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Abstract: Various machine-learning schemes have been proposed to diagnose glaucoma. They can
classify subjects into ‘normal’ or ‘glaucoma’-positive but cannot determine the severity of the latter. To
complement this, researchers have proposed statistical indices for glaucoma risk. However, they are
based on a single examination indicator and do not reflect the total severity of glaucoma progression.
In this study, we propose an integrated glaucoma risk index (I-GRI) based on the visual field (VF) test,
optical coherence tomography (OCT), and intraocular pressure (IOP) test. We extracted important
features from the examination data using a machine learning scheme and integrated them into a
single measure using a mathematical equation. The proposed index produces a value between
0 and 1; the higher the risk index value, the greater the risk/severity of glaucoma. In the sanity test
using test cases, the I-GRI showed a balanced distribution in both glaucoma and normal cases. When
we classified glaucoma and normal cases using the I-GRI, we obtained a misclassification rate of
0.07 (7%). The proposed index is useful for diagnosing glaucoma and for detecting its progression.

Keywords: glaucoma; machine learning; prediction; risk index

1. Introduction

Glaucoma is the leading cause of irreversible blindness around the world and pro-
gressively affects the optic nerve [1]. In Korea, the number of glaucoma patients increased
from 4.01 million in 2009 to 9.79 million in 2019, with an average annual increase rate of
9.3%. The rapid increase in the number of glaucoma patients is a global trend. Therefore,
accurate diagnosis of glaucoma is important. Recently, machine-learning schemes have
been widely used for glaucoma diagnosis [2–7]. Classification is a major technology used
in medical applications because it can be used for prediction (diagnosis). Monitoring a
subject’s glaucoma potential or progression is as important as diagnosing it. Although a
classification model can indicate whether the target subject is glaucoma-positive or normal,
it cannot indicate how normal or severe their condition is. A few researchers have proposed
the glaucoma risk index (GRI) to express the progression of glaucoma.

Bock et al. [8] presented early research results for the GRI. They performed prepro-
cessing to eliminate disease-independent variations from the input fundus image, applied
feature extraction to transform the preprocessed input data into a characteristic and com-
pact representation, and finally built the GRI using a two-stage probabilistic support vector
machine classifier. The proposed two-stage GRI was used to classify glaucoma and achieved
an area under the receiver operating characteristic curve of 88% and a sensitivity of 73% at
a specificity of 85%.

Loewen et al. [9] suggested a simple glaucoma index (GI) that combined preoperative
intraocular pressure (IOP), number of preoperative medications, and visual field damage
to capture relative glaucoma severity and resistance to treatment. The authors developed a
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four-level GI based on the severity level of the collected features. This GI expresses four
groups rather than a range of continuous values. There was no mathematical equation for
integrating the feature values. This GI was mainly used to compare the outcomes of ab
interno trabeculectomy stratified by the GI.

Mookiah et al. [10] extracted various features from fundus images and built a glaucoma
classification model. They also suggested a GRI using higher-order spectra and discrete
wavelet transform features. The GRI values ranged between 0 and 35. In their research, the
GRI was proposed as another glaucoma classifier that used a single feature.

Acharya et al. [11] extracted various features from 510 fundus images and performed
principal component analysis. They constructed a GRI using five principal components
(PC1–PC5). Equation (1) represents the GRI, which was obtained using a trial-and-error
method. However, they did not provide a detailed analysis of their GRI, except for a simple
comparison of the mean GRI values between the glaucoma and normal groups.

GRI = 6.8375 − 1.1325 × PC1 + 1.6500 × PC2 + 2.7225 × PC3
+ 0.6750 × PC4 + 0.6650 × PC5

(1)

Acharya et al. [12] presented a new methodology and computerized diagnostic method.
They extracted pattern features from fundus images and built a k-nearest neighbor model
to classify glaucoma and normal cases. They also suggested a GRI based on the pattern
features. The range of their GRI was between 2 and 8, and the glaucoma cases were clearly
separated from the normal cases. However, the distribution of the GRI reported by Acharya
et al. was not continuous. The glaucoma and normal groups were concentrated in specific
sections within the entire GRI range. Therefore, it is not sufficient to detect the progression
of glaucoma. In particular, the border range between normal and glaucoma cases is difficult
to express using the GRI.

As previously stated, several GRIs have been proposed. They have the following
disadvantages: (i) Most of them use only fundus images as a resource for GRI. However,
ophthalmologists do not diagnose glaucoma based solely on single examination data. The
proposed GRIs do not reflect various diagnostic tools for glaucoma. (ii) They are a by-
product of glaucoma classification, and their purpose is to predict glaucoma or to obtain
auxiliary information for glaucoma prediction. (iii) The risk index should have a range of
fully continuous values; however, some GRIs do not. Therefore, they are not suitable as
expression/observation tools in monitoring the progression of glaucoma.

In this paper, we propose a new GRI measure named “integrated GRI (I-GRI)”. The
goal of the I-GRI is to capture the risk or progression of glaucoma. We used general exami-
nation data, including visual field (VF), optical coherence tomography (OCT), and IOP, as
sources of I-GRI measurements. Machine-learning schemes, such as feature selection and
feature importance, were applied to produce features for I-GRI. The details are described
in Sections 2 and 3. The relevance and usefulness of I-GRI are discussed in Section 4.

2. Materials and Methods

To develop the I-GRI, we built a dataset based on the results of the VF, Retinal Nerve
Fiber Layer (RNFL) OCT, and IOP tests. After the feature selection process, a machine-
learning predictive model using the XGBoost [13–15] algorithm with six features (variables)
was built to obtain the feature importance values for the selected six features. We also
synthesized a new feature using these six features. Finally, we built an I-GRI measure using
the seven features. Figure 1 presents an overview of the I-GRI development process. The
process is described in detail in the following sections.

2.1. Preparation of the Dataset

To build the I-GRI, we collected medical records of patients who underwent RNFL
OCT, VF, and IOP examinations at Gyeongsang National University Hospital and Dankook
University Hospital in Korea between January 2012 and November 2020. To conduct the
study, we required all patients to undergo comprehensive ophthalmological examinations,
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including slit-lamp biomicroscopy, best-corrected visual acuity (BCVA), autorefraction
(KR8800, Topcon, Tokyo, Japan), central corneal thickness (CCT) measurement (Pentacam,
Oculus GmbH, Wetzlar, Germany), Goldmann applanation tonometry, dilated fundus
examination, and fundus and red-free fundus photography (Canon, Tokyo, Japan) [2]. An
automated VF test was conducted using the 30–2 program Swedish interactive threshold
algorithm standard on a Humphrey 740 visual field analyzer (Carl Zeiss Meditec, Inc.,
Dublin, CA, USA). Spectral-domain OCT (SD-OCT) images, obtained using the Spectralis®

platform (Heidelberg Engineering GmbH, Heidelberg, Germany), were used to measure
the thickness of the peripapillary retinal nerve fiber layer [2].

Figure 1. Overview of the I-GRI development process.

In total, 868 eyes (of patients) with glaucoma (primary open-angle glaucoma or normal-
tension glaucoma) and 1060 eyes (of patients) without glaucoma were included. The
inclusion criteria for normal eyes were BCVA ≥ 20/40, no abnormal findings except for
insignificant age-related cataract, and normal VF test results according to the Anderson-
Patella criteria. Moreover, glaucomatous eyes were defined as follows: (1) BCVA ≥ 20/40;
(2) presence of typical glaucomatous changes, such as disc rim narrowing or a notch, and
RNFL defects identified by fundus photography and OCT; and (4) glaucomatous VF defect
results according to the Anderson–Patella criteria. Table 1 summarizes the characteristics
of the participants.

The prepared dataset contained 22 features and a class label (0: normal; 1: glaucoma).
Table 2 summarizes the feature list of this dataset.

To build the I-GRI, we needed to collect features that were strongly related to the
progression of glaucoma. We applied feature subset selection [16–18] to the dataset. We
removed 12 less important features using filter methods and obtained six features using
the wrapper method. The six final features are listed in Table 3. The final dataset, in-
cluding the six features, was normalized for use as a reference dataset for calculating the
synthesized features.
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Table 1. Characteristics of the participants.

Normal Group Glaucoma Group Total

Number of participants 629 741 1370
Gender (male/female) 518/437 852/497 1370/934
Age (mean ± SD 1) 51.1 ± 15.1 59.1 ± 14.1 55.8 ± 15.3
Number of eyes 868 1060 1928
Number of cases 955 1349 2304

1 Standard deviation.

Table 2. Feature list for the prepared dataset.

Feature List

Sex, age, GHT 1, VFI 2, MD 3, PSD 4, RNFL 5 superior, RNFL nasal, RNFL inferior, RNFL
temporal, mean of the RNFL thickness, IOP 6, CCT 7, BCVA 8, SE 9, axial length, neuroretinal rim,
cup, disc, mean of the cup/disc ratio, vertical_cup/disc ratio, and CNN2 10 degree

1 Glaucoma hemifield test; 2 visual field index; 3 mean deviation; 4 pattern standard deviation, 5 retinal nerve
fiber layer; 6 intraocular pressure; 7 central corneal thickness; 8 best-corrected visual acuity; 9 spherical equivalent;
10 convolutional neural network.

Table 3. List of selected features.

No. Feature Abbreviation Source

1 Pattern standard deviation PSD VF 1

2 Mean deviation (defect) MD VF
3 RNFL superior RNFL_S OCT 2

4 RNFL inferior RNFL_I OCT
5 RNFL temporal RNFL_T OCT
6 IOP IOP IOP 3

1 Visual field test; 2 optical coherence tomography; 3 intraocular pressure.

2.2. Building of the Machine-Learning Predictive Model

To obtain the importance of the selected features, we built a machine-learning predic-
tive model, particularly the XGBoost model, and obtained the feature importance from the
model. XGBoost is a strong boosting algorithm that has shown a high classification accuracy
in many applications. This also supports our calculation method for feature importance.
For parameter tuning, we used 10-fold cross validation and obtained the parameter values
in Table 4. After parameter tuning, all data were used for the training process because
our goal was not to develop the best predictive model but to select the best features for
the model.

Table 4. Parameter values for the XGBoost model.

Parameter Name Value

booster “gbtree”
Eta 0.4
max_depth 4
gamma 1
subsample 0.7
objective “multi:softprob”
eval_metric “merror”
num_class 2

2.3. Calculation of the Feature Importance of the Selected Features

To combine the six feature values into one, the consolidation ratio for each feature
is required. The correlation coefficient between the feature and class label is a strong
candidate; however, it assumes that the features are independent of each other. However,
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features interact with each other during the prediction/diagnosis tasks [19,20]. Feature
importance captures both the discriminative and interaction powers of a feature. Therefore,
feature importance is a proper standard for the consolidation ratio. XGBoost supports
feature importance calculations for the features in a model. Table 5 and Figure 2 show the
importance of the selected features. RNFL_I is the most important feature for the glaucoma
predictive model, and the sum of the importance of the six features is 1.0.

Table 5. Feature importance of the selected features.

No. Feature Importance

1 PSD 0.27
2 MD 0.14
3 RNFL_S 0.11
4 RNFL_I 0.31
5 RNFL_T 0.10
6 IOP 0.07

Figure 2. Graph of the feature importance of the selected features.

In the proposed I-GRI, the higher the risk index value, the greater the risk/severity of
glaucoma. The index ranges from 0 to 1. To achieve these characteristics, each feature value
must be normalized in the collected dataset to be between 0 and 1. We applied min-max
normalization and excluded outliers. Table 6 lists the minimum and maximum values
of the selected features. Among the four features (RNFL_S, RNFL_I, RNFL_T, and IOP),
the lower the feature value, the greater the risk/severity of glaucoma. This is contrary to
the characteristics of I-GRI. Therefore, we take the reverse values (1—normalized feature
values) for these four features.

Table 6. Min and max values for the proposed normalization.

No. Feature Min Max

1 PSD 0.95 16.9
2 MD −24.1 6.39
3 RNFL_S 6 172
4 RNFL_I 0 195
5 RNFL_T 20 110
6 IOP 5 29

The performance of the GRI is affected by the quality of the features used to build the
index. The addition of higher-quality features should improve the index. In this study, we
created a new feature, namely, the “nearest neighbor index (NNI),” from the normalized
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and partially reversed dataset of six features. The NNI value for a given instance X is
obtained using the following steps:

1. Take the five nearest instances of X from the reference dataset.
2. Investigate the class labels of the five nearest instances.

3. NNI =
Number o f instances labeled as glaucoma

5
(2)

The higher the NNI value, the greater the risk/severity of glaucoma. The range of NNI
values is from 0 to 1. Figure 3 shows the distribution of NNI in the normal and glaucoma
cases. The boxplot shows that the NNI values in the glaucoma group are significantly
different from those in the normal group. This indicates that NNI is a good feature for
classifying normal and glaucoma cases.

Figure 3. Distribution of the NNI values.

2.4. Building of the I-GRI Measure

The I-GRI is composed of six original features and a synthesized feature. First, the
base index value (I-GRI) is calculated using Equation (3) by multiplying the normalized
feature value and its importance ratio. Second, the final I-GRI is calculated by combining
the I-GRI.base and NNI at a ratio of 8:2. We tested various ratios, such as 9:1, 8:2, and 7:3.
The test results showed that 8:2 was the best ratio for I-GRI performance.

I-GRI.base = PSD.normal × 0.27 +
MD.normal × 0.14 +

RNFL_S.normal × 0.11 +
RNFL_I.normal × 0.31 +
RNFL_T.normal × 0.1 +

IOP.normal × 0.07

(3)

I-GRI = I-GRI.base × 0.8 + NNI × 0.2 (4)
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Example 1. The I-GRI was calculated using the examination data shown in Table 7 as an example.

Table 7. Target examination data for the calculation of the I-GRI.

PSD MD RNFL_S RNFL_I RNFL_T IOP

9.54 −0.84 56 54 48 11

Step 1. The examination data were normalized using the minimum and maximum values
in Table 6. Table 8 presents the results.

Table 8. Results of the min–max normalization for the target examination data.

PSD MD RNFL_S RNFL_I RNFL_T IOP

0.5386 0.5333 0.3012 0.2769 0.3111 0.25

Step 2. The normalized data of MD, RNFL_S, RNFL_I, and RNFL_T were reversed. Table 9
presents the results.

Table 9. Results of reversing four normalized feature values.

PSD MD RNFL_S RNFL_I RNFL_T IOP

0.5386 0.4667 0.6889 0.7231 0.6889 0.25

Step 3. The NNI of the data in Table 9 was calculated, using the normalized and partially
reversed datasets. The calculation result was 1.0.
Step 4. The I-GRI.base was calculated according to Equation (3). The result was 0.5971.

I-GRI.base = 0.5386 × 0.27 + 0.4667 × 0.14 + 0.6889 × 0.11 +
0.7231 × 0.31 + 0.6889 × 0.1 + 0.25 × 0.07

= 0.5971

Step 5. The final I-GRI was calculated according to Equation (4). The result was 0.678.

I-GRI = 0.5971 × 0.8 + 1.0 × 0.2
= 0.678

3. Results

To confirm the validity of the proposed I-GRI, we calculated the I-GRI values for our
dataset and analyzed the results. Figure 4 shows the distribution of I-GRI values for the
glaucoma and normal groups. As previously described, the higher the I-GRI value, the
greater the risk/severity of glaucoma. The overlapped area in Figure 4 is the border section
between the glaucoma and normal groups. The shapes of the glaucoma and normal groups
show a normal distribution curve with narrow overlapping intervals. This is consistent
with the expectations for the risk index. From the results, we calculated the threshold
value of the I-GRI to classify glaucoma and normal cases. The threshold was calculated
as 0.36. This means that an examination case can be classified as glaucoma if its I-GRI
value is greater than 0.36. When we applied this threshold to our dataset, we obtained a
misclassification rate of 0.07 (7%). Figure 5 shows a boxplot of I-GRI values for the reference
dataset. As can be seen in the figure, there was a clear difference between the mean values
of the glaucoma and normal groups. The mean values of the glaucoma and normal groups
were 0.607 and 0.249, respectively. The p-value from the t-test was <2.2 × 10−16.
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Figure 4. Distribution of the I-GRI values for the reference dataset.

Figure 5. Boxplot of the I-GRI values for the reference dataset.

Table 10 and Figure 6 show typical examination data and I-GRI values for the glaucoma,
border section, and normal groups. In the radar chart in Figure 6, the gray polygon line
indicates the threshold of each feature for classifying glaucoma and normal cases. If an
I-GRI polygon covers a gray polygon, the I-GRI value indicates glaucoma.

Table 10. Target examination data for the calculation of the I-GRI.

Group PSD MD RNFL_S RNFL_I RNFL_T IOP I-GRI

Glaucoma 9.54 −7.84 56 54 48 11 0.679
Border
section 2.29 −6.99 94 89 77 12 0.369

Normal 1.43 −1.49 125 140 63 13 0.191
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Figure 6. Boxplot of the I-GRI values for the reference dataset. (a) Glaucoma; (b) border section; (c) normal.

Figure 7 shows the relationship between the six features and I-GRI. The Y-axis ex-
presses the I-GRI value, whereas the X-axis expresses the feature value that is normalized
and reversed. The value on the right-hand side of the feature name is the correlation
coefficient between the feature and I-GRI. RNFL_I, PSD, and MD showed a strong linear
relationship with I-GRI, whereas IOP showed a weak linear relationship.

Figure 7. Scatterplots for the six features and I-GRI values.

Table 11 summarizes the comparison between the state-of-the-art methods and the
proposed method. As we can see, the proposed method supports 0–1 normalization and
continuity of the risk index. It uses various resources to capture the characteristics of
glaucoma. This demonstrates the advantages of the proposed method.
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Table 11. Comparison of state-of-the-art work and the proposed method.

Comparison Point Bock [8] Loewen [9] Mookiah [10] Acharya [11] Proposed

0–1 normalization X X X X O
Continuity of risk index O X O O O
Number of used features 3 3 13 23 6

Resource 1 fundus image IOP, VF, NPM 2 fundus image fundus image IOP, VF, OCT
Accuracy 3 0.80 NA 0.95 0.93 0.93

1 Resource to extract features for building risk index; 2 number of preoperative medications; 3 classification
accuracy when the glaucoma risk index is used.

4. Discussion
4.1. Effect of the NNI

The NNI is a synthesized feature used to build the proposed I-GRI measure. To
demonstrate its effect, we temporarily built the I-GRI, excluding the NNI, and compared
the results. As shown in Figure 8, the NNI pulls the I-GRI values for the normal group to the
left side and those for the glaucoma group to the right side. As a result, the overlapping area
between the glaucoma and normal groups is reduced. Thus, the NNI clearly contributes to
the increased performance of the I-GRI.

Figure 8. Effect of the NNI on the I-GRI measure. (a) Before applying the NNI; (b) after applying the NNI.
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4.2. Comparison between the I-GRI and the MD

Generally, the MD value of the VF indicates the overall severity of visual field loss in
patients with glaucoma. Therefore, we can observe the progression of glaucoma using the
MD. We used the normal and glaucoma cases from the reference dataset and compared the
I-GRI and MD values. Figure 9 shows a scatterplot of the MD and I-GRI values. A linear
correlation can be observed between the MD of the glaucoma group and the I-GRI. The
correlation coefficient between these variables was 0.803, indicating a strong correlation.

Figure 9. Scatterplot of the MD of the glaucoma group and the I-GRI.

Mills et al. [21] suggested three stages of glaucoma progression based on the MD
values. Table 12 summarizes the normal and three stages of glaucoma, and the mean I-GRI
values for the stages. We can observe that the mean of the I-GRI values is clearly different
for the normal and the three stages of glaucoma and that the p-value of the analysis of
variance test is <10−3. Figure 10 shows the distribution of I-GRI for the normal and three
stages of glaucoma. These results imply that the I-GRI reflects the characteristics of MD.
Furthermore, the I-GRI can specify the normal and early glaucoma groups. The p-value of
the t-test between the two groups was <10−3.

Table 12. Three stages of glaucoma progression and their range of MD.

Group MD Mean (I-GRI)

Normal – 0.249
Early glaucoma >−0.5 dB 0.374
Intermediate glaucoma −5.0 to −12.0 dB 0.539
Advanced glaucoma <−12 dB 0.737

4.3. Comparison between Glaucoma and Glaucoma-like Diseases Based on the I-GRI

Several optic nerve diseases must be clinically differentiated from glaucoma. The
first is a glaucoma-like optic disc with an increased cup/disc ratio but no RNFL or visual
field defects. The second is optic disc atrophy due to diseases other than glaucoma,
such as compression optic neuropathy or Leber’s hereditary optic neuropathy. Finally,
superior segmental optic hypoplasia is also observed. In this study, glaucoma-like disc
was defined similarly to the previous study as an increased cup-to-disc ratio (≥0.6) and
pallor, asymmetry of cupping between eyes in a patient with normal IOP, no RNFL defect,
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and normal VF [22]. The diagnosis of Leber’s hereditary optic neuropathy (LHON) was
based on clinical features such as a young patient with progressive central visual loss, color
vision defect, optic disc pallor, and central/centro cecal scotoma. Finally, LHON diagnosis
was molecularly confirmed at the Laboratory of Dankook University Hospital. Superior
segmental optic hypoplasia diagnosis was based on the presence of more than two of the
following four symptoms—superior rim thinning, the superior entrance of the central
retinal artery, scleral halo, and pale optic disc—combined with nonprogressive VF loss,
peripheral VF defects, and IOP less than 21 mmHg. Clinically, ophthalmologists often have
difficulty in distinguishing between these diseases, and imaging tests such as magnetic
resonance imaging, genetic testing, or serial observation are sometimes required. To help
differentiate these diseases from glaucoma, we analyzed the distributions of I-GRI values
in the glaucoma and glaucoma-like groups. Table 13 and Figure 11 summarize the results.
The I-GRI values of the glaucoma-like group were lower than those of the glaucoma group.
This means that the I-GRI can capture the characteristics of glaucoma and glaucoma-like
diseases. This demonstrates the effectiveness of the I-GRI. However, the I-GRI cannot be
directly used for specifying glaucoma-like diseases because the range of I-GRI values of the
glaucoma-like group overlaps with that of the normal group.

Figure 10. Distribution of the I-GRI values according to the MD groups.

Figure 11. Distribution of the I-GRI values in the glaucoma and glaucoma-like groups.
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Table 13. Three means of the I-GRI for the glaucoma and glaucoma-like groups.

Group Mean (I-GRI) p-Value *

Glaucoma 0.607 –
GOD 1 0.263 <10−3

LHON 2 0.403 <10−3

SSOH 3 0.417 0.001

* t-test between the glaucoma and other groups; 1 glaucoma-like optic disc; 2 optic disc atrophy; 3 super segmental
optic hypoplasia.

5. Conclusions

From this discussion, we can confirm that the proposed I-GRI is a reasonable and ef-
fective measure for observing the progression of glaucoma. We implemented the proposed
I-GRI calculator on the web (http://220.149.235.96:3838/IGRI/, accessed on 10 December
2021). The screen capture of the I-GRI calculator is presented in Appendix A. If an ophthal-
mologist inputs the patient’s examination data on the site, it presents the I-GRI values and
explanation graphs. This can help in identifying the risk of glaucoma and in determining
whether a patient has glaucoma.
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Appendix A

The I-GRI calculator produces the I-GRI value and graphs when we input six values
of required examination data. The horizontal bar chart shows the position of the I-GRI
value. The example below shows that I-GRI 0.739 is located in the glaucomatous region.
The green vertical line designates a threshold value of 0.36 to separate the glaucoma and
normal groups.

http://220.149.235.96:3838/IGRI/
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Figure A1. Screenshot of the I-GRI calculator.
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