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Suppressing the impact 
of the COVID‑19 pandemic using 
controlled testing and isolation
Kobi Cohen1 & Amir Leshem2* 

The Corona virus disease has significantly affected lives of people around the world. Existing 
quarantine policies led to large-scale lock-downs because of the slow tracking of the infection 
paths, and indeed we see new waves of the disease. This can be solved by contact tracing combined 
with efficient testing policies. Since the number of daily tests is limited, it is crucial to exploit them 
efficiently to improve the outcome of contact tracing (technological or human-based epidemiological 
investigations). We develop a controlled testing framework to achieve this goal. The key is to test 
individuals with high probability of being infected to identify them before symptoms appear. These 
probabilities are updated based on contact tracing and test results. We demonstrate that the proposed 
method could reduce the quarantine and morbidity rates compared to existing methods by up to a 
50%. The results clearly demonstrate the necessity of accelerating the epidemiological investigations 
by using technological contact tracing. Furthermore, proper use of the testing capacity using the 
proposed controlled testing methodology leads to significantly improved results under both small and 
large testing capacities. We also show that for small new outbreaks controlled testing can prevent the 
large spread of new waves. Author contributions statement: The authors contributed equally to this 
work, including conceptualization, analysis, methodology, software, and drafting the work.

The outbreak of the COVID-19 has revealed the widespread effects a pandemic can have on all spheres of life 
from health, to social life, to the economy1. The main thrust of efforts to control the spread is to decrease the 
reproduction rate to flatten the curve of the total number of infected individuals per day. This is necessary to 
reduce the load on the health system, although the infection may spread in the population over an extended 
period of time2,3. The most widely implemented response to the exponential growth of the infection has been 
widespread quarantine and lock-downs4,5. While isolating people is an effective tool to decelerate the spread, 
imposing, repeatedly, a complete quarantine for everyone for a relatively long period of time until the virus is 
suppressed has negative effects on people’s lives. Moreover, if proper population monitoring is not enforced there 
may be further waves of the disease. Therefore, early detection of Corona positives is of paramount importance 
to suppress the spread of COVID-19 as early as possible.

The second component in fighting the pandemic is to devise better testing policy. Today, health systems 
around the world prioritize the administration of tests to people who have had direct contact with an infected 
person or who are symptomatic. Some countries, such as South Korea, are implementing extensive resources 
to test people widely and randomly to detect areas where the pandemic is likely to spread. Nevertheless, these 
strategies do not exploit resources effectively. First, only testing symptomatic people results in a loss of precious 
time, during which the individual can infect others before symptoms appear. Furthermore, many people (about 
10−30% ) are asymptomatic, and thus cannot be identified using this strategy. In addition, testing the entire 
population on a daily basis to detect people who remain asymptomatic is impossible because the number of 
tests that labs can either produce or process is limited. For these reasons, this paper address the prioritization 
of tests using a feedback methodology. Specifically, the key of the proposed method is to test individuals with 
a high probability of being infected to identify them before symptoms appear. The probabilities of individuals 
being infected act as an input to selecting individuals for testing for infection. The individuals with the highest 
probabilities of being infected are selected. Then, their test results act as a feedback to update the probabilities 
of other individuals being infected, and so on. For example, when an individual is tested, then the probabilities 
of his or her neighbors being infected increase or decrease, depending on whether the test result is positive or 
negative, respectively. Then, the future selection of individuals for testing for infection is updated as well. We will 
show that this, has three important consequences: Reducing the burden on the health system (i.e., reducing the 
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peak of the number of infected people), reducing the total morbidity (i.e., the total number of severe COVID-
19 patients), and reducing the economic and social impact (i.e., the total number of people required to stay in 
quarantine and the overall time people spend in quarantine).

The mitigation of a pandemic can be achieved using a range of interventions to reduce transmission6. Recently, 
partial lock-down strategies have been suggested, in which half of the population remains under lock-down, 
where the other half is released, in alternation7, or by applying a cyclic schedule of 4 days of work and 10 days of 
lock-down8. However, these strategies lead to more than a 50% loss in economic productivity, which we aim to 
avoid. These strategies are based on the effectiveness of quarantine, and are simple to analyze. However, they do 
not consider wide-scale testing, which is available. By tracing and quarantining only those at risk (e.g., those in 
close contact with an infected individual, depending on the duration of contact and distance), epidemics can be 
contained without using aggressive lock-downs9,10, using surveillance and containment measures for patients11, 
contact tracing12,13 and mathematical modelling of the transmission dynamics of the infection14.

As reported recently in15, increasing the COVID-19 test rate per population would have a significant posi-
tive impact on mitigating the pandemic around the world. The missing component in most existing methods 
is that they do not use COVID-19 tests to identify infected people prior to the occurrence of symptoms. There 
are a number of recent studies that incorporate tests to mitigating the spread15, and provide worst-case analysis 
of a risk-based selective quarantine16. Nevertheless, these methods use passive testing in the sense that post-
processing the test results is not used to improve future tests. In a recently published Science paper9, Ferretti et al. 
concluded that viral spread could be controlled using contact tracing by testing close contacts of positive cases.

In this paper, we argue that suppressing viral spread can be accomplished much more efficiently by develop-
ing a controlled sensing methodology for contact tracing, rather than testing close contacts in a deterministic 
manner as in9. We develop a controlled testing methodology to control the spread of the COVID-19 pandemic 
based on a large-scale stochastic model. Controlled sensing, a.k.a active sensing, is based on classic sequential 
experimental design theory17,18, and has attracted growing attention in recent years in various hypothesis test-
ing and dynamic search problems19–23. Controlled sensing policies, have also been used to identify influence in 
social networks24, as well as to learn the dynamics in general networks25. The basic idea behind controlled sensing 
theory when translated to the realm of detecting COVID-19 patients is to use the results obtained from previ-
ous tests to update the probabilities of individuals being infected, which improves the future selection process 
of individuals for testing. Intuitively, as more tests are performed, the learner becomes more certain about the 
true state of the population, which in turn leads to better choices of people to test. This approach was shown to 
achieve the asymptotic information theoretic bound in various hypothesis testing problems as the error prob-
ability approaches zero (see e.g.,19,20,26–32). Using the controlled testing methodology that we develop to control 
the spread of the COVID-19 pandemic, we report a significant reduction (up to 50% ) in both quarantine rate as 
well as morbidity rate in typical settings of COVID-19 parameters as compared to existing studies.

Recent studies considered Susceptible, Infectious, Recovered (SIR)-related models and more general com-
partmental models33 to analyze COVID-19. Cooper et al. developed a SIR-based model to investigate the virus 
spread within a community34. Calafiore et al. developed a modified SIR model to study the COVID-19 contagion 
in Italy35. Wangping et al. extended SIR to prediction of the epidemics in Italy compared with Hunan, China36. 
Faranda and Alberti used Susceptible-Exposed-Infected-Recovered (SEIR) model to model the second wave of 
COVID-19 infections in France and Italy37. Annas et al. used it to analyze the COVID-19 spread in Indonesia38. 
Faranda et al. used SEIR model for estimates of infection counts39. Other recent studies can be found in40–42 and 
references therein. These models use differential equations to capture the epidemiological models, by assum-
ing that populations are completely mixed. Interactions and spatial effects between individuals are neglected 
since the populations are modeled as continuous entities (e.g., mean-field analysis)43–46. Thus, these models 
have limitations in modeling spatial aspects of the epidemic spreading, individual contacts and policies that 
distinguish between various agents based on the micro behavior of the agents, etc. For this reason, we chose to 
use a stochastic agent-based model that allows us to model these aspects by microscopically tracking the target 
individuals. It can also easily incorporate new models for infection probability as well as more elaborated spatial 
models and individual probabilities of being infected. For example, the model can be used to more accurately 
exploit the duration of contact provided by contact tracing measures.

Stochastic model for controlled testing
We start by providing a brief description of the underlying model used in this paper. A detailed mathematical 
formulation is given in the “Methods” section. The model includes a state for each agent in the population, e.g., 
healthy, quarantined, infected, recovered, etc. We model the connections between all people as random interac-
tions. For example, being within 1 m of a COVID-19 patient for more than 15 min is defined as close contact by 
the WHO4; and these close contacts are random. Furthermore, we assume that a probability of infection can be 
assigned to each contact, e.g., using contact tracing devices. The proposed method works as follows: It identifies 
infected people based on symptoms or test results. Then, people who are declared infected (i.e., have symptoms or 
get positive test results) and their close contacts (as identified by contact tracing techniques) are quarantined. The 
outcome of these steps is used to update the score of being infected (i.e., probability) of all people. For example, 
when an individual is tested, then the probabilities of his or her neighbors being infected increase or decrease, 
depending on whether the test result is positive or negative, respectively. This update serves as a feedback to the 
decision on testing where the most likely infected people, i.e., those with highest scores are tested regardless of 
their symptomatic state. This last step is the feedback that closes the loop seen in Fig. 1. This feedback mechanism 
is crucial to the success of the proposed method especially given the large proportion of asymptomatic people.
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Description of the active testing and isolation (ATI) algorithm.  We now describe the proposed 
active testing and isolation (ATI) algorithm which controls the testing process. Every day the ATI algorithm 
works as follows: 

1.	 Identifying infected people and isolating them.
2.	 Isolating first-order neighbors in quarantine.
3.	 Updating the belief over the population graph.
4.	 Actively testing the most likely infected people according to the number of available tests.

An illustration of the ATI algorithm is given in Fig. 1. A detailed description is given in the “Methods” section. 
Note that the ATI algorithm tests and isolates people actively in a closed-loop manner. Steps 1, 2 identify infected 
people based on symptoms or test results. Then, people who are declared infected and their first-order neighbors 
are quarantined. The outcome of these steps is used to update the beliefs of all people in the population graph, 
which is then used to sample and test the most likely infected people regardless of their symptomatic state. This 
is the crucial concept that enables ATI to identify infected people early before symptoms appear.

Results
Our proposed controlled testing technique exploits a large-scale agent-based stochastic model, where we monitor 
our belief regarding each person’s state and select to test for infection the most probable people to be infected 
based on belief and the total number of tests available. Beliefs are estimated from contact tracing data as well as 
symptom reporting. We demonstrate the effectiveness of the technique using a stochastic spread model based on 
COVD-19 parameters in populations of one million people. We show that we can reduce the quarantine period 
(defined as the period where more than 1% of the population is quarantined) by up to 50% , while reducing both 
the peak number of infected people per day and the total morbidity by a significant amount. Our methodology 
allows optimal exploitation of the testing capacity. By testing daily rT = 0.3% of the population of an infected 
region, we already show significant benefits. Another important consequence of the results is the significant 
improvement in performance when shortening the testing and epidemiological investigation period.

We begin by describing simulated results that support our claims. In Table 1, we present the parameters and 
the value ranges used in the simulations. Then, we provide the details of the proposed active testing and isola-
tion (ATI) (control algorithm) and end with the specifics of the stochastic agent-based model and the related 
algorithms used to direct the active testing process.

Performance evaluation.  We present three sets of results. The code and data for the simulations can be 
found in47. In the first set we study the possibility of quickly controlling an outbreak in its early phase. This is 
important for controlling future waves of the disease. Then, in the next two sets, we discuss the amount of test-
ing required to suppress an advanced outbreak with 0.1% of the population already infected. This represents 
the current state of the disease in many countries. As a baseline for our study we consider three methods: (a) 
Isolation without testing (NTI) where only symptomatic people are tested. This was the approach, e.g., in Israel 
umtil mid May 2020; (b) widespread random testing and isolation (RTI), i.e, NTI augmented by widespread tests 
for anyone interested in getting tested; (c) deterministic testing and isolation (DTI) based on contact tracing as 
presented in Ferreti et al.9. In this technique, when an infected agent is detected, all his or her close contacts are 
quarantined and tested. The problem here is that when resources are limited it does not necessarily tests the most 
relevant people. It also incurs a delay in testing second order infections.

New eruption in a city: To simulate the case of an early outbreak, we consider the case of 50 infected people 
in a city of 100,000 people. We also use this case to test the magnitude of success of the quarantine. We assumed 

Figure 1.   An illustration of the ATI algorithm proposed in this paper.
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that false negative of tests are 10% and changed the quarantine success rate qs from 0.7 to 1. We assumed that 
we can test daily rT = 0.3% of the population. First we present the performance of the various techniques with 
respect to a quarantine success rate of 70% in Fig. 2.

As shown, as long as the tests are properly controlled by the ATI, the decay time is relatively short even when 
the quarantine is only observed by 70% percent of the population required to be in quarantine. In contrast,the 
RTI is practically equivalent to the NTI and both fail to quickly reduce the eruption (because of the low obedi-
ence rate). The combination of a low quarantine rate and random testing is incapable of providing an effective 
means to block the spread, although it does manage to flatten the curve over a very long period. DTI has better 
performance, yet the active approach is significantly superior in controlling future small outbreaks (DTI requires 
twice quarantine days, and results in twice morbidity rate). Thus, accurate contact tracing with controlled testing 
does not require a huge amount of testing to stop the outbreak. We observed (see “Methods” section) that NTI 
achieves results that are between tens and up to hundreds of percent worse than ATI when the quarantine success 
rate is between 100% and 70% , respectively. Table 2, presents the total infected population, overall quarantine days 
over the epidemic and the peak infection for all methods for quarantine success rate of 70% . It can be seen that 
the total days lost due to quarantine by NTI is up to 8 times greater than ATI, and even DTI requires up to 100% 
more quarantine days than ATI, mainly because it does not order people to be tested according to the probability 
of infection. NTI and RTI also result in 4 times and up to 9 times more infected individuals.

Developed outbreak: We now present the results of controlling an outbreak with 0.1% of the population 
already infected for a region of one million people. We assumed a false negative rate of 20% which is typical to 
current testing methodology. We simulated two scenarios: 0.3% and 5% of population tested daily. In Fig. 3a,d we 
present the average number of infected people as a function of time. In Fig. 3c,f we present the average number 
of people in quarantine as a function of time and in Fig. 3b,e we present the total morbidity. For these graphs 
we also present the upper confidence level of 90% (For other graphs, these are provided in the Supplementary 
Information). Table 3 provides the accumulated measures for 0.3% daily testing.

The figures show that NTI and RTI performs the worst on all performance measures. To achieve only slightly 
inferior performance compared to DTI, RTI requires significantly larger amount of testing. DTI is worse than 
ATI. These results support the observation that a small number of random tests or even based on contact tracing 
with no prioritization cannot achieve a significant improvement in controlling the spread of COVID-19, while 
the suggested ATI strategy (both first and second-order) succeeds in doing so. Specifically, the peak load in 
Fig. 3a under NTI and DTI, respectively, is 25% , and 11% higher than ATI. The total morbidity in Fig. 3b under 
NTI and DTI, respectively, is 85% , 20% higher on average. The quarantine curve in the 1% quarantine ratio in 
Fig. 3c using NTI and DTI, respectively, is 200% and 20% wider than that of ATI. These results demonstrate the 
importance of controlled testing.

It can be seen that first-order and second-order ATI achieves roughly the same performance for 0.3% testing, 
whereas ATI2 better exploits the large number of tests. This can be explained by the fact that when the number 
of tests is relatively small, both strategies give high weight to testing first-order neighbors. Thus, in this case, the 
first-order approximation is sufficient for effective active testing. In the large number of tests,we see equality of 
ATI1 and DTI since in this case all first order connections are tested. At this level of tests also the random testing 
performs quite well. However daily tests of 5% of the population are definitely beyond reach with current means 
(even in Wuhan at peak around 0.3% of the population has been tested daily.)

Dependence on parameters: Next, we test the effects of δT , δs and ri on the performance. The results demon-
strate the importance of taking operational actions quickly to suppress the pandemic spread, in terms of provid-
ing test results quickly (i.e., small δT ), shortening the epidemiological investigation period as well as asking people 
to enter into quarantine promptly as soon as symptoms appear (i.e., small δs ). We also show that identifying and 
responding quickly to outbreaks in early stages (i.e., small ri ) is also very important. First, we consider the case 
of 50 infected people in a region of 100, 000 people. We set the daily test rate to rT = 1% of the population, as 

Table 1.   A list of parameters used in the simulations.

Parameter description Symbol Value used in simulations

Number of people (population size) N 105, 106

Ratio of asymptomatic people over the entire population ra 30%

Initial ratio of infected people over the entire population ri 0.05–1.5%

Ratio of daily tested people over the entire population (testing capacity) rT 0.3–5%

Reproduction rate R0 2.3

Number of days between the day symptoms appear and the day a person and his or her first-order 
neighbors enter quarantine δs 1–5

Number of days between the day the test is performed and the result is received δT 1–8

Number of days in quarantine for suspected infected people Dq 14

Ratio of disciplined people entering a quarantine out of all people that were ordered to enter a 
quarantine (quarantine success rate) qs 70–100%

Number of days between the day of infection and transitioning to the static state (recovering or 
deceasing) Ds 21

False negatives in test results FN 0.1–0.2

False positives in test results FP 0.01
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Figure 2.   Simulation results for a COVID-19 outbreak in a population of 100,000 people, and testing capacity 
of 0.3% per day.
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this is the testing rate in many counties today48. We present here the results for δs = 5 . Results for δs = 1, 3 are 
provided in the Supplementary Information. In Fig. 4a–c, we present the total number of infected people, peak 
number of infected people, and total number of days in quarantine as a function of δT . It can be seen that ATI2 
outperforms all other methods in all measures. For δT = 1 day, the total morbidity in Fig. 4a under RTI and DTI, 
respectively, is 260% , and 105% higher than ATI2, the peak number of infected people in Fig. 4b under RTI and 
DTI, respectively, is 190% , and 105% higher than ATI2. The total number of days in quarantine in Fig. 4c under 
RTI and DTI, respectively, is 190% , 77% higher than ATI2. A significant performance gain of ATI over other 
methods is observed up to δT = 4 days. Nevertheless, the performance gain decreases with δT , and diminishes for 
δT = 8 . These results demonstrate the importance of operating efficient test labs that provide test results quickly.

Finally, we set δT = 3, δs = 3 , and tested the results as a function of ri . In Fig. 4d–f, we present the total num-
ber of infected people, peak number of infected people, and total number of days in quarantine as a function of 
the number of initial infected people in a region of N = 100,000 people. It can be seen that ATI2 outperforms all 
other methods in all measures. For ri · N = 50 , the total morbidity in Fig. 4d under RTI and DTI, respectively, is 
400% , and 30% higher than ATI2, the peak number of infected people in Fig. 4e under RTI and DTI, respectively, 
is 40% , and 10% higher than ATI2. The total number of days in quarantine in Fig. 4f under RTI and DTI, respec-
tively, is 550% , 40% higher than ATI2. A significant performance gain of ATI over other methods is observed up 
to ri · N = 800 . For ri · N ≥ 800 the performance gain of ATI over DTI diminishes. This can be explained by the 
fact that as the initial number of infected people is too large, then most of the resources should be dedicated to 
tracing the close contacts of the infected people. It also can be seen that the benefit of using tests to suppress the 
pandemic by all methods decreases with ri . This result is expected since controlling such a developed outbreak 
requires a much larger number of tests, or applying a large-scale lock-down. Another interesting observation is 
that in Fig. 4e the difference between the peak number of patients when using various policies is approximately 
constant. This is expected, since for a given δT , δs the process is Markovian and therefore, its peak evolution is 
independent of the initial state.

Discussion
Today, health systems around the world are prioritizing the use of COVID-19 tests for people who have either had 
direct contact with an infected person or are symptomatic. Some countries, such as South Korea, use extensive 
resources to test people randomly. However, testing capacity is raely beyond 1% of the population48.

Our results clearly demonstrate the importance of contact tracing technology, either by localization, or by 
contact monitoring using short range wireless communication. δT also includes the time required for conducting 
detailed epidemiological investigations. Typically, when done by humans, these investigations require up to 3 
days. In contrast, electronic-based contact tracing significantly shortens this time. As a consequence, it reduces 
δT . It was clearly shown that the shorter δT is the faster the epidemic is contained. In our opinion, these results 
provide very strong evidence on the necessity of technological contact tracing. Our results also show that the 
proper use of contact tracing must be complemented with a proper probabilistic analysis of the contact data 
(number of contacts, duration, etc.) to guide new tests of infection. The larger the testing capability, the more 
elaborate the algorithms must be to exploit the additional testing capacity.

It is worth noting that the probability of infection used in the stochastic model can be determined based 
on the distance and duration of contact. For example, being within 1 m of a COVID-19 patient for more than 
15 min is defined as close contact by the WHO, yet, measuring the duration of contacts can provide a more 
elaborate probabilistic model. Intuitively speaking, decreasing the distance or increasing the duration increases 
the probability of infection. Therefore, by using more accurate distance and duration determination provided 
by short range wireless communication we might be able to define or learn a probability distribution from the 
data for the probability of infection. Such new models for infection probability can be easily incorporated in the 
stochastic model for controlled testing.

We demonstrated that testing people using the methodology of a controlled experimental design in the 
spatio-temporal dimensions based on belief approximation exploits the available testing capacity much more 
efficiently. This results in a significant reduction of the burden on the healthcare system, the morbidity, and the 
negative economic and societal impact. Even a year into the COVID-19 pandemic, no state is testing daily more 
than 1.2% of its population. This clearly demonstrates the necessity of the proposed methodology to properly 
exploit the available resources. As shown for an advanced stage epidemic with 0.1% of the population already 
infected, the quarantine of large portions of the population (e.g., > 1% ) can be reduced by over two months 
compared to random testing and by almost two weeks compared to simple neighbor testing, when up to 0.3% 
of the population is being tested every day. Similarly, the peak load on the health system can be reduced by 18% 
compared to testing randomly and by 10% compared to contact tracing with no controlled testing. Since the total 
morbidity is also lower, on one hand and also correlated with the death rate, many lives can be saved as well. 

Table 2.   Performance evaluation for a 70% quarantine success rates.

Measure/method NTI RTI DTI 1st-order ATI 2nd-order ATI

Total # of infected people 8,256 7,516 1962 909 911

Peak # of infected people 701 648 507 431 442

Total # of days in quarantine 4,118,872 3,816,708 1,046,777 509,401 508,265

Curve width of quarantine above 1% (in days) > 500 > 500 244 142 136
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Figure 3.   Simulation results for a COVID-19 outbreak in a population of 1 million people. Daily testing 
capacity ( 0.3, 5%).
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Similarly, it was shown that for early stage spread, using controlled testing can prevent the huge deterioration of 
the situation before it gets out of hand.

While controlled testing ideas can be applied under standard epidemiological investigations, without tech-
nological contact tracing, the delay involved and the inability of scaling to the millions, it clearly supports the 
use of technological contact tracing.

Another interesting observation is that random testing benefits significantly from very large numbers of tests, 
but that even testing up to 5% of the population daily still yields inferior results on both the deterministic and con-
trolled testing policies. This underscores the importance of contact tracing and accurate probabilistic modeling.

Finally, some comments are in order regarding other factors. We used a false negative rate of 10− 20% , 
but results scale favorably even with a 30% false negative rate. The results presented in the paper assumed 85% 
quarantine success rate. However, it is clear from the further resutls in the Supplementary Information that 
the performance is only mildly degraded wit 70% quarantine rate. This shows that the method is robust to real 
world problems.

The importance of the proposed technique is not only in coping with the first wave of the pandemic, but also 
monitoring new occurrences of the disease over time since it will significantly reduce the overall quarantine rate 
and accelerate the containment time in future waves.

Methods
Stochastic model for controlled testing.  The proposed controlled testing scheme requires an under-
lying stochastic model to be able to use the current testing results to estimate the likelihood of a person being 
infected given the test results. We used a microscopic stochastic model which includes every agent in the popu-
lation as described below. We model the connections between all N people in an area (e.g., state, district, city) 
as an undirected graph, where the people are represented by a set N = {a1, a2, . . . , aN } of agents and “close 
contacts” between people who might cause infection are represented by a set E of edges. The existence of an edge 
(n, i) ∈ E between persons n, and i is determined based on potential infections. For example, being within 1 m of 
a COVID-19 patient for more than 15 min is defined as close contact by the WHO4 defines an edge in the graph. 
By using more accurate distance determination provided by short range wireless communication we might be 
able to define or learn a probability distribution from the data for the probability of infection. This turns the 
graph into a weighted graph, with time varying weights. For each agent an we define his or her set of first-order 
neighbors by:

which represent all close contacts with respect to agent an . Similarly, we define the second-order neighbors of 
an by:

which represent all close contacts with respect to agent an ’s first-order neighbors. We focus only on first and 
second neighborhoods of agents. Nevertheless, higher neighborhood orders can be defined similarly. Intuitively, 
if agent an is infected, then the probability of infecting other people over the graph decreases as the neighbor-
hood order increases.

We also allow for external independent information regarding each individual’s probability of being infected 
based on physical measurements.

Each agent has two local states; namely, a physical state SP(an) , and controlled state sC(an) . The physical state 
specifies his or her health condition (healthy SH/infected SI/recovered SR /dead SD ), whereas the controlled state 
specifies whether the agent is in quarantine ( sQ ) or free ( sF).

The active testing algorithm has prior information regarding each agent’s state described by a probability 
distribution over the four possible values of the physical states, and knowledge of the control state.

The algorithm observes the physical state of the person, either by testing for COVID-19 or by the emergence 
of symptoms. This observation of an is denoted by o(an) , which equals one if an was confirmed infected. Other-
wise, it equals zero. Note that observations might result in errors when inferring the physical states; for example, 
due to false negatives and false positives in COVID-19 tests. These considerations are taken into account in our 
simulation environment.

Infections over the population graph.  Contagions between people are probabilistic in the stochastic 
population graph. The probability that infected agent an infects ai ∈ N1(an) through path (n, i) ∈ E is denoted 

(1)N1(an) � {ai : (n, i) ∈ E},

(2)N2(an) �
{

aj : ∃ai ∈ N1(an) and (i, j) ∈ E
}

,

Table 3.   Performance evaluation for a 85% quarantine success rates.

Measure/method NTI RTI DTI 1st-order ATI 2nd-order ATI

Total # of infected people 13,633 12,673 8917 7420 7384

Peak # of infected people 7761 7468 6944 6315 6291

Total # of days in quarantine 8,925,115 8,313,597 5,621,309 4,699,833 4,675,584

Curve width of quarantine above 1% (in days) > 150 > 150 68 51 51
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Figure 4.   Simulation results for a COVID-19 outbreak in a population of 100,000 people. Daily testing capacity 
is set to 1%.
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by p(n,i) . Typically, p(n,i) is set such that the average number of individuals a patient infects is given by the repro-
duction rate.

The key in operating efficient population testing to stop the spread of the virus is to test the people most likely 
to be infected (so we can identify them before symptoms appear). The estimated probability of person an being 
infected is denoted by pn , which we refer to as a belief. Let G be the graph topology, including the infection prob-
ability rules over the graph. Let H be the history of the revealed knowledge by the algorithm up to the current 
time, including all controlled states, and observations. Then, at each given time the ATI algorithm updates the 
beliefs based on G,H:

An illustration is provided in Fig. 5a in the end of this section, where the population graph contains two infected 
patients an , and an′ . Given that these patients are identified, we can use the graph topology, and the infection prob-
ability over the edges to estimate the probability that aj is infected. Furthermore, assuming that an′ has an equal 
probability to infect his or her first-order neighbors aj , am, ak , we can further infer that it is more likely that aj is 
infected than am is (since person aj is a first-order neighbor of patient an′ , as well as a second-order neighbor of 
patient an , whereas person am is a first-order neighbor of patient an′ , and only a fourth-order neighbor of patient 
an ), i.e., pj > pm . Therefore, applying efficient controlled testing strategy should prioritize testing aj over am.

Details of the ATI algorithm.  We now provide more detailed explanation on the implementation of the 
ATI algorithm. The algorithm consists of 4 steps as follows: 

1.	 Identifying infected people and isolating them: For the released population, check whether there are new 
infected people based on symptoms or preceding test results if tested. Send those infected people to quar-
antine until recovered. Denote these people by {an}An=1.

2.	 Isolating first-order neighbors in quarantine: Order the first-order neighbors {N1(an)}
A
n=1 into quarantine 

for at least 14 days. Release them if symptoms have not appeared, or they have recovered, or if test results 
were negative if tested.

3.	 Updating the belief over the population graph: Update the beliefs pj for all people in the population graph 
based on new information (e.g., identifying new infected people, isolating new people).

	   Note that the beliefs are updated temporally by taking into account practical aspects of COVID-19 effects 
on patients. For example, the probability of a second-order neighbor of an identified patient (who was quar-
antined when detected) being infected decreases with time as long as symptoms do not appear. Therefore, 
the beliefs must be decreased for all people who are not identified at each time step. Furthermore, the belief 
of a person that was tested and obtained negative test results should be decreased. This side information is 
captured by the history H . A detailed development of the belief update is given in the next subsections.

4.	 Actively testing the most likely infected people: Test all people with top NT beliefs among the entire popula-
tion, regardless of their symptomatic state.

5.	 Repeat: Go back to Step 1 (for instance, a single day ended).

Development of second‑order approximation of the belief.  The development of the second-order 
approximation of the belief used in ATI algorithm is described next. Let

and

be the sets of all one-hop, and two-hop infection paths of person j, respectively. Then, the probability that person 
aj is infected through infection paths P1(aj) or P2(aj) only is given by:

By assuming that pn,i ≪ 1 for all n, i, we get:

(3)pn = fn(G,H), n = 1, . . . ,N .

(4)P1(aj) =
{

(n′, j) : j ∈ N1(an′)
}

,

(5)P2(aj) =
{

(n, i, j) : i ∈ N1(an), j ∈ N1(ai)
}

(6)

pj = 1−
∏

(n′, j) ∈ P1(aj)

(

1− p(n′ ,j)
)

×
∏

(n, i, j) ∈ P2(aj)

(

1− p(n,i,j)
)

= 1−
∏

(n′, j) ∈ P1(aj)

(

1− p(n′ ,j)
)

×
∏

(n, i, j) ∈ P2(aj)

(

1− p(n,i) · p(i,j)
)

.
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Figure 5.   Illustrations for model settings as described in the “Methods” section.
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We use this approximation to update the beliefs over the population graph in the simulated models described 
next.

Using simulated models to validate the ATI policy.  Description of the graph topology.  We simu-
lated a COVID-19 outbreak environment with N people. The outbreak is initiated by NI infected people. In the 
simulations we set N = 100,000 , and NI = 50 , or N = 1,000,000 , and NI = 1000 . The degree distribution of the 
population graph captures different volume levels to model different types of social connections in the graph. 
For example, an office worker might have 25 close contacts, while a public service worker might have 200 close 
contacts. An example of the tail probability of the degrees in the population graph that we used in the simula-
tions is illustrated in Fig. 5b in the end of this section.

Simulating symptomatic and asymptomatic people.  An infected person can be asymptomatic or symptomatic. 
Let ra and Na be the ratio of asymptomatic people over the entire population, and the number of asymptomatic 
people, respectively. In the simulations we set 30% of people as asymptomatic (i.e., Na = ra · N = 0.3 · N ). For 
asymptomatic people, symptoms do not appear and the only way to verify their condition is by testing them. 
For symptomatic people, we model the appearance time of symptoms by a Rayleigh distributed random vari-
able with parameter σ = 5.1/

√

2 log(2) , as illustrated in Fig. 5c. This distribution models the appearance of 
symptoms mostly between day 2 and 11 from the day the person was infected, with a median of day 5.1, and a 
probability that symptoms will appear after day 11 of less 0.03. The distribution model and its parameters were 
chosen to fit the empirical incubation time recently reported in49.

Transiting to static states.  Static states in the simulations represent a state of a person who cannot infect other 
people or be infected by other people. This state captures a person who was infected and recovered, or sadly a 
person who was infected and died. The time between the day of infection and transitioning to the static state was 
set to Ds = 21 in the simulations.

Placing people in quarantine.  Once a positive observation o(an) for person an is obtained, an enters quarantine. 
This is done if symptoms appear for person an , or if the person was scheduled for testing and a positive test result 
was obtained. The person enters quarantine until he or she transitions to the static state (recovers or dead), or 
after the recovery time has elapsed (set to 21 days in simulations) in the case of a false positive (we set 0.01 false 
positive rate in simulations). In addition, all his or her first-order neighbors N1(an) enter quarantine for at least 
Dq days, where Dq = 14 in the simulations, which is the typical isolation time used in many countries. People 
in quarantine cannot infect other people or be infected by other people. After 14 days, individuals in N1(an) are 
released if symptoms have not appeared. To further model realistic situations, we assumed that δs days elapse 
between the day symptoms appear and the day a person and his or her first-order neighbors enter quarantine. 
We also assumed that δT days elapse between the day the test is performed and the result is received, and conse-
quently the person and his or her first-order neighbors enter quarantine if positive.

False negatives in test results.  Efficient COVID-19 tests should have low false negative rates to avoid releasing 
infected people and infecting other people. Today, COVID-19 tests suffer from roughly 0.1− 0.2 false negative 
rates. To model this effect, we incorporated a parameter FN in the simulation environment. In the simulations, 
we set FN to 0.2.

Stochastic infections over the population graph.  We set the infection probability oevr the graph by:

where 
∑

i:i∈N1(an)
r(n,i) = |N1(an)| , where the reproduction rate was set to R0 = 2.3 fixed for all the individuals 

in the simulations. This models the case where all people infect the same number of people R0 on average. It 
models the situation where people with a high degree of infection interacts with each person for less time, or use 
protective measures that reduce the infection risk (e.g., public service workers). Nevertheless, the simulator is 
generic and can be updated to simulate different infection probabilities for different people. The constants r(n,i) 
model the situation where the infection probability is not uniform among first-order neighbors. For example, 
being within 1 m of a COVID-19 patient for a longer period of time increases the infection probability. In the 
simulations, we set r(n,i) to 0.25 for half of the first-order neighbors, and 1.75 for the other half, for each person.

Updating the belief in ATI algorithm.  We simulated the suggested ATI algorithm using first-order and second-
order approximations of the beliefs in Eq. (6), respectively, i.e.,

(7)
pj ≈

∑

(n′, j) ∈ P1(aj)

p(n′ ,j) +
∑

(n, i, j) ∈ P2(aj)

p(n,i) · p(i,j).

(8)p(n,i) =
r(n,i)R0

|N1(an)|
,
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under the first-order ATI, and

under the second-order ATI.
In addition, we used temporal updates of the belief. We reduced the belief of all people by multiplying it by 

a forgetting factor α at each iteration. This gives higher weight to recent observations. Specifically, at each itera-
tion, we update the belief by:

where ← denotes assignment notation. A forgetting factor of α = 0.75 demonstrated good performance. This fits 
a residual belief of approximatey 3% after 11 days, which fits the tail of the occurrence symptoms distribution.

Similarly, a negative test result should reduce the belief significantly. The proper way to do this is using a Bayes-
ian update taking into account the false negative rate in the infected population, as well as the overall infection 
rate in the population. We found that this can be replaced quite well by a forgetting factor of β = 0.25 for a false 
negative rate of 0.1−0.2 without significant loss. Specifically, at each time a person n is tested and the result is 
negative, we update the belief by:

As usually done in adaptive algorithms, these parameters should be tuned, given the parameters of the 
environment.
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