreated with a CDK4/6 inhibitor in the
ongoing Phase III study CAPItello-291 (NCT04305496), which is
evaluating combination capivasertib with fulvestrant, will defini-
tively inform PTEN’s role as a therapeutic target in BC. In the Phase I
study reported here, this aggressive disease entity appeared to
display unique biology with at least a subset dependent on AKT
and ER for proliferation, an observation that may benefit
therapeutically from using an AKT inhibitor combination.

METHODS
Study design and participants
This was a Phase I, dose- and schedule-finding study of capivasertib with
multiple expansion cohorts that included evaluation of capivasertib with
fulvestrant (NCT01226316). Results from the earlier parts of the study
presenting the dose-finding, recommended Phase II dose and pharmaco-
dynamic evaluation, as well as efficacy in patients with advanced solid
tumors and those with activating PIK3CA30 or AKT1 mutations, have
previously been reported14,16. The final part of this study enrolled PTEN-
mutant ER+ MBC patients into two subcohorts: fulvestrant naive and
fulvestrant pretreated (with a maximum of 24 patients per cohort).

Inclusion criteria
Eligible patients ≥18 years old had histological or cytological confirmation
of ER+ advanced or MBC refractory to standard therapies and confirmation
of an eligible PTEN alteration in tumor tissue by local testing. Eligible PTEN
alterations were defined as a deleterious mutation in PTEN or copy loss of
the PTEN gene31. Further inclusion criteria were measurable disease by
RECIST v1.1, WHO performance status 0–1, and minimum life expectancy
of 12 weeks. Key exclusion criteria included active central nervous system
metastases, prior treatment with catalytic AKT inhibitors (prior exposure to
all other agents in the PI3K/AKT/mTOR pathway, including allosteric AKT
inhibitors, was allowed), and clinically significant abnormalities of glucose
metabolism [defined by any of the following criteria: i. diagnosis of
diabetes mellitus type I or II (irrespective of management); ii. baseline
fasting glucose value of ≥7mmol/L (fasting is defined as no calorific intake
for at least 8 h); and iii. glycated hemoglobin >8% (>64mmol/mol)].
All patients provided written informed consent, the institutional review

boards or independent ethics committees of all investigational sites
approved the protocol, and the study was performed in accordance with
the Declaration of Helsinki, Good Clinical Practice, and the AstraZeneca
policy on bioethics32.

Procedures
Patients were treated with oral capivasertib 400mg twice daily, 4 days on
followed by 3 days off, weekly (cycle length: 21 days), and fulvestrant at
the labeled dose, in accordance with the previously established
recommended combination dose29. Antitumor activity was assessed by
computed tomography or magnetic resonance imaging (RECIST v1.1) every
6 weeks for 24 weeks, then every 12 weeks. Safety was assessed
throughout the study period and until day 28 after discontinuation of
study treatment, according to the National Cancer Institute Common
Terminology Criteria for Adverse Events v4.0. AEs were coded with the
Medical Dictionary for Regulatory Activities v19.1.
For study enrollment, PTEN mutation (with known functional or

therapeutic significance as described in Carr et al.33) status was determined
in tissue/plasma by local NGS and involved a variety of assays in accordance
with local standard practice without any specific threshold for positivity.
PTEN status was also centrally evaluated in tumor tissue from either primary
or metastatic disease (as indicated in Fig. 2) by FoundationOne34 testing, by

Table 3. AEs occurring in >10% of treated patients irrespective of
causality.

MedDRA preferred term, n (%) All patients (n= 31)

All grades Grade ≥3

Patients with any AE 31 (100) 17 (55)

Diarrhea 21 (68) 2 (6)

Nausea 14 (45) 1 (3)

Headache 9 (29) 2 (6)

Vomiting 9 (29) 1 (3)

Dizziness 7 (23) 0

Fatigue 7 (23) 0

Abdominal pain 5 (16) 1 (3)

Constipation 5 (16) 0

Hyperglycemia 5 (16) 1 (3)

Rash maculopapular 5 (16) 3 (10)

Decreased appetite 4 (13) 0

Flatulence 4 (13) 0

Pruritus 4 (13) 0

AE adverse event, MedDRA Medical Dictionary for Regulatory Activities.
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IHC analyses of PTEN protein expression (using the CST138G6 PTEN
antibody assay with Hscore ≤10 classified as PTEN protein deficient)35, and
in ctDNA by using a hybrid capture-based panel covering 600 genes
(AZ600) and low-pass whole-genome sequencing for cases with a PTEN
gene deletion reported by the local test. PTEN was considered clonal if the
PTEN MAF was greater than the median MAF of the remaining mutations
identified in the plasma sample with MAF > 1%. These central analyses were
conducted retrospectively.

Outcomes
Safety and tolerability were assessed by continual monitoring of AEs. Efficacy
outcomes included: ORR, defined as a confirmed PR or CR; DOR, defined as the
time from first objective response to disease progression or death (or censoring
if neither outcome is observed); PFS, defined as the time from the first day of
treatment to disease progression or death; and CBR24, defined as confirmed
disease response (PR or CR) or stabilization for ≥24 weeks. Responses were
investigator assessed in accordance with RECIST v1.1 and required a
confirmatory scan. Exploratory biomarker analyses included mutation analysis
of baseline tissue and ctDNA plasma samples (by NGS), along with analysis of
PTEN protein expression in baseline tumor tissue (by IHC).

Statistical analysis
Although the primary endpoint throughout this multipart Phase I study
remained safety and tolerability, the sample size of the Phase I expansion
cohort reported here was determined with the aim of detecting a signal of
efficacy, should one exist, using CBR24. The sample size was determined
based on prespecified CBR24 target values of 65% and 40% for fulvestrant-
naive and fulvestrant-pretreated patients, respectively. With 24 patients per
cohort (Fig. 3), there would be a 90% chance of at least 13 and 7 clinical
benefit responses, respectively. At the planned interim analysis, the
fulvestrant-naive cohort did not meet its target (CBR24 of 65%), and
recruitment was halted. The fulvestrant-pretreated cohort did meet its
predefined boundary (CBR24 of 40%), and recruitment continued. However,
subsequent to this and owing to the difficulty in recruiting this rare patient
population, this latter cohort was also closed before the target of 24
patients was reached. It was considered that sufficient data were available
from the 19 patients dosed in this fulvestrant-pretreated cohort to allow a
reasonable chance of assessing any signal of efficacy. Final analyses were
conducted when all patients had the opportunity to reach 24 weeks of
treatment for assessment of CBR24. DOR and PFS were analyzed by
Kaplan–Meier plots, and patients without a progression event at the analysis
date were censored at the last known RECIST assessment. Exploratory
biomarker analyses investigated the association between mutations and
radiographic response. All analyses were conducted with SAS v9.04.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The raw sequencing data are not publicly available because of data privacy
regulations and restrictions for use of such data, as stated in the study protocol and
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